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Abstract. Standard syntactic assignments (SSAs) model knowledge di-
rectly rather than as truth in all possible worlds as in modal epistemic
logic, by assigning arbitrary truth values to atomic epistemic formulae.
It is a very general approach to epistemic logic, but has no interesting
logical properties — partly because the standard logical language is too
weak to express properties of such structures. In this paper we extend
the logical language with a new operator used to represent the propo-
sition that an agent “knows at most” a given finite set of formulae and
study the problem of strongly complete axiomatization of SSAs in this
language. Since the logic is not semantically compact, a strongly com-
plete finitary axiomatization is impossible. Instead we present, first, a
strongly complete infinitary system, and, second, a strongly complete
finitary system for a slightly weaker variant of the language.

1 Introduction

In traditional modal epistemic logic [1, 2], modelling knowledge as truth in all
possible states in a Kripke structure, agents know all the logical consequences
of their knowledge. It fails as a logic of the computed knowledge of real agents,
because it assumes a very particular and extremely powerful mechanism for
reasoning. In reality, different agents have different reasoning mechanisms (e.g.
non-monotonic or resource-bounded) and representations of knowledge (e.g. as
propositions or as syntactic formulae). Thus, a more general model would be use-
ful in a logic of computed knowledge. A general approach is to model knowledge
directly rather than as truth in all possible worlds. Standard Syntactic Assign-
ments (SSAs) [1] is a syntactic approach in which a formula Kiφ is assigned a
truth value independent of the truth value assigned to any other formula of the
formKiψ. SSAs are generalizations of Kripke structures. In fact, it can be argued
that SSAs is the most general model of knowledge. However, SSAs are so general
that they have no interesting logical properties that can be expressed in the tra-
ditional language of epistemic logic – indeed, they are completely axiomatized
by propositional logic.



In this paper, we extend the logical language with a new epistemic operator
5i for each agent. 5iX, where X is a finite set of formulae, expresses the fact
that agent i knows at most X. The main problem we consider is the construction
of a strongly complete axiomatization of SSAs in this language. A consequence
of the addition of the new operator is that semantic compactness is lost, and thus
that a strongly complete finitary axiomatization is impossible. Instead we, first,
present a strongly complete infinitary system, and, second, a strongly complete
finitary system for SSAs for a slightly weaker variants of the epistemic operators.
The results are a contribution to the logical foundation of multi-agent systems.

In Section 2 SSAs and their use in epistemic logic are introduced, before the
“at most” operator 5i and its interpretation in SSAs is presented in Section
3. The completeness results are presented in Section 4, and we conclude and
discuss related work in Section 5. We presently define some logical concepts and
terminology used in the remainder.

1.1 Logic

By “a logic” we henceforth mean a language of formulae together with a satisfi-
ability relation |=. The semantic structures considered in this paper each has a
set of states, and satisfiability relations relate a formula to a pair consisting of
a structure M and a state s of M . A formula φ is a (local) logical consequence
of a theory (set of formulae) Γ , Γ |= φ, iff (M, s) |= φ for all φ ∈ Γ implies that
(M, s) |= φ. The usual terminology and notation for Hilbert-style proof systems
are used: Γ `S φ means that formula φ is derivable from theory Γ in system S,
and when ∆ is a set of formulae, Γ `S ∆ means that Γ `S δ for each δ ∈ ∆. We
use the following definition of maximality: a theory in a language L is maximal
if it contains either φ or ¬φ for each φ ∈ L. A logical system is weakly complete,
or just complete, if |= φ (i.e. ∅ |= φ, φ is valid) implies `S φ (i.e. ∅ `S φ) for all
formulae φ, and strongly complete if Γ |= φ implies Γ `S φ for all formulae φ and
theories Γ . If a logic has a (strongly) complete logical system, we say that the
logic is (strongly) complete. A logic is semantically compact if for every theory
Γ , if every finite subset of Γ is satisfiable then Γ is satisfiable. It is easy to see
that under the definitions used above:

Fact 1 A weakly complete logic has a sound and strongly complete finitary
axiomatization iff it is compact.

2 The Epistemic Logic of Standard Syntactic
Assignments

Standard Syntactic Assignments (SSAs) are defined and interpret the standard
epistemic language, as follows. Given a number of agents n we write Σ for the
set {1, . . . , n}.

Definition 2 (L) Given a set of primitive propositions Θ and a number of
agents n, L(Θ,n) (or just L) is the least set such that:



– Θ ⊆ L
– If φ, ψ ∈ L then ¬φ, (φ ∧ ψ) ∈ L
– If φ ∈ L and i ∈ Σ then Kiφ ∈ L 2

The set of epistemic atoms is LAt = {Kiφ : φ ∈ L, i ∈ Σ}. An epistemic formula
is a propositional combination of epistemic atoms. An SSA assigns a truth value
to the primitive propositions and epistemic atoms.

Definition 3 (Standard Syntactic Assignment) A standard syntactic as-
signment (SSA) is a tuple

(S, σ)

where S is a set of states and

σ(s) : Θ ∪ LAt → {true, false}

for each s ∈ S. 2

Satisfaction of an L formula φ by a state s of an SSA M , written (M, s) |= φ,
is defined as follows:

(M, s) |= p ⇔ σ(s)(p) = true

(M, s) |= ¬φ ⇔ (M, s) 6|= φ

(M, s) |= (φ ∧ ψ) ⇔ (M, s) |= φ and (M, s) |= ψ

(M, s) |= Kiφ ⇔ σ(s)(Kiφ) = true

We note that although [1] define SSAs in a possible worlds framework, the
question of satisfaction of φ in a state s does not depend on any other state
(((S, σ), s) |= φ⇔ (({s}, σ), s) |= φ).

SSAs are very general descriptions of knowledge – in fact so general that no
epistemic properties of the class of all SSAs can be described by the standard
epistemic language:

Theorem 4 Propositional logic, with substitution instances for the language L,
is sound and complete with respect to SSAs. 2

In the next section we increase the expressiveness of the epistemic language.

3 Knowing At Most

The formula Kiφ denotes that fact that i knows at least φ – he knows φ but he
may know more. We can generalize this to finite sets X of formulae:

4iX ≡
∧
{Kiφ : φ ∈ X}

representing the fact that i knows at least X. The new operator we introduce3

in this paper is a dual to 4i, denoting the fact that i knows at most X:

5iX

3 A similar operator is also used in [3] and [4].



denotes the fact that every formula an agent knows is included in X, but he may
not know all the formulae in X. If L was finite, the operator 5i could (like 4i)
be defined in terms of Ki:

5iX =
∧
{¬Kiφ : φ ∈ L \X}

But since L is not finite, 5i is not definable by Ki. We also use a third, derived,
epistemic operator: ♦iX ≡ 4iX ∧ 5iX meaning that the agent knows exactly
X. The extended language is called L5.

Definition 5 (L5) Given a set of primitive propositions Θ, and a number of
agents n, L5(Θ,n) (or just L5) is the least set such that:

– Θ ⊆ L5
– If φ, ψ ∈ L5 then ¬φ, (φ ∧ ψ) ∈ L5
– If φ ∈ L and i ∈ Σ then Kiφ ∈ L5
– If X ∈ ℘fin(L) and i ∈ Σ then 5iX ∈ L5 2

The language L5(Θ,n) is defined to express properties of SSAs over the
language L(Θ,n) (introduced in Section 2), and thus the epistemic operators Ki

and 5i operate on formulae from L(Θ,n). We assume that Θ is countable, and
will make use of the fact that it follows that L5(Θ,n) is (infinitely) countable.

IfX is a finite set of L5 formulae, we write4iX as a shorthand for
∧

φ∈X Kiφ.
In addition, we use ♦iX for 4iX ∧ 5iX, and the usual derived propositional
connectives.

The interpretation of L5 in a state s of an SSA M is defined in the same
way as the interpretation of L, with the following clause for the new epistemic
operator:

(M, s) |= 5iX ⇔ {φ ∈ L : σ(s)(Kiφ) = true} ⊆ X

It is easy to see that

(M, s) |= 4iX ⇔ {φ ∈ L : σ(s)(Kiφ) = true} ⊇ X

(M, s) |= ♦iX ⇔ {φ ∈ L : σ(s)(Kiφ) = true} = X

3.1 Properties

The following schemata, where X,Y, Z range over finite sets of formulae and φ
over single formulae, show some properties of SSAs, in the language L5.

4i ∅ E1
4i X ∧4iY →4i(X ∪ Y ) E2
(5iX ∧5iY ) →5i(X ∩ Y ) E3
¬(4iX ∧5iY ) when X * Y E4
(5i(Y ∪ {φ}) ∧ ¬Kiφ) →5iY E5
4i X →4iY when Y ⊆ X KS

5i X →5iY when X ⊆ Y KG



It is straightforward to prove the following.

Lemma 6 E1–E5, KG, KS are valid. 2

4 Axiomatizations of SSAs

In this section we discuss axiomatizations of standard syntactic assignments in
the language L5. The following lemma shows that the logic is not compact, and
thus it does not have a strongly complete finitary axiomatization (Fact 1).

Lemma 7 The logic of standard syntactic assignments in the language L5 is
not compact. 2

Proof Let p ∈ Θ and let Γ1 be the following L5 theory:

Γ1 = {Kip,¬5i {p}} ∪ {¬Kiφ : φ 6= p}

Let Γ ′ be a finite subset of Γ1. Clearly, there exists a φ′ such that ¬Kiφ
′ 6∈ Γ ′.

Let M = ({s}, σ) be such that σ(s)(Kiφ) = true iff φ = p or φ = φ′. It is easy
to see that (M, s) |= Γ ′. If there was some (M ′, s′) such that (M ′, s′) |= Γ1, then
(M ′, s′) |= ¬5i {p} i.e. there must exist a φ 6= p such that σ(s)(Kiφ) = true –
which contradicts the fact that (M ′, s′) |= ¬Kiφ for all φ 6= p. Thus, every finite
subset of Γ1 is satisfiable, but Γ1 is not.

We present a strongly complete infinitary axiomatization in 4.1. Then, in
4.2, a finitary axiomatization for a slightly weaker language than L5 is proven
strongly complete for SSAs.

4.1 An Infinitary System

We define a proof system ECω for the language L5 by using properties presented
in Section 3 as axioms, in addition to propositional logic. In addition, ECω

contains an infinitary derivation clause R*. After presenting ECω, the rest of
the section is concerned with proving its strong completeness with respect to
the class of all SSAs. This is done by the commonly used strategy of proving
satisfiability of maximal consistent theories. Thus we need an infinitary variant
of the Lindenbaum lemma. However, the usual proof of the Lindenbaum lemma
for finitary systems is not necessarily applicable to infinitary systems. In order
to prove the Lindenbaum lemma for ECω, we use the same strategy as [5] who
prove strong completeness of an infinitary axiomatization of PDL (with canonical
models). In particular, we use the same way of defining the derivability relation
by using a weakening rule W, and we prove the deduction theorem in the same
way by including a cut rule Cut.



Definition 8 (ECω) ECω is a logical system for the language L5 having the
following axiom schemata

All substitution instances of tautologies
of propositional calculus Prop

(5iX ∧5iY ) →5i(X ∩ Y ) E3
¬(4iX ∧5iY ) when X * Y E4
(5i(Y ∪ {γ}) ∧ ¬Kiγ) →5iY E5
5i X →5iY when X ⊆ Y KG

The derivation relation `ECω – written `ω for simplicity – between sets of L5
formulae and single L5 formulae is the smallest relation closed under the fol-
lowing conditions:

`ω φ when φ is an axiom Ax

{φ, φ→ ψ} `ω ψ MP⋃
j∈J

{αj → ¬Kiγ : γ 6∈ Xj} `ω

∧
j∈J

αj →5iX R*

when X =
⋂
j∈J

Xj and X and J are finite

Γ `ω φ

Γ ∪∆ `ω φ
W

Γ `ω ∆,Γ ∪∆ `ω φ

Γ `ω φ
Cut

In the above schemata, X, Y , Z, Xj range over sets of L formulae, γ over L
formulae, Γ,∆ over sets of L5 formulae, φ, ψ, αj over L5 formulae, and i over
agents. J is some finite set of indices. 2

It is easy to see that E1, E2 and KS are derivable in ECω.
The use of the weakening rule instead of more general schemas makes induc-

tive proofs easier, but particular derivations can sometimes be more cumbersome.
For example:

Lemma 9

Γ ∪ {φ} `ω φ R1
`ω ψ → φ

Γ ∪ {ψ `ω φ}
R2
2

Proof

R1: {φ, φ→ φ} `ω φ by MP; `ω φ→ φ by Ax; {φ} `ω φ→ φ by W; {φ} `ω φ
by Cut and Γ ∪ {φ} `ω φ by W.



R2: Let `ω ψ → φ. By W, {ψ} `ω ψ → φ; by MP {ψ,ψ → φ} `ω φ and thus
{ψ} `ω φ by Cut. By W, Γ ∪ {ψ} `ω φ.

In order to prove the Lindenbaum lemma, we need the deduction theorem. The
latter is shown by first proving the following rule.

Lemma 10 The following rule of conditionalization is admissible in ECω.

Γ ∪∆ `ω φ

Γ ∪ {ψ → δ : δ ∈ ∆} `ω ψ → φ
Cond

2

Proof The proof is by infinitary induction over the derivation Γ ∪ ∆ `ω φ
(derivations are well-founded). The base cases are Ax, MP and R*, and the
inductive steps are W and Cut.

Ax: Γ = ∆ = ∅. We must show that `ω ψ → φ when `ω φ. By W we get
φ → (ψ → φ) `ω φ, then φ, φ → (ψ → φ) `ω ψ → φ is an instance of MP,
and by Cut we get φ→ (ψ → φ) `ω ψ → φ. By Prop, `ω φ→ (ψ → φ), so
by Cut once more we get `ω ψ → φ.

MP: Γ ∪ ∆ = {φ′, φ′ → φ} `ω φ. That Γ ∪ {ψ → δ : δ ∈ ∆} `ω ψ → φ can
be shown for each of the four possible combinations of Γ and ∆ in a similar
way to the Ax case.

R*: Γ ∪∆ = ∪j∈J{αj → ¬Kiφ : φ ∈ L\Xj} where J is finite and X = ∩j∈JXj

is finite, i.e. there exist for each j ∈ J Yj , Zj such that Xj = Yj ] Zj and

Γ =
⋃
j∈J

{αj → ¬Kiφ : φ ∈ Yj}

∆ =
⋃
j∈J

{αj → ¬Kiφ : φ ∈ Yj}

Let

Γ ′ =
⋃
j∈J

{(ψ ∧ αj) → ¬Kiφ : φ ∈ Yj}

∆′ =
⋃
j∈J

{(ψ ∧ αj) → ¬Kiφ : φ ∈ Yj}

Γ ′ ∪∆′ = ∪j∈J{αj → ¬Kiφ : φ ∈ L \Xj}, and thus Γ ′ ∪∆′ `ω γ′, where
γ′ = ∧j∈J(ψ ∧ αj) → 5iX, by R*. Let γ = ∧j∈Jαj → 5iX. By Prop
`ω γ

′ → γ giving Γ ′ ∪∆′ ∪{γ′} `ω γ by R2; and thus Γ ′ ∪∆′ `ω γ by Cut.
By Prop, `ω (αj → ¬Kiφ) → ((ψ∧αj) → ¬Kiφ) for each αj → ¬Kiφ ∈ Γ ,
and by R2 ∆′ ∪ Γ `ω Γ ′. By Cut, ∆′ ∪ Γ `ω γ, which is the desired
conclusion.

W: Γ ′ ∪ ∆′ `ω φ for some Γ ′ ⊆ Γ and ∆′ ⊆ ∆. By the induction hypothesis
we can use Cond to obtain Γ ′ ∪ {ψ → δ : δ ∈ ∆′} `ω ψ → φ, and thus
Γ ∪ {ψ → δ : δ ∈ ∆} `ω ψ → φ by W.



Cut: Γ∪∆ `ω ∆
′ and Γ∪∆∪∆′ `ω φ, for some ∆′. By the induction hypothesis

on the first derivation (once for each δ′ ∈ ∆′), Γ∪{ψ → δ : δ ∈ ∆} `ω φ→ δ′

for each δ′ ∈ ∆′. By the induction hypothesis on the second derivation,
Γ ∪ {ψ → δ : δ ∈ ∆ ∪∆′} `ω ψ → φ. By Cut, Γ ∪ {ψ → δ : δ ∈ ∆} `ω ψ →
φ.

Theorem 11 (Deduction Theorem) The rule

Γ ∪ {φ} `ω ψ

Γ `ω φ→ ψ
DT

is admissible in ECω. 2

Proof If Γ ∪ {φ} `ω ψ, then Γ ∪ {φ → φ} `ω φ → ψ by Cond. Γ `ω φ → φ
by Ax and W, and thus Γ `ω φ→ ψ by Cut.

Now we are ready to show that consistent theories can be extended to max-
imal consistent theories. The proof relies on DT.

Lemma 12 (Lindenbaum lemma for ECω) If Γ is ECω-consistent, then
there exists an L5-maximal and ECω-consistent Γ ′ such that Γ ⊆ Γ ′. 2

Proof Recall R*:⋃
j∈J

{αj → ¬Kkψ : ψ 6∈ Xj} `ω

∧
j∈J

αj →5kX.

Formulae which can appear on the right of `ω in its instances will be said to
have R*-form. A special case of this schema is when

∧
j αj is a tautology (i.e.,

each αj is), from which ⋃
j∈J

{¬Kkφ : ψ 6∈ Xj} `ω 5kX.

can be obtained. Now, Γ ′ ⊃ Γ is constructed as follows. L5 is countable, so
let φ1, φ2, . . . be an enumeration of L5 respecting the subformula relation (i.e.,
when φi is a subformula of φj then i < j).

Γ0 = Γ

Γi+1 =


Γi ∪ {φi+1} if Γi `ω φi+1

Γi ∪ {¬φi+1} if Γi 6`ω φi+1 and φi+1 does not have the R*-form
Γi ∪ {¬φi+1,Kkψ} if Γi 6`ω φi+1 and φi+1 has the R*-form, where ψ is

arbitrary such that ψ 6∈ X and Γi 6`ω ¬Kkψ

Γ ′ =
ω⋃

i=0

Γi



The existence of ψ in the last clause in the definition of Γi+1 is verified as follows:
since Γi 6`ω φi+1, there must be, to prevent an application of R*, at least one
αj and ψ 6∈ X such that Γi 6`ω αj → ¬Kkψ. By construction (and the ordering
of formulae), each αj or its negation is included in Γi. If Γi `ω ¬αj then also
Γi `ω αj → ¬Kkψ, and this would be the case also if Γi `ω ¬Kkψ. So Γi `ω αj

and Γi 6`ω ¬Kkψ.
It is easy to see that Γ ′ is maximal.
We show that each Γi is consistent, by induction over i. For the base case, Γ0

is consistent by assumption. For the inductive case, assume that Γi is consistent.
Γi+1 is constructed by one of the three cases in the definition:

1. Γi+1 is obviously consistent.
2. If Γi+1 = Γi ∪ {¬φi+1} `ω ⊥, then Γi `ω φi+1 by DT and Prop, contra-

dicting the assumption in this case.
3. Consider first the special case (when all αj are tautologies). Assume that
Γi+1 = Γi ∪ {¬ 5k X,Kkψ} `ω ⊥. Then Γi `ω Kkψ → 5kX by DT and
Prop and by E4, since ψ 6∈ X, Γi `ω Kkψ → ¬5kX, and thus Γi `ω ¬Kkψ
contradicting the assumption in this case.
In the general case, assume that Γi+1 = Γi∪{¬(

∧
j αj →5kX),Kkψ} `ω ⊥:

i Then Γi `ω Kkψ → (¬(
∧

j αj → 5kX) → ⊥), i.e., Γi `ω Kkψ →
(
∧

j αj →5kX), i.e., Γi `ω

∧
j αj → (Kkψ →5kX).

ii By assumption in the construction, Γi 6`ω ¬(
∧

j αj) (for otherwise it
would prove

∧
j αj → 5kX), but since

∧
j αj (as well as each αj) is a

subformula of φi+1, it or its negation is already included in Γi. But this
means that Γi `ω

∧
j αj . Combined with (i), this gives Γi `ω Kkψ →

5kX, i.e., Γi `ω ¬Kkψ ∨5kX.
iii On the other hand, by E4, since ψ 6∈ X : Γi `ω ¬(Kkψ ∧ 5kX), i.e.,

Γi `ω ¬Kkψ∨¬5kX. Combined with (ii) this means that Γi `ω ¬Kkψ,
but this contradicts the assumption in the construction of Γi+1.

Thus each Γi is consistent.
To show that Γ ′ is consistent, we first show that

Γ ′′ `ω φ⇒ (Γ ′′ ⊆ Γ ′ ⇒ φ ∈ Γ ′) (1)

holds for all derivations Γ ′′ `ω φ, by induction over the derivation. The base
cases are Ax, MP and R*, and the inductive steps are W and Cut. Let i be
the index of the formula φ, i.e. φ = φi.

Ax: If `ω φ, then φ ∈ Γi by the first case in the definition of Γi.
MP: Γ ′′ = {φ′, φ′ → φ}. If Γ ′′ ⊆ Γ ′, there exists k, l such that φ′ ∈ Γk and

φ′ → φ ∈ Γl. If φ 6∈ Γ ′, ¬φ ∈ Γ ′ by maximality, i.e. there exists a m such that
¬φ ∈ Γm. But then ¬φ, φ′, φ′ → φ ∈ Γmax(k,l,m), contradicting consistency
of Γmax(k,l,m).

R*: Γ ′′ = ∪j∈J{αj → ¬Kkψ : ψ 6∈ Xj} and φ =
∧

j αj → 5kX, where
X =

⋂
j Xj , and Γ ′′ ⊆ Γ ′. If φ 6∈ Γ ′ then, by maximality, ¬φ ∈ Γ ′, and thus

¬φ ∈ Γi. Then, by construction of Γi, Γi−1 6`ω φ (otherwise φ ∈ Γ ′) and



Kkψ ∈ Γi for some ψ 6∈ X. By the same argument as in point 3.(ii) above,
Γi `ω

∧
j αj , and hence also Γ ′ `ω

∧
j αj . But then, for an appropriate m

(namely, for which φm = αj → ¬Kkψ): Γm−1 `ω αj and Γm−1 `ω Kkψ,
i.e., ¬(αj → ¬Kkψ) ∈ Γm, and so αj → ¬Kkψ 6∈ Γ ′, which contradicts the
assumption that Γ ′′ ⊆ Γ ′.

W: Γ ′′ = Γ ′′′ ∪ ∆, and Γ ′′′ `ω φ. If Γ ′′ ⊆ Γ ′, Γ ′′′ ⊆ Γ and by the induction
hypothesis φ ∈ Γ ′.

Cut: Γ ′′ `ω ∆ and Γ ′′ ∪ ∆ `ω φ. Let Γ ′′ ⊆ Γ ′. By the induction hypothesis
on the first derivation (once for each of the formulae in ∆), ∆ ⊆ Γ ′. Then
Γ ′′ ∪ ∆ ⊆ Γ ′, and by the induction hypothesis on the second derivation
φ ∈ Γ ′.

Thus (1) holds for all Γ ′′ `ω φ; particularly for Γ ′ `ω φ. Consistency of Γ ′

follows: if Γ ′ `ω ⊥, then ⊥ ∈ Γ ′, i.e. ⊥ ∈ Γl for some l, contradicting the fact
that each Γl is consistent.

The following Lemma is needed in the proof of the thereafter following
Lemma stating satisfiability of maximal consistent theories.

Lemma 13 Let Γ ′ ⊆ L5 be an L5-maximal and ECω-consistent theory. If
there exists an X ′ such that Γ ′ `ω 5iX

′, then there exists an X such that
Γ ′ `ω ♦iX. 2

Proof Let Γ ′ be maximal consistent, and let Γ ′ `ω 5iX
′. Let

X =
⋂

Y⊆X′ and Γ ′`ω5iY

Y

Since every Y is included in the finite set X ′, X is finite, and Γ ′ `ω 5iX can
be obtained by a finite number of applications of E3. Let

Z =
⋃

Γ ′`ω4iY

Y

If Γ ′ `ω 4iY , then Y ⊆ X, since otherwise Γ ′ would be inconsistent by E4. Thus
Z is finite. By a finite number of applications of E2, Γ ′ `ω 4iZ. If Z * X, then
Γ ′ would be inconsistent by E4, so Z ⊆ X. We now show that X ⊆ Z. Assume
the opposite: φ ∈ X but φ 6∈ Z for some φ. Let X− = X \ {φ}. Γ ′ 6`ω Kiφ,
since otherwise φ ∈ Z by definition of Z. By maximality, Γ ′ `ω ¬Kiφ. By E5,
Γ ′ `ω 5iX

− – but by construction of X it follows that X ⊆ X− which is a
contradiction. Thus, X = Z, and Γ ′ `ω ♦iX.

Lemma 14 Every maximal ECω-consistent L5 theory is satisfiable. 2

Proof Let Γ be maximal and consistent. We construct the following SSA, which
is intended to satisfy Γ :

MΓ = ({s}, σΓ )
σΓ (s)(p) = true ⇔ Γ `ω p when p ∈ Θ

σΓ (s)(Kiφ) = true ⇔ φ ∈ XΓ
i



where:

XΓ
i =

{
Z where Γ `ω ♦iZ if there is an X ′ such that Γ `ω 5iX

′

{γ : Γ `ω Kiγ} otherwise

In the definition of XΓ
i , the existence of a Z such that that Γ `ω ♦iZ in the

case that there exists an X ′ such that Γ `ω 5iX
′ is guaranteed by Lemma 13.

We show, by structural induction over φ, that

(MΓ , s) |= φ⇐⇒ Γ `ω φ (2)

This is a stronger statement than the lemma; the lemma is given by the direction
to the left. We use three base cases: when φ is in Θ, φ = Kiψ and φ = 5iX. The
first base case and the two inductive steps negation and conjunction are trivial,
so we show only the two interesting base cases. For each base case we consider
the situations when XΓ

i is given by a) the first and b) the second case in its
definition.

– φ = Kiψ: (MΓ , s) |= Kiψ iff ψ ∈ XΓ
i .

⇒) Let ψ ∈ XΓ
i . In case a),XΓ

i = Z where Γ `ω ♦iZ and by KS, Γ `ω Kiψ.
In case b), Γ `ω Kiψ by construction of XΓ

i .
⇐) Let Γ `ω Kiψ. In case a), Γ `ω 5iZ and thus ψ ∈ Z = XΓ

i by E4 and
consistency of Γ . In case b), ψ ∈ XΓ

i by construction.
– φ = 5iX: (MΓ , s) |= 5iX iff XΓ

i ⊆ X.
⇒) LetXΓ

i ⊆ X. In case a), Γ `ω ♦iZ where Z = XΓ
i ⊆ X, so Γ `ω 5iX by

KG. In case b), XΓ
i must be finite, since X is finite. For any ψ 6∈ XΓ

i ,
Γ 6`ω Kiψ by construction of XΓ

i , and Γ `ω ¬Kiψ by maximality.
Thus, by R* (with J = {1}, α1 = > and X1 = XΓ

i ), Γ `ω 5iX
Γ
i ,

contradicting the assumption in case b). Thus, case b) is impossible.
⇐) Let Γ `ω 5iX. In case a), Γ `ω 4iZ and by E4 and consistency of Γ

XΓ
i = Z ⊆ X. Case b) is impossible by definition.

Theorem 15 ECω is a sound and strongly complete axiomatization of standard
syntactic assignments, in the language L5. 2

Proof Soundness follows from Lemma 6, and the easily seen facts that MP and
R* are logical consequences and that W and Cut preserve logical consequence.
Strong completeness follows from Lemmas 12 and 14.

4.2 A System for a Weaker Language

In the previous section we proved strong completeness of ECω by using R*.
It turns out that strong completeness can be proved without R*, if we restrict
the logical language slightly. The restriction is that for some arbitrary primitive
proposition p̂ ∈ Θ, Kip̂ and 5iX are not well-formed formulae for any i and
any X with p̂ ∈ X. The semantics is not changed; we are still interpreting the
language in SSAs over L(Θ,n) as described in Sections 2 and 3. Thus, in the
restricted logic agents can know something which is not expressible in the logical
language.

Lp̂
5 ⊂ L5 is the restricted language for a given primitive proposition p̂.



Definition 16 (Lp̂
5) Given a set of primitive propositions Θ, a proposition

p̂ ∈ Θ and a number of agents n, Lp̂
5(Θ,n) (or just Lp̂

5) is the least set such
that:

– Θ ⊆ Lp̂
5

– If φ, ψ ∈ Lp̂
5 then ¬φ, (φ ∧ ψ) ∈ Lp̂

5
– If φ ∈ (L \ {p̂}) and i ∈ Σ then Kiφ ∈ Lp̂

5
– If X ∈ ℘fin(L \ p̂) and i ∈ Σ then 5iX ∈ Lp̂

5 2

The finitary logical system EC p̂ is defined by the same axiom schemas as
ECω. The two systems do not, however, have the same axioms since they are
defined for different languages – the extensions of the schemas are different. The
derivation relation for EC p̂ is defined by the axioms and the derivation rule
modus ponens. Particularly, the infinitary derivation clause R* from ECω is
not included.

Definition 17 (EC p̂) EC p̂ is the logical system for the language Lp̂
5 consisting

of the following axiom schemata and deduction rule

All substitution instances of tautologies
of propositional calculus Prop

(5iX ∧5iY ) →5i(X ∩ Y ) E3
¬(4iX ∧5iY ) when X * Y E4
(5i(Y ∪ {γ}) ∧ ¬Kiγ) →5iY E5
5i X →5iY when X ⊆ Y KG
Γ `p̂ φ, Γ `p̂ φ→ ψ

Γ `p̂ ψ
MP

The derivation relation `EC p̂ – written `p̂ for simplicity – between sets of Lp̂
5

formulae and single Lp̂
5 formulae is the smallest relation which satisfies the

schema

Γ `p̂ φ when φ is an axiom Ax

and is closed under the deduction rule. 2

It is easy to see that E1, E2, KS and DT are derivable in ECω.
The restriction Lp̂

5 ⊂ L5 is sufficient to prove strong completeness without
R* in a manner very similar to the proof in Section 4.1. The first step, existence
of maximal consistent extensions, can now be proved by the standard proof since
the system is finitary.

Lemma 18 (Lindenbaum lemma for EC p̂) If Γ is EC p̂-consistent, then there
exists an Lp̂

5-maximal and EC p̂-consistent Γ ′ such that Γ ⊆ Γ ′. 2

Second, we establish the result corresponding to Lemma 13 for Lp̂
5 and EC p̂.



Lemma 19 Let Γ ′ ⊆ Lp̂
5 be a Lp̂

5-maximal and EC p̂-consistent theory. If there
exists a X ′ such that Γ ′ `p̂ 5iX

′, then there exists a X such that Γ ′ `p̂ ♦iX.2

Proof The proof is essentially the same as for Lemma 13, for the language Lp̂
5

instead of L5 (note that in that proof we did not rely on R*, and that p̂ 6∈ X
since X ⊆ X ′).

Third, we show satisfiability.

Lemma 20 Every maximal EC p̂-consistent Lp̂
5 theory is satisfiable. 2

Proof Let Γ be maximal and consistent. The proof is very similar to that of
the corresponding result for ECω (Lemma 14). We construct the following SSA,
which is intended to satisfy Γ :

MΓ = ({s}, σΓ )
σΓ (s)(p) = true ⇔ Γ `p̂ p when p ∈ Θ

σΓ (s)(Kiφ) = true ⇔ φ ∈ XΓ
i

where:

XΓ
i =


Z where Γ `p̂ ♦iZ if there is an X ′ such that Γ `p̂ 5iX

′

{γ : Γ `p̂ Kiγ} ∪ {p̂} if ∀X′Γ 6`p̂ 5iX
′ and

⋃
Γ`p̂4iY

Y is finite
{γ : Γ `p̂ Kiγ} if ∀X′Γ 6`p̂ 5iX

′ and
⋃

Γ`p̂4iY
Y is infinite

The existence of Z is guaranteed by Lemma 19, and, again, we show, by struc-
tural induction over φ, that

(MΓ , s) |= φ⇐⇒ Γ `p̂ φ (3)

for all φ ∈ Lp̂
5. As in the proof of Lemma 14 we only show the epistemic base

cases. For each base case we consider the situations when

a) there is an X ′ such that Γ `p̂ 5iX
′ or

b) Γ 6`p̂ 5iX
′ for every X ′

corresponding to the first and to the second and third cases in the definition of
XΓ

i , respectively.

– φ = Kiψ: (MΓ , s) |= Kiψ iff ψ ∈ XΓ
i .

⇒) Let ψ ∈ XΓ
i . In case a), XΓ

i = Z where Γ `p̂ ♦iZ and by KS, Γ `p̂ Kiψ.
In case b), ψ 6= p̂ (since Kiψ ∈ Lp̂

5) and thus Γ `p̂ Kiψ by construction
of XΓ

i .
⇐) Let Γ `p̂ Kiψ. In case a), Γ `p̂ 5iZ and thus ψ ∈ Z = XΓ

i by E4 and
consistency of Γ . In case b), ψ ∈ XΓ

i by construction.
– φ = 5iX: (MΓ , s) |= 5iX iff XΓ

i ⊆ X.



⇒) Let XΓ
i ⊆ X. In case a), Γ `p̂ ♦iZ where Z = XΓ

i ⊆ X, so Γ `p̂ 5iX
by KG. In case b), if p̂ ∈ XΓ

i then p̂ ∈ X which is impossible since 5iX
is a formula. But if p̂ 6∈ XΓ

i then XΓ
i is infinite (by construction) which

is also impossible since X is finite – thus case b) is impossible.
⇐) Let Γ `p̂ 5iX. In case a), Γ `p̂ 4iZ and by E4 and consistency of Γ

XΓ
i = Z ⊆ X. Case b) is impossible by definition.

Theorem 21 EC p̂ is a sound and strongly complete axiomatization of standard
syntactic assignments, in the language Lp̂

5. 2

Proof Soundness follows from the soundness of ECω. Strong completeness fol-
lows from Lemmas 20 and 18.

5 Discussion

We introduced a “knows at most” operator in order to increase the expressive-
ness of the epistemic language with respect to standard syntactic assignments,
and investigated strong axiomatization of the resulting logic. The new operator
destroyed semantic compactness and thus the possibility of a strongly complete
finitary axiomatization, but we presented a strongly complete infinitary axiom-
atization. An interesting result is that we have a strongly complete finitary ax-
iomatization if we make the assumption that the agents can know something
which is not expressible in the logical language. The results are a contribution
to the logical foundation of multi-agent systems.

Related work include classical syntactic treatment of knowledge [6–8, 1], mod-
elled in a possible worlds framework by [1] as described in Section 2. The 5i

operator is new in the context of syntactic models. It is, however, similar to
Levesque’s only knowing operator O [9]. Oα means that the agent does not
know more than α, but knowledge in this context means knowledge closed un-
der logical consequence and “only knowing α” is thus different from “knowing
at most” a general set of formulae. The relation between these concepts is an
interesting possibility for future work.

In [4] we investigate the special case of agents who can know only finitely
many syntactic formulae at the same time. Completeness results for such finitely
restricted agents build upon the results presented in this paper. Another possi-
bility for future work is to study other special classes of SSAs.

In this paper we have only studied the static aspect of syntactic knowledge.
In [10], we discuss how syntactic knowledge can evolve as a result of reasoning
and communication, i.e. a dynamic aspect of knowledge.

References

1. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
The MIT Press, Cambridge, Massachusetts (1995)



2. Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science.
Cambridge University Press, Cambridge, England (1995)
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10. Ågotnes, T., Walicki, M.: Syntactic knowledge: A logic of reasoning, communi-
cation and cooperation. In: Proceedings of the Second European Workshop on
Multi-Agent Systems (EUMAS), Barcelona, Spain (2004)


