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Abstract. Standard syntactic assignments (SSAs) model knowledge di-
rectly rather than as truth in all possible worlds as in modal epistemic
logic, by assigning arbitrary truth values to atomic epistemic formulae.
It is a very general approach to epistemic logic, but has no interesting
logical properties — partly because the standard logical language is too
weak to express properties of such structures. In this paper we extend
the logical language with a new operator used to represent the propo-
sition that an agent “knows at most” a given finite set of formulae and
study the problem of strongly complete axiomatization of SSAs in this
language. Since the logic is not semantically compact, a strongly com-
plete finitary axiomatization is impossible. Instead we present, first, a
strongly complete infinitary system, and, second, a strongly complete
finitary system for a slightly weaker variant of the language.

1 Introduction

In traditional modal epistemic logic [1,2], modelling knowledge as truth in all
possible states in a Kripke structure, agents know all the logical consequences
of their knowledge. It fails as a logic of the computed knowledge of real agents,
because it assumes a very particular and extremely powerful mechanism for
reasoning. In reality, different agents have different reasoning mechanisms (e.g.
non-monotonic or resource-bounded) and representations of knowledge (e.g. as
propositions or as syntactic formulae). Thus, a more general model would be use-
ful in a logic of computed knowledge. A general approach is to model knowledge
directly rather than as truth in all possible worlds. Standard Syntactic Assign-
ments (SSAs) [1] is a syntactic approach in which a formula K;¢ is assigned a
truth value independent of the truth value assigned to any other formula of the
form K;1. SSAs are generalizations of Kripke structures. In fact, it can be argued
that SSAs is the most general model of knowledge. However, SSAs are so general
that they have no interesting logical properties that can be expressed in the tra-
ditional language of epistemic logic — indeed, they are completely axiomatized
by propositional logic.



In this paper, we extend the logical language with a new epistemic operator
;i for each agent. \7; X, where X is a finite set of formulae, expresses the fact
that agent 7 knows at most X. The main problem we consider is the construction
of a strongly complete axiomatization of SSAs in this language. A consequence
of the addition of the new operator is that semantic compactness is lost, and thus
that a strongly complete finitary axiomatization is impossible. Instead we, first,
present a strongly complete infinitary system, and, second, a strongly complete
finitary system for SSAs for a slightly weaker variants of the epistemic operators.
The results are a contribution to the logical foundation of multi-agent systems.

In Section 2 SSAs and their use in epistemic logic are introduced, before the
“at most” operator v/; and its interpretation in SSAs is presented in Section
3. The completeness results are presented in Section 4, and we conclude and
discuss related work in Section 5. We presently define some logical concepts and
terminology used in the remainder.

1.1 Logic

By “a logic” we henceforth mean a language of formulae together with a satisfi-
ability relation |=. The semantic structures considered in this paper each has a
set of states, and satisfiability relations relate a formula to a pair consisting of
a structure M and a state s of M. A formula ¢ is a (local) logical consequence
of a theory (set of formulae) I', I' = ¢, iff (M, s) = ¢ for all ¢ € I'" implies that
(M, s) E ¢. The usual terminology and notation for Hilbert-style proof systems
are used: I' Fg ¢ means that formula ¢ is derivable from theory I" in system .S,
and when A is a set of formulae, I' -5 A means that I' g § for each § € A. We
use the following definition of maximality: a theory in a language L is maximal
if it contains either ¢ or —¢ for each ¢ € L. A logical system is weakly complete,
or just complete, if = ¢ (i.e. 0 |E ¢, ¢ is valid) implies Fg ¢ (i.e. O Fg @) for all
formulae ¢, and strongly complete if I' |= ¢ implies I' kg ¢ for all formulae ¢ and
theories I'. If a logic has a (strongly) complete logical system, we say that the
logic is (strongly) complete. A logic is semantically compact if for every theory
I, if every finite subset of I" is satisfiable then I is satisfiable. It is easy to see
that under the definitions used above:

Fact 1 A weakly complete logic has a sound and strongly complete finitary
axiomatization iff it is compact.

2 The Epistemic Logic of Standard Syntactic
Assignments

Standard Syntactic Assignments (SSAs) are defined and interpret the standard
epistemic language, as follows. Given a number of agents n we write X' for the
set {1,...,n}.

Definition 2 (£) Given a set of primitive propositions @ and a number of
agents n, £(@,n) (or just L) is the least set such that:



CASYS
— If ¢,% € L then =g, (¢ ANY) € L
—Ifpe Land i€ X then K;p € L d

The set of epistemic atoms is LA = {K;¢ : ¢ € L,i € X}. An epistemic formula
is a propositional combination of epistemic atoms. An SSA assigns a truth value
to the primitive propositions and epistemic atoms.

Definition 3 (Standard Syntactic Assignment) A standard syntactic as-
signment (SSA) is a tuple
(5,0)

where S is a set of states and
o(s) : OU LA — {true, false}
for each s € S. O

Satisfaction of an £ formula ¢ by a state s of an SSA M, written (M, s) = ¢,
is defined as follows:

(M,5) = p & o(s)(p) = true
(M, 5) = o & (M) ko

(M,5) b= (6 A ) & (M) g and (M,s) o
(M,s) = Ko & o(s)(K;¢) = true

We note that although [1] define SSAs in a possible worlds framework, the
question of satisfaction of ¢ in a state s does not depend on any other state

(((S5,0),8) = ¢ < (({s},0),5) = ¢).

SSAs are very general descriptions of knowledge — in fact so general that no
epistemic properties of the class of all SSAs can be described by the standard
epistemic language:

Theorem 4 Propositional logic, with substitution instances for the language L,
is sound and complete with respect to SSAs. O

In the next section we increase the expressiveness of the epistemic language.

3 Knowing At Most

The formula K;¢ denotes that fact that i knows at least ¢ — he knows ¢ but he
may know more. We can generalize this to finite sets X of formulae:

N X = /\{K@ cpe X}

representing the fact that ¢ knows at least X. The new operator we introduce?
in this paper is a dual to A;, denoting the fact that ¢ knows at most X:

ViX

3 A similar operator is also used in [3] and [4].



denotes the fact that every formula an agent knows is included in X, but he may
not know all the formulae in X. If £ was finite, the operator v7; could (like A;)
be defined in terms of Kj:

ViX = \{~Kip: ¢ €L\ X}

But since L is not finite, 57; is not definable by K;. We also use a third, derived,
epistemic operator: {; X = A\; X A 7; X meaning that the agent knows exactly
X. The extended language is called L.

Definition 5 (L) Given a set of primitive propositions ©, and a number of
agents n, L (0, n) (or just L) is the least set such that:

-60CLy

— If ¢,¢ € L then =¢, (¢ NY) € Lo

—Ifpe Landie X then K;¢ € L,

— If X € p/™(L) and i € ¥ then ;X € Ly ]

The language L (©,n) is defined to express properties of SSAs over the
language £(©,n) (introduced in Section 2), and thus the epistemic operators K;
and 7; operate on formulae from £(©,n). We assume that © is countable, and
will make use of the fact that it follows that L (©,n) is (infinitely) countable.

If X is a finite set of L, formulae, we write A; X as a shorthand for /\¢eX K;o.
In addition, we use {; X for A;X A s7; X, and the usual derived propositional
connectives.

The interpretation of Ly, in a state s of an SSA M is defined in the same
way as the interpretation of £, with the following clause for the new epistemic
operator:

(M,s) E7: X & {p € L:0(s)(K;p) =true} C X
It is easy to see that

(M, s) = N X & {p € L:0(s)(K;p) =true} D X

(M,s) E 0iX & {p€L:o(s)(K;p) =true} = X

3.1 Properties

The following schemata, where X, Y, Z range over finite sets of formulae and ¢
over single formulae, show some properties of SSAs, in the language L.

N 0 E1
N XADNY — A(XUY) E2
(ViX A7iY) = vi(X NY) E3
(N X ALY when X ¢V E4
(Vi(Y U{o}) N Kip) — 7Y E5
N X — NY when Y C X KS

ViX — VY when X CY KG



It is straightforward to prove the following.

Lemma 6 E1-E5, KG, KS are valid. O

4 Axiomatizations of SSAs

In this section we discuss axiomatizations of standard syntactic assignments in
the language L. The following lemma shows that the logic is not compact, and
thus it does not have a strongly complete finitary axiomatization (Fact 1).

Lemma 7 The logic of standard syntactic assignments in the language Lo is
not compact. |

PROOF Let p € © and let I be the following L, theory:

I'n ={Kip,~vi{p}} U{-Ki¢: ¢ # p}

Let I be a finite subset of I'y. Clearly, there exists a ¢’ such that =K;¢' & I".
Let M = ({s}, o) be such that o(s)(K;¢) = true iff ¢ = p or ¢ = ¢'. It is easy
to see that (M, s) = I'". If there was some (M, s’) such that (M’,s’) | I, then
(M',s") = = <7; {p} i.e. there must exist a ¢ # p such that o(s)(K;¢) = true —
which contradicts the fact that (M’,s") = —K;¢ for all ¢ # p. Thus, every finite
subset of I} is satisfiable, but I} is not. n

We present a strongly complete infinitary axiomatization in 4.1. Then, in
4.2, a finitary axiomatization for a slightly weaker language than L, is proven
strongly complete for SSAs.

4.1 An Infinitary System

We define a proof system EC* for the language L, by using properties presented
in Section 3 as axioms, in addition to propositional logic. In addition, FC*
contains an infinitary derivation clause R*. After presenting FC“, the rest of
the section is concerned with proving its strong completeness with respect to
the class of all SSAs. This is done by the commonly used strategy of proving
satisfiability of maximal consistent theories. Thus we need an infinitary variant
of the Lindenbaum lemma. However, the usual proof of the Lindenbaum lemma
for finitary systems is not necessarily applicable to infinitary systems. In order
to prove the Lindenbaum lemma for EC*, we use the same strategy as [5] who
prove strong completeness of an infinitary axiomatization of PDL (with canonical
models). In particular, we use the same way of defining the derivability relation
by using a weakening rule W, and we prove the deduction theorem in the same
way by including a cut rule Cut.



Definition 8 (EC*“) EC" is a logical system for the language L, having the
following axiom schemata

All substitution instances of tautologies

of propositional calculus Prop
(ViX AviY) = (X NY) E3
(LN X AiY) when X ¢V E4
(Vi(Y U{r}) A =Kiy) = Y E5
vi X — VY when X CY KG

The derivation relation Fgcw — written -, for simplicity — between sets of L,
formulae and single £ formulae is the smallest relation closed under the fol-
lowing conditions:

Fo @ when ¢ is an axiom Ax
{00 =V} o MP
Ulas = ~Kiviv g X} bo \ o5 = viX R*
JjeJ jeJ
when X = ﬂ X; and X and J are finite
jeJ
'k, ¢
AL & \%\%
TUAF, ¢
I, A TUAR, ¢
t
Tr, o Cu

In the above schemata, X, Y, Z, X; range over sets of £ formulae, v over £
formulae, I', A over sets of Ly, formulae, ¢, ¥, a; over Ly formulae, and ¢ over
agents. J is some finite set of indices. m]

It is easy to see that E1, E2 and KS are derivable in EC*.

The use of the weakening rule instead of more general schemas makes induc-
tive proofs easier, but particular derivations can sometimes be more cumbersome.
For example:

Lemma 9
Iy {qb} Fo @ R1
Foth— ¢
—_—— R2
Proor

R1: {¢,¢ — ¢} bo ¢ by MP; -, ¢ — ¢ by Ax; {¢} Fo, ¢ — ¢ by Wi {¢} o, ¢
by Cut and I"U {¢} k., ¢ by W.



R2: Let F, ¥ — ¢. By W, {¢} o, ¥ — ¢; by MP {¢,¢ — ¢} I, ¢ and thus
{¢Y} ko, & by Cut. By W, I'U {¢} k-, ¢. [ ]

In order to prove the Lindenbaum lemma, we need the deduction theorem. The
latter is shown by first proving the following rule.

Lemma 10 The following rule of conditionalization is admissible in EC*.

TUAW, ¢

TU{p—6:0€A} ot — o Cond

O

PrOOF The proof is by infinitary induction over the derivation I' U A F, ¢
(derivations are well-founded). The base cases are Ax, MP and R*, and the
inductive steps are W and Cut.

Ax: I' = A = (. We must show that -, 9 — ¢ when F, ¢. By W we get
¢ — (Y — @)k, ¢, then ¢, — (Y — @) b, ¥ — ¢ is an instance of MP,
and by Cut we get ¢ — (¢ — ¢) b, ¥ — ¢. By Prop, b, ¢ — (¢ — ¢), so
by Cut once more we get -, 1 — ¢.

MP: TUA ={¢,¢/ - ¢}, . That TU{¢p - §:5€ A}, ¢ — ¢ can
be shown for each of the four possible combinations of I" and A in a similar
way to the Ax case.

R*: TUA =U ej{o; — ~K;¢: ¢ € L\ X,} where J is finite and X = N;jc;X;
is finite, i.e. there exist for each j € J Y}, Z; such that X; =Y; ¥ Z; and

r=\J{o = -Kip: Y3}
jeJ
A= J{oy = ~Kip: ¢ €Y}

jed
Let

I'= | J{wAra) > -Ki¢: ¢ €Y}
jeJ
A= J{W raj) = —Kip: ¢ €Y}

jeJ

I'uA =Ujes{a; = -Kip: ¢ € L\ X;}, and thus I U A’ F,, 4/, where
v = Nes(W N oy) — i X, by R*. Let v = Ajejo; — v X. By Prop
Fo v — v giving I"'U A" U{y'} F, v by R2; and thus IV U A’ -, v by Cut.
By Prop, b, (a; = =K;¢) — (¥ Aa;) — —K;¢) for each a; — - K;¢p € I,
and by R2 A’UT +, I'". By Cut, A’ UTI' +, ~, which is the desired
conclusion.

W: I"UA' -, ¢ for some I'" C I' and A’ C A. By the induction hypothesis
we can use Cond to obtain I"U{¢y — § :§ € A’} F, ¢ — ¢, and thus
'u{y —-96:0€ A} H, ¢ — ¢ by W.



Cut: 'UA R, A" and TUAUA' k, ¢, for some A’. By the induction hypothesis
on the first derivation (once for each &' € A"), I'U{yp - d:0 € A}, ¢ — ¢
for each ¢’ € A’. By the induction hypothesis on the second derivation,
ru{p —-6:6€e AUAYH, b — ¢. By Cut, 'U{yp - 6:6€ A}, ¢ —
o. ]

Theorem 11 (Deduction Theorem) The rule

ru{stte v
'ty =1

is admissible in £C*. O

DT

Proor If I'U{¢} Fy, ¢, then T'U{p — ¢} Fo, ¢ — » by Cond. I' F, ¢ — &
by Ax and W, and thus I' -, ¢ — v by Cut. [

Now we are ready to show that consistent theories can be extended to max-
imal consistent theories. The proof relies on DT.

Lemma 12 (Lindenbaum lemma for EC®) If I" is EC“-consistent, then
there exists an Ly -maximal and EC*-consistent I" such that I" C I". O

Proor Recall R*:

Ufey = Ky & X} ko N\ 0 = ViX.

JjeJ jeJ

Formulae which can appear on the right of -, in its instances will be said to
have R*-form. A special case of this schema is when /\j a; is a tautology (i.e.,
each «; is), from which

UKo : ¢ & X;} bo Vi X,

jeJ

can be obtained. Now, I" D I' is constructed as follows. L, is countable, so
let ¢1, @2, ... be an enumeration of L, respecting the subformula relation (i.e.,
when ¢; is a subformula of ¢; then ¢ < j).

Iy=r

L U{¢iv1} if I Fo diga

Lu{=¢ii1} if I; ,, ¢s1 and ¢ 41 does not have the R*-form

Fi U {_\(]52‘4_1, K/ﬂﬂ} if Fi )7[0.1 ¢i+1 and ¢i+1 has the ].:{,*—fOI'Hl7 where w is
arbitrary such that ¢ ¢ X and I; t/, K¢

iy =

F:On
=0



The existence of ¢ in the last clause in the definition of I'; 14 is verified as follows:
since I I/, ¢i+1, there must be, to prevent an application of R*, at least one
a; and ¢ € X such that I 4, a; — ~Ky1. By construction (and the ordering
of formulae), each «; or its negation is included in I5. If I F,, —a; then also
I =, aj — ~ K}, and this would be the case also if I F, ~Kpy. So I F,, o
and I , K.

It is easy to see that I is maximal.

We show that each I is consistent, by induction over i. For the base case, I
is consistent by assumption. For the inductive case, assume that I is consistent.
I'; 11 is constructed by one of the three cases in the definition:

1. I'j4+1 is obviously consistent.

2. If FiJrl = Fz @] {ﬁ¢i+1} l_w L7 then F,L l_w ¢i+1 by DT and Prop, contra-
dicting the assumption in this case.

3. Consider first the special case (when all «; are tautologies). Assume that
Lign =Lu{-vr X,Kpp} F, L. Then I3 b, Kpp — 71X by DT and
Prop and by E4, since ¢ ¢ X, I -, Kt — -/, X, and thus I; b, =Ky
contradicting the assumption in this case.

In the general case, assume that ;1 = Fiu{ﬁ(/\j a; = VeX), K} o L

i Then I F, Kiyp — (_‘(/\j a; — VrX) — 1), ie, I} F, Kpyp —
(N\jaj = viX), e, I Fo N\j oy — (Kytp — Vi X).

ii By assumption in the construction, I V., —(A;a;) (for otherwise it
would prove A\, a; — v, X), but since A; a; (as well as each a;) is a
subformula of ¢;41, it or its negation is already included in I5. But this
means that I; /\j a;j. Combined with (i), this gives I b, Kpyp —
VX, e, I F, Ky V7 X.

iii On the other hand, by E4, since ¢ ¢ X : I; b, =(Kpp A v X), ie.,
I b, Ky V-7 X. Combined with (ii) this means that I F, =K1,
but this contradicts the assumption in the construction of I .

Thus each I is consistent.
To show that I is consistent, we first show that

Mby¢=(I"CI'=¢el) 1)

holds for all derivations I'” ,, ¢, by induction over the derivation. The base
cases are Ax, MP and R¥*, and the inductive steps are W and Cut. Let 7 be
the index of the formula ¢, i.e. ¢ = ¢;.

Ax: If -, ¢, then ¢ € I'; by the first case in the definition of I7.

MP: I = {¢',¢' — ¢}. It I'" C I, there exists k,l such that ¢ € I'y and
¢ —¢pel.lfp &I’ ~¢pe I by maximality, i.e. there exists a m such that
¢ € Iy, But then —¢,¢",¢" — ¢ € I'yax(k,,m), contradicting consistency
of Fmax(k:,l,m)-

R*: I' = Ujes{ay — Ky 2 ¢ ¢ X;} and ¢ = Aoy — ViX, where
X =(;Xj,and I'"" C I". If ¢ ¢ I"" then, by maximality, ~¢ € I", and thus
—¢ € I;. Then, by construction of I}, I';_1 t£, ¢ (otherwise ¢ € I'') and



Ky € T; for some ¢ ¢ X. By the same argument as in point 3.(ii) above,
I+, /\j a;, and hence also I F,, /\j a;. But then, for an appropriate m
(namely, for which ¢,, = o; — “Ky¢): I—1 Fo a; and Toq by K,
ie., ~(oj = ~Kyt)) € Iy, and so a; — =Kyt & IV, which contradicts the
assumption that I C I".

W: I ="r"uA and I'" b, ¢. L I’ C I, """ C I'" and by the induction
hypothesis ¢ € I".

Cut: I+, Aand I UA F, ¢. Let I'" C I'. By the induction hypothesis
on the first derivation (once for each of the formulae in A), A C I'". Then
I'"UA C I, and by the induction hypothesis on the second derivation
el

Thus (1) holds for all I ,, ¢; particularly for I'" I, ¢. Consistency of I’

follows: if I+, L, then | € I'", i.e. L € I for some [, contradicting the fact

that each I is consistent. n

The following Lemma is needed in the proof of the thereafter following
Lemma stating satisfiability of maximal consistent theories.

Lemma 13 Let IV C Ly be an Lo-maximal and FC“-consistent theory. If
there exists an X’ such that I'" F, v7;X’, then there exists an X such that
I, 50X, 0

PROOF Let I'” be maximal consistent, and let I F,, 7; X’. Let
X = N Y
YCX’ and Iy Y

Since every Y is included in the finite set X', X is finite, and I F,, 7; X can
be obtained by a finite number of applications of E3. Let

7 = U Y
TN Y

If I+, A\;Y,then Y C X, since otherwise I” would be inconsistent by E4. Thus
Z is finite. By a finite number of applications of E2, I, A, Z. If Z ¢ X, then
I’ would be inconsistent by E4, so Z C X. We now show that X C Z. Assume
the opposite: ¢ € X but ¢ € Z for some ¢. Let X~ = X \ {¢}. I"" I/, K;9,
since otherwise ¢ € Z by definition of Z. By maximality, I +, —K;¢. By E5,
I'" b, 7:X~ — but by construction of X it follows that X C X~ which is a
contradiction. Thus, X = Z, and I F,, {; X. n

Lemma 14 Every maximal FC“-consistent L, theory is satisfiable. a

PROOF Let I' be maximal and consistent. We construct the following SSA, which
is intended to satisfy I

M" = ({s},0")
ol'(s)(p) =true & I' -, p when p € ©
ol'(s)(Ki¢) = true & ¢ € X}



where:

XTI — Z where I' &, ;7 if there is an X’ such that I' ,, 7; X’
O\ {y i e K} otherwise

In the definition of X}, the existence of a Z such that that I' I, ;7 in the
case that there exists an X’ such that I' b, 7, X’ is guaranteed by Lemma 13.
We show, by structural induction over ¢, that

(MF,s) E¢<=Tt, ¢ (2)

This is a stronger statement than the lemma; the lemma is given by the direction
to the left. We use three base cases: when ¢ is in @, ¢ = K;3 and ¢ = v/; X. The
first base case and the two inductive steps negation and conjunction are trivial,
so we show only the two interesting base cases. For each base case we consider
the situations when X/ is given by a) the first and b) the second case in its
definition.
- ¢=Kqp: (M",s) F K iff ¢ € X[
=) Let¢ € X!.Incasea), X/ = Z where I" -, ¢;Z and by KS, I" I, K;9).
In case b), I' b, K;3 by construction of X/
<) Let I' -, K. In case a), I' -, 7;Z and thus ¢ € Z = X! by E4 and
consistency of I'. In case b), 1 € X! by construction.
— o= X: (M )s) =y X iff XI' C X.
=) Let X/ C X.Incasea), I' b, {;Z where Z = X! C X,s0o " I, \7; X by
KG. In case b), X! must be finite, since X is finite. For any ¢ ¢ X1,
I £, K by construction of X!, and I' -, —K;1) by maximality.
Thus, by R* (with J = {1}, a1 = T and X; = X/, I' k, v X},
contradicting the assumption in case b). Thus, case b) is impossible.
<) Let I't, 7;X. In case a), I F, A;Z and by E4 and consistency of I’
X}'=Z C X. Case b) is impossible by definition. n

Theorem 15 ECY is a sound and strongly complete axiomatization of standard
syntactic assignments, in the language L. ]

PROOF Soundness follows from Lemma 6, and the easily seen facts that MP and
R* are logical consequences and that W and Cut preserve logical consequence.
Strong completeness follows from Lemmas 12 and 14. [

4.2 A System for a Weaker Language

In the previous section we proved strong completeness of EC* by using R*.
It turns out that strong completeness can be proved without R*, if we restrict
the logical language slightly. The restriction is that for some arbitrary primitive
proposition p € @, K;p and 1/; X are not well-formed formulae for any ¢ and
any X with p € X. The semantics is not changed; we are still interpreting the
language in SSAs over £(©,n) as described in Sections 2 and 3. Thus, in the
restricted logic agents can know something which is not expressible in the logical
language.
/.va C Ly is the restricted language for a given primitive proposition p.



Definition 16 ([,@) Given a set of primitive propositions ©, a proposition
p € @ and a number of agents n, Epv(@,n) (or just Epv) is the least set such
that:

-ecch
If ¢, € LT then —¢, (¢ N) € LT
If € (L\{p}) and i € ¥ then K;p € LT,
— If X € pf"(£\ p) and i € ¥ then v; X € £2) O

The finitary logical system EC? is defined by the same axiom schemas as
EC®. The two systems do not, however, have the same axioms since they are
defined for different languages — the extensions of the schemas are different. The
derivation relation for ECP is defined by the axioms and the derivation rule
modus ponens. Particularly, the infinitary derivation clause R* from ECY is
not included.

Definition 17 (EC"A7 ) EC? is the logical system for the language Eﬁv consisting
of the following axiom schemata and deduction rule

All substitution instances of tautologies

of propositional calculus Prop

(ViX A7iY) = vi(X NY) E3

(A X AVY) when X ¢ YV E4

(Vi(Y U{r}) A=Ky) — Y E5

Vi X = ViY when X CY KG

'y, I'bpdp— MP
s

The derivation relation -pcs — written k5 for simplicity — between sets of Eﬁv

formulae and single Eﬁv formulae is the smallest relation which satisfies the
schema

I' 5 ¢ when ¢ is an axiom Ax

and is closed under the deduction rule. O

It is easy to see that E1, E2, KS and DT are derivable in EC*.

The restriction £ C L, is sufficient to prove strong completeness without
R* in a manner very similar to the proof in Section 4.1. The first step, existence
of maximal consistent extensions, can now be proved by the standard proof since
the system is finitary.

Lemma 18 (Lindenbaum lemma for EC?) If I" is EC?-consistent, then there
exists an E%—maximal and ECP-consistent I such that I" C I". O

Second, we establish the result corresponding to Lemma, 13 for Eﬁv and EC?.



Lemma 19 Let I” C £2 be a £P -maximal and ECP-consistent theory. If there
exists a X’ such that I'"" F; 7, X', then there exists a X such that I F; $;X.0

PrOOF The proof is essentially the same as for Lemma 13, for the language Eﬁv
instead of L, (note that in that proof we did not rely on R*, and that p ¢ X
since X C X'). n

Third, we show satisfiability.

Lemma 20 Every maximal ECP-consistent Eﬁv theory is satisfiable. o

PRrROOF Let I' be maximal and consistent. The proof is very similar to that of
the corresponding result for EC* (Lemma 14). We construct the following SSA,
which is intended to satisfy I

M" = ({s},0")
UF(S)(p) =trues '3 p whenp € ©
o7 (5)(K6) = true ¢ ¢ € XT

where:

Z where I' b5 $;Z  if there is an X' such that I" Fp vi X!
X ={{v: 'ty Ky U{p}if Vo 'l ;X" and UF»—,;A,;Y Y is finite
{v:I'tp Kiv} if Vx/ I' 5 7: X' and UF,_ﬁAiY Y is infinite

The existence of Z is guaranteed by Lemma 19, and, again, we show, by struc-
tural induction over ¢, that

(MU s) o= Tty o 3)

for all ¢ € Llﬁv. As in the proof of Lemma 14 we only show the epistemic base
cases. For each base case we consider the situations when

a) there is an X’ such that I' 5 <7, X’ or
b) I't/; 7: X' for every X'

corresponding to the first and to the second and third cases in the definition of
XI' respectively.

— ¢ = K (MT,s) | K iff o € X7
=) Let ¢ € X[ Incase a), X!' = Z where I" 5 {;Z and by KS, I" -5 K;1).
In case b), ¥ # p (since K;9 € Eﬁv) and thus I' 5 K;1) by construction
of X[
<) Let I' by K. In case a), I' b5 7;Z and thus ¢ € Z = X/ by E4 and
consistency of I'. In case b), ¢ € X! by construction.
— ¢ =viX: (M, s) E X iff X C X.



=) Let X!' C X. In case a), I' 5 {;Z where Z = X' C X, s0 I' bp 7, X
by KG. In case b), if p € X! then p € X which is impossible since 77; X
is a formula. But if p ¢ X! then X/ is infinite (by construction) which
is also impossible since X is finite — thus case b) is impossible.

<) Let I' 5 7;X. In case a), I' 3 A;Z and by E4 and consistency of I’
XI'= 7 C X. Case b) is impossible by definition. [

Theorem 21 EC? is a sound and strongly complete axiomatization of standard
syntactic assignments, in the language va. ]

PROOF Soundness follows from the soundness of FC*. Strong completeness fol-
lows from Lemmas 20 and 18. [

5 Discussion

We introduced a “knows at most” operator in order to increase the expressive-
ness of the epistemic language with respect to standard syntactic assignments,
and investigated strong axiomatization of the resulting logic. The new operator
destroyed semantic compactness and thus the possibility of a strongly complete
finitary axiomatization, but we presented a strongly complete infinitary axiom-
atization. An interesting result is that we have a strongly complete finitary ax-
iomatization if we make the assumption that the agents can know something
which is not expressible in the logical language. The results are a contribution
to the logical foundation of multi-agent systems.

Related work include classical syntactic treatment of knowledge [6-8, 1], mod-
elled in a possible worlds framework by [1] as described in Section 2. The 7,
operator is new in the context of syntactic models. It is, however, similar to
Levesque’s only knowing operator O [9]. O« means that the agent does not
know more than «, but knowledge in this context means knowledge closed un-
der logical consequence and “only knowing «” is thus different from “knowing
at most” a general set of formulae. The relation between these concepts is an
interesting possibility for future work.

In [4] we investigate the special case of agents who can know ouly finitely
many syntactic formulae at the same time. Completeness results for such finitely
restricted agents build upon the results presented in this paper. Another possi-
bility for future work is to study other special classes of SSAs.

In this paper we have only studied the static aspect of syntactic knowledge.
In [10], we discuss how syntactic knowledge can evolve as a result of reasoning
and communication, i.e. a dynamic aspect of knowledge.
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