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Abstract. Multialgebras generalise algebraic semantics to handle non-
determinism. They model relational structures, representing relations as
multivalued functions by selecting one argument as the “result”. This
leads to strong algebraic properties missing in the case of relational
structures. However, such strong properties can be obtained only by
first choosing appropriate notion of homomorphism. We summarize ear-
lier results on the possible notions of compositional homomorphisms of
multialgebras and investigate in detail one of them, the outer-tight ho-
momorphisms which yield rich structural properties not offered by other
alternatives. The outer-tight homomorphisms are different from those
obtained when relations are modeled as coalgebras and the associated
congruence is an inverse bisimulation equivalence. The category is co-
complete but initial objects are of little interest (essentially empty). On
the other hand, the category does not, in general, possess final objects for
the usual cardinality reasons. The main objective of the paper is to show
that Aczel’s construction of final coalgebras for set-based functors can be
modified and applied to multialgebras. We therefore extend the category
admitting also structures over proper classes and show the existence of
final objects in this category.

1 Introduction

In the tradition of algebraic specifications, nondeterminism has been modeled
by means of multialgebras, that is, algebras where operations may return not
only single elements but also sets thereof, e.g., [10, 11,13, 25,26]. Multialgebras,
or variants of power structures, have been given some attention also in the
mathematical community, e.g., [19,20,7,22,4,17], with the seminal work [14,
15] which introduced them as “algebras of complexes” to represent relational
structures and demonstrated representability of Boolean algebras with opera-
tors by such algebras. [3] gives a comprehensive overview. Some variants disal-
low empty result-sets, e.g., [7,24], but most do not. Then, applying the standard
isomorphism

Al X o x Ap = P(A) =~ P(A1L X ... x Ap X A), (1.1)

one obtains another representation of relational structures, although with more
algebraic properties, as will be observed below. This is the variant of multialge-
bras we will be using.
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The standard requirement put on a function ¢ : A — B between two rela-
tional structures in order to obtain a homomorphism is preservation of all basic
relations — for each relation symbol R : R (a;...an,a) = RE(é(a1)...d(an), $(a)).
This is extremely weak notion (e.g., such homomorphisms do not preserve even
positive inclusions, the associated congruence is simply equivalence). Conse-
quently, one finds in the literature numerous alternative, and stronger, require-
ments. In fact, the problem which we are addressing is that such proposals are
too numerous. Of course, the choice of the notion of homomoprhism can often
depend on the specific context and need not be made uniformly once and for
all. But it is not certain that the possibility of such a choice is itself a virtue
rather than a nuisance (especially, if we compare to the tradition of universal
total algebra with the unique and powerful notion of homomorphism).

In earlier work, [23], we have shown that, restricting the possible definitions
of relational/multialgebraic homomorphisms to a reasonable and almost uni-
versally followed format, there are only nine choices which are compositional.
Investigation of these categories showed that only few of them are finitely com-
plete and cocomplete. From the point of view of the semantics of (algebraic)
specifications, it is desirable that the model category possesses canonical (initial
or final) objects of interest. Although we have investigated only the most generic
situation of the whole category of all X-algebras for a given signature X, the
canonical models (when existing) were of minimal relevance (basically, empty).

This paper addresses one of the earlier investigated categories which does not,
in general, possess final objects. The reason for that is the same as the reason for
which the categories of coalgebras for functors involving power-set do not possess
final objects — the cardinality reasons which require one to step over to the proper
classes (or limit the cardinality of power-set.) We show that, making that step,
we obtain final multialgebras of quite interesting nature which, in some sense,
are dual to final coalgebras. The homomorphisms of multialgebraic structures
in the studied category carry a similar duality to the homomorphisms induced
by the coalgebraic model of (binary) relations, while the associated congruence
relations are inverse bisimulations. The obtained category is cocomplete and
we expect other positive results: it is, probably, complete; the homomorphisms
have stronger preservation/reflection properties than the traditional (weak) ones;
final objects can also be obtained for axiomatic theories. All these “probable”
issues remain, however, for the future work. At the present, we only consider the
existence of final objects and their character.

Section 2 gives the basic definitions, summarises earlier results and signals
some possible alternatives. Section 3 presents the category of interest, “outer-
tight”, focussing on the notion of its congruence — bireachability. It also describes
the final objects (when these exist). Section 4 generalizes this category by al-
lowing algebras over proper classes, shows its cocompleteness and the existence
of final objects. The concluding section 5 lists some open problems, suggesting
also improvements and further generalizations of the obtained results. The main
aspects of central constructions are summarized as proof ideas — the complete
proofs will be available in a forthcoming technical report.



2 Background

Multialgebras are many-sorted algebras where operations can return (possibly
empty) sets of values rather than unique values. Following [8], (one-sorted) mul-
tialgebraic operation R on a set X can be seen as a dialgebra R : FI(X) — P(X)
in the category SET%, where functor F' gives the source of the operation and
P is the covariant existential-image power-set functor, i.e., sending a function
¢: A — Bonto P(¢)(X) = {¢(z) | z € X}, for X C A. The variations in the
definitions of homomorphisms to be encountered below could be then seen as
variations of the morphisms of dialgebras (requiring, in addition, lax transforma-
tions). Less abstractly, we use the isomorphism (1.1), and view a multialgebra
as a relational structure where, for each relation, one argument is designated as
its “result” and used for composition with other relations.

Definition 2.1 For a signature X = (S, F), a X-multialgebra M is given by:

— a (family of) carrier set(s) |M| = {sM | s € S},

— a function RM : sM x..xsM — P(sM) for each R : s1X...X8, — 5 € F, with
composition defined through additive extension to sets, i.e. RM (X1, ..., X)) =
UwiEXi RM(.’L'l, ceey .’L'n)

The only structures addressed in the paper are multialgebras, so “multialgebra”
and “algebra” will be used interchangeably. We assume a given signature with
R ranging over all function/relation symbols.

Selection of the “result” argument corresponds, in a sense, to turning our con-
siderations to binary relations with the additional operation of tupling the argu-
ments. Composition of relations Ry : X11...X1n = X1, 000y R+ Xp1... X = X
and R: X;...Xy — X, corresponds to application of R to the tupling (R;...Ry).
We will freely switch between relational and functional notation, so the composi-
tion can be written as R(Ry(x1)...Ri(zx)) or (Ry...Rk); R. We write composition
in diagrammatic order, R; ¢, resp. ¢; R, assuming implicitly ¢ to be binary (ho-
momorphism or, strictly speaking, a tuple (¢1, ..., ¢n+1) of unary functions, for
each relevant argument/sort i.) The composition is, as just explained, an abbre-
viation for the multialgebraic one, i.e.:

{{ay.--a,),b) € R;¢ <= Fa:{{ay...a,),a) € RA{a,b) € ¢p11

resp. ({a1.--a,),b) € ¢; R <= Tby...b,, : {a;,b;) € ¢; A ({b1...b,),b) € R (2.2)

Having made these precautions, we will write things as if all relations were
binary, algebras were one-sorted and homomorpisms simple functions (and not
their families), but all considerations apply to the general case.

Selection of the “result” among the relational arguments leads to more al-
gebraic structure reflected by homomorphisms. (In particular, derived operators
of a multialgebra are analogous to those of classical algebra: for a signature
X, the term structure T's; is itself a X-algebra, and preservation/reflection of X
operations leads to the corresponding behaviour of the derived operators. For re-
lational structures, derived operators are just boolean operators only very weakly



related to the actual signature and not necessarily preserved by the homomor-
phisms preserving the basic relations. [5], V.3, p.203, considers this the reason
for the subordinate role of homorphisms in the study of relational structures.)
However, the study of the obtained structure is not significantly simplified. As
a matter of fact, the number of possible definitions of homomorphisms, con-
gruences, etc. does not decrease. As the first step towards simplification of the
rather complicated picture, we have earlier in [23] classified compositional ho-
momorphisms of (relational structures modeled as) multialgebras and checked
finite (co)completeness of the respective categories. We recall now these results
in order to motivate our choice of the outer-tight homomorphisms.

Definition 2.3 A definition A[] of a function ¢ : |A| — |B| being a homomor-
phism of the multialgebraic structures A — B has the form:

Alg] <= L[g;R*ril¢] 0 L[¢]; RP;rag]

where l[]’s and r[_]’s are relational expressions (using only relational composition
and inverse), and <1 € {=,C, D}.

One can certainly consider other formats but most proposed definitions of homo-
morphisms conform to this one as, in particular, do all compositional definitions
which we have ever encountered.

Definition 2.4 A definition A is compositional iff for all ¢ : A — B, ¢ : B —
C, we have A[¢] & A[Y] = A[p; ], ie.:

L[gl; R r[g] v L[g]; RP5ralg] & LWL RP mi[y] wa b[y]; RYra[y)]
= Ll vl RYmlesy] v byl R rafds)]

Theorem 2.5 ([23]) A definition is compositional iff it is equivalent to one of:
R%¢ v $;R® ¢3R4 > R ¢ ;R v RP5¢7 R g:R% 9
where 54 € {=,C, D} and > € {=, 2}.

The following table summarises the naming conventions for the compositional
cases. The name consists of two parts, the first (inner/left/...) indicating one
of the four main cases in the theorem and the second (closed/tight/weak) the
choice of the set relation. For the weak case there are no further distinctions,
since all such cases are, in fact, equivalent. (They would not be equivalent if

(homo)morphisms were relations — [6] analyses these four weak cases of “simu-
lations”, though without addressing the issue of (co)completeness.)

|[R*; ¢ = ¢;R®|¢p~;R*;¢ > RP|¢~;R* v RP;¢7|R* v ¢;RP; ¢~

inner left outer right
closed: D| MAlg;-(X) [MAlg; (%) MAlgo(X) MAIgp-(X)
tight: =| MAlg,,(¥) [MAlg,,(X) MAlgor(X) MAlgpr (X)
weak: C MAlgy, (2)




initial|co-prod.|co-equal. || final |prod.|equal.
MAlg, (X) + + + + + +
MAlg,;(X) - - - + - -
MAlg;(X) - - + - - -
MAlg, - (X) — — + + - -
MAlg,(X) - - + - - -
MAlgo o (X) + + — + - +
MAlgo, () [ + [ + + [/ ]+ |
MAlgg o (X) + + + + + +
MAIg ;- (X) + — — — — +

Table 2.5. Finite limits and co-limits in the categories of multialgebras

The earlier results concerning finite (co)completeness of these categories are
summarised in table 2.5.

The present paper addresses the category of outer-tight homomorphisms (the
double row in the table) and, in particular, the position marked +/-. First,
however, a few words about the possible alternatives.

Remark 2.6 Viewing (binary) relations as coalgebras for the existential-image
power-set functor, yields the homomorphism condition R*;¢ = ¢; RE, that is,
the inner-tight homomorphisms. As we see from the table, the category MAlg;(X)
has rather few (co)limits. This, of course, looks suspicious, since we know from
[21] that any category of coalgebras over sets will be, at least, cocomplete. The dif-
ference is, however, due to the fact that although the homomorphism conditions
are the same, the respective representations of relations are not.

The absence of final objects is here due to the fact that the table addresses
only categories based on sets. The non-existence of colimits is due to the algebraic
character of operations, in partcular, constants which correspond to predicates.
For instance, for a signature with a single sort and constant ¢ :— S, the category
MAIg; (%) has no intial multialgebra I — for any (in particular, empty) c' there
is no IT-homomorphism ¢ : I — A making ¢(c!) = c* when |¢!| < |c?|. In a
coalgebra, a (predicate) constant is an arrow ¢ : X — 2 and this enables one to
achieve commutativity, c*; ¢ = ¢; cB, also when X = 0.

In fact, the meaning of the condition is different in the two cases: for coalge-
bras it requires equality of two functions while for multialgebras of two sets. As
an example, take the carrier X = {1,2} and one constant c. Let, in a multilage-
bra M, cM = {1,2}, while in a coalgebra C, c¢(1) = ¢(2) = T. Let X' = {1,2,3}
and M = {1,2,3} while in a coalgebra C', ¢!(1,2,3) = T. Although both M and
C, resp., M' and C' represent the same predicates, the inclusioni: X — X' is a
coalgebraic homomorphism, since indeed ;i = i; ¢, but it is not a multialgebraic
IT-homomorphism since i(c™) = i({1,2}) = {1,2} # {1,2,3} =M.

This might be taken as a suggestion that the multialgebraic representation of
relations is not the most successful one. However, using coalgebras as models



of relations is by no means straightforward. For the first, one has to decide on
whether to use the functor P(X™) or 2(X™) — the difference in homomorphisms
will be similar to that suggested in the above remark (between equality of sets
and of functions). In either case one has to decide which power-set functor to
use. Any choice involves sacrificing the pleasant and well understood behavior of
polynomial functors. Additional complications arise if one wants to model many-
sorted relations. (Although these are hardly theoretically demanding, they are
complications, at least of the same order as in the case of many-sorted algebras.)
Multialgebraic model, on the other hand, is in agreement with the traditional
notion of relation/predicate as a subset. It deals with many-argument, as well
as many-sorted, relations in the uniform and elementary way. In addition, one
should remark that multialgebras were introduced not merely as representations
of relational structures but of Boolean algebras with operators (central, if not
always recognised, in modal logics, as Kripke-frames are such algebras) and, on
the other hand, as a generalisation of algebraic semantics to handle nondetermin-
ism (most common institutions can be naturally embedded into the institution
of multialgebras, with weak homomorphisms as morphisms in the model cate-
gories, [16]). The investigation of homomorphisms arises from this background
and is motivated primarily by the search for the interesting canonical objects
(initial or final) for algebraic specifications with nondeterminism.

Now, weak homomorphisms are those which are most commonly used. Unfor-
tunately, this is an extremely weak notion which is also reflected in its standard
name. Although the initial objects exist, they are of little interest having all
predicates and relations empty. Lifting existence of initial objects to the ax-
iomatic classes depends, of course, on the language one wants to use, and this
is by no means a clarified issue. Most approaches suggest, at least, the use of
inclusions, but this again leads only to empty relations in the initial objects. Fur-
thermore, even simplest formulae are not preserved. E.g., having two constants
a,b interpreted in A as {1}, resp., {1,2} makes A = a C b. But the inclusion,
which is a weak homomorphism, into B with a® = {1,3} and % = {1,2} does
not preserve this formula. Counterexamples can be easily found also when we
restrict attention to preservation under homomorphic images. One way would be
to design a specific syntax ensuring adequate restrictions of the model classes, as
was done, for instance, with membership algebras, [18]. But this amounts to an
application-oriented specialisation of the problem which we are not addressing
here. (Similar remarks apply to the other (co)complete category MAlg g (X).)

The OT-homomorphisms seem to possess many desirable properties absent
in other cases, especially that of weak homomorphisms. This paper characterizes
final objects in the category MAlg,r(X) and proves their existence. Now, the
+/- in the table 2.5 indicates that final objects can be constructed only in
special cases. In general, they do not exist for the simple cardinality reasons.
In the following section, we recall a series of basic facts about this category,
and illustrate the character of final objects (when they exist). We also focus on
the associated notion of congruence which can be seen as an inverse bisimulation
equivalence. Then, we will extend the category by allowing algebras with carriers



being proper classes. In this category, final objects do exist, and we show it in
the way analogous to that in which the corresponding fact is proven for the
categories of coalgebras for “set-based” functors in [2].

3 The category Outer-Tight

For ¥ = (S, F), an OT-homomorphism, ¢ : A — B, is a (family of) function(s)
i : s;‘l — sf, for each s; € S, such that for every R € F :

¢~ ;R = RP; ¢~
in functional notation : Vby...b, € |B| : RA($] (b1)...¢5, (bn)) = ¢y 1 (RE (b1...by))
which for constants specializes to: ¢4 = ¢~ (cP).

This requirement is strictly stronger than that of the weak homomrphism. Since
we will be dealing exclusively with OT-homomorphisms, we will not qualify the
name — saying “homomorphism”, we will always mean an OT-homomorphism.

The following few facts are hardly surpirsing but they are used in later results.

Fact 3.1 An OT-homomorphism ¢ is
1) mono iff it is injective;
2) epi iff it is surjective;
3) iso iff it is bijective.
The following observation will not be refered to later on, but it is used in a
couple of proofs of the results mentioned in the sequel.
Given A, A" € MAlg,r(X), A’ is a subalgebra of A, A’ C A, iff the inclusion
|A’| C |A] is a homomorphism. (The categorical definition would not introduce

any significant changes.) In general, an inclusion need not be a homomorphism.
But the following fact holds.

Fact 3.2 Inclusions between subalgebras of the same algebra are OT-homomorphisms.
Le., if Ay T A and A2 C A and |As| C |A1], then also A2 T A;.

The following fact ensures that the diagram of subalgebras is directed.

Fact 3.3 For an algebra A and every set X C |A|, there is a smallest subalgebra
Ax C A with X C |Ax]|.

Thus, if A1, A2 C A, then there is also (a smallest) A3 C A, with |4;] U |A43| C
|As|. In the proof, one extends appropriately the set X or, like in the classical
case, verifies that intersection of subalgebras is a subalgebra.

3.1 Bireachability

In order for the quotient construction performed on a carrier of a (classical) X-
algebra to yield a (quotient) X-algebra, the equivalence must be a X'-congruence.
However, for any (classical) algebra A and any equivalence ~ on its carrier, the



quotient A/, with operations collecting the possibly non-congruent results (i.e.,
defined by R4/~ ([a]) = {[n] : n € RA(d'), d' € [a]}), is a multialgebra, and the
construction works in the same way if we start with a multialgebra, and not
only a classical algebra. Defining the mapping ¢ : A - A/. by g(a) = [a], the
operations are obtained as R4/~ = ¢—; R4;q. In general, this mapping is only a
weak homomorphism, just like the kernel of a weak homomorphism is, in general,
only an equivalence. (This correspondence is perhaps the clearest expression of
the weakness of this homomorphism notion.) OT-homomorphisms come along
with a much stronger notion of a congruence.

Definition 3.4 An equivalence ~ on A is OT-congruence iff: ~; R4;~ = ~; R4

More explicitly, the inclusion C says that Va”,a’,b, b’ : a” ~ a'RA4Y ~ b= Ja ~
a" : aRAb which, when ~ is equivalence, is the same as:

Va',b,b' : ' RAY ~ b= Ja ~a' :aR™. (3.5)

Any equivalence satisfying this last condition is OT-congruence, since the oppo-
site inclusion ~; R4; ~ D ~; R4 holds trivially for any reflexive ~.

This characterisation of OT-congruence can be visualized as an “inverse”
(bi)simulation. (Bi)simulation requires propagation of ~ forward, while OT-
congruence backward — we should be therefore allowed to call this relation
“bireachability”.! On the drawing, the dotted lines indicate the required ex-
istence implied by the regular lines:

(bi)simulation bireachability
B b b b
A A
RT R RT R (3.6)
a—"— g @ g
Va,b,a' : aRb & a ~ d Va,b,b' :aRb & b~V
= ~b:adRY = 3da' ~a:d RV

Henceforth, we will use the words “bireachability” and “OT-congruence” as syn-
onyms. The same meaning will be attached also to “congruence”, unless the word
is qualified in some other way.

Fact 3.7 If ¢ : A — B is OT then so is its kernel ~.

! We are not addressing any details concerning bisimulations. For the sake of analogy,
since OT-congruences are equivalences, it is most convenient to think of bisimula-
tion defined as a symmetric simulation, rather than merely as a simulation with
inverse being also a simulation. Exact duality obtains between our bireachability
and the equivalences satisfying the condition that for every R : ~; RA ~= R4 ~,
i.e., IT-congruences or bisimulations in (3.6), referred to in remark 2.6. In [4] such
equivalences were called “preserving the arguments” (as opposed to congruences
“preserving the valuess”). In [9], the relation dual to mere simulation, without the
requirement of equivalence, was called “opsimulation,” but the name “biopsimula-
tion” does not seem very appealling.



The inverse does not hold generally; even if the kernel of ¢ is OT, ¢ itself may
be not. We have a slightly weaker claim.

Fact 3.8 If ~ is a bireachability then the mapping q: A — A/, q(a) = [a], is
an OT-epimorphism.

This allows us to obtain epi-mono factorisation of morphisms in MAlg,,(X).

Fact 3.9 For every homomorphism h : A — B there is a (regular) epie : A — @Q
and mono m : QQ — B such that h = e;m.

Bireachability on a X-multialgebra has itself a multialgebraic X-structure.

Definition 3.10 Given a bireachability ~ on an A € MAlgor(X), we define

— |[A™] = {{a1,a2) : a1, a2 € |A| A a1 ~ a2}, and

— A (a1, b1) . dan, b)) = {{z,y) : € fA(ar1...an) Ay € fA(b1...bp) Az ~ y},
which yields

— for constants cA” = {{z,y) : 2,y € A ANz ~ y}.

Fact 3.11 Given a bireachability ~ on A. 1) The two projections 7wy, 7a : A~ —
A, m;({a1,a2)) = a; are OT-homomorphisms. 2) Moreover, A/ with the quotient
homomorphism q : A — A/.. is their coequalizer.

Maximal bireachability. Given a collection C' = {~;: i € I} of equivalences
(on a set/algebra A), one defines their lub as the transitive closure of their
union, i.e., ~ = \/,~; = (J;~:i)*. Explicitly, a ~ o' iff there exists a finite
sequence a = apdy ..., = @' and a respective sequence of the equivalences from
C, ~1~g ... ~y, such that a; ~;41 a4 for all 0 < i < n.

The same construction applies also to bireachabilities. The following lemma
will be of crucial importance.

Lemma 3.12 Given a collection C = {~;: i € I} of bireachabilities on a multi-
algebra A, then ~ = \/,~; is a bireachability.

Notice that the maximal bireachability need not be the standard unit relation.
For instance, for the algebra b; by , the elements b; and by cannot be related
RA
ai
by any bireachability, according to the observation (3.5).
One verifies easily that the construction yields, in fact, the least upper bound
— with respect to the subset relation — of the argument bireachabilities. Thus, the
collection of all congruences on a multialgebra is a complete upper semilattice
with the least element being identity, and so it is a complete lattice. (Greatest
lower bounds are not, however, obtained as mere intersections.)

Fact 3.13 Let BC A, ~4 be a bireachability on A, and ~p C ~ 4 be restriction
of ~ 4 to the carrier of B, i.e., ~4 N |B| x |B|. Then ~p is bireachability on B.



3.2 Final objects in MAIlg,(X)

Final objects do not exist in MAlgor(X) due to the usual cardinality reasons.
(A multialgebra for an operation f : S — S is essentially a coalgebra for the
existential-image power-set functor.) As stated in the introduction MAlgyr(X)
is finitely cocomplete but the existence of final objects has been shown only for
a very special case. We show here such a case mainly to illustrate the interesting
features of the final objects.

Example 3.14 Let ¥ = ({s1,82},{c := s1;f : s1 = s2}). The final object Z
in MAlgor(X) can be described as follows. (Fxpressions like “D1” or “fc” are
simple names — mnemonic devices — not any sets or function applications.)

B SIZ = {6701}1 SQZ = {fC,fQ),fCQ,@Q}
— ¢ ={c} and f?%(c) = {fc, feB}, f7(01) = {0, fcb}.

In words, each sort contains only elements needed to distinguish any combination
of operations returning the elements of this sort. In s it is enough with one
element to interpret the constant. In addition, there is always a “junky” element
not belonging to the result of any operation, (1. sZ contains one such element,
(02, as well as one element characteristic for (belonging only to) f%(c) > fc, one
for fZ(01) > f0 and one for fZ(c) N fZ(01) > fcb.

If we had two constants of sort s1, we would obtain corresponding collection
{e,d,cd, D} in sZ, while s% would now contain characteristic element for every
possible fZ(z) when x € s, as well as for every intersection (\,cx fZ(z) for
every possible X C s7.

Viewing the set of results of any application, f#(z), as the set of possible (or
nondeterministic) observations of its argument z, the construction amounts to
providing the minimal number of elements needed for every set of (every series
of) observations to have its unique characteristic result.

The most general form of this construction can be obtained when signature
does not contain any “loops”. Call a signature “acyclic” if there is no derived
operator ¢t with target sort occurring also among the argument sorts.

Fact 3.15 If X is acyclic then MAlgo(X) has final objects.

We will now extend the category MAlg,(X) to allow for the existence of final
objects without any restrictions on the signature. As in the case of coalgebras,
we have to either impose some cardinality limits or else leave the set-based
categories and allow algebras with proper classes as carriers. The former case
leads to rather special conditions? and so we follow the later alternative.

% E.g., final objects can be obtained if algebras considered are such that every element
of the carrier can be reached from at most finite number of other elements in at most
finite number of ways — the “reachability” restriction which is, in a sense, dual to
restricting the P functor to P/ returning only finite sets.



4 The category Outer-Tight with classes

Given a X with sort symbols {s1...s,}, we allow algebras where carrier of each

sort is a class. Likewise, operations and constants can return proper classes.’
But we will need the assumption that
each such algebra is a colimit of its small subalgebras and, more- (4.1)

over, the category contains all algebras which are such colimits.

Since colimit arrows are jointly epi (and, by fact 3.1, our epis are surjective) and
the diagram of (small) subalgebras is directed (fact 3.3), the above assumption
implies that:

for every algebra A and set X C |A|, there is a small subalgebra (4.2)
sA C A with X C |s4]. ’
We denote this category MAlgs,(X). (We will comment on more specific condi-
tions which could replace (4.1) ensuring that all our constructions yield appro-
priate results in the concluding section.)

A bireachability R on an A which is a colimit of its small subalgebras A;, is
itself a colimit of its small subalgebras R; = RN|A;| x |4;, i-e., R € MAlgr(X).
Lemma 3.12 applies unchanged when the collection is a proper class of small
bireachabilities. Performing the same standard construction on the collection of
all small bireachabilities on a given multialgebra yields the following lemma.

Lemma 4.3 VA € MAIgy,(X) there exists a unique mazimal bireachability ~ 4.

The following easy technicality will be needed in the proof of the next lemma.
(Notation follows the diagram below.)

Fact 4.4 Let {A; : i € I} be the class of small subalgebras of A (A being their
colimit), R be a congruence on A and R; the respective restrictions of R to A;.
Then the family of inclusions {r; : R; — R :i € I} is jointly epi and, for every
c:A— C,ifVi€el:mpu;a;¢=mio;a4;¢ then ;¢ = ma;C.

The result which we will actually need is the following one.

Lemma 4.5 Given an algebra A € MAlgg,(X) and a congruence R on A, the
quotient A/g is a colimit of its small subalgebras.

3 This might cause some foundational worries since functions returning classes, and
hence also indexed families of classes, are not legal objects in the most com-
mon class theory, NBG. This signals that we must use an alternative foundation,
Grothendieck’s hierarchy of universes being the natural candidate. We will use the
words “small” /“set” and “large” /“class” in the sense of being a memember of the
lowest level U, versus of any higher level U; \ U1 (for i > 2), respectively.



ProOF: We consider the following (schema of the) diagram:

R

A, resp. R, stand for the whole diagrams consisting of the respective small
subalgebras A; of A and R; = RN |4;| x |4;| (by Fact 3.13, R; C R) with the
inclusion arrows aj;, resp. 7;;. A with inclusions a; is colimit of A. The collection
of all r;’s, resp., all a;’s is jointly epi. All g;’s are epi.

The diagram A /g contains all quotient algebras A;/g, and inclusion arrows
between them. Since for each i : R; = RN |A;| x |4;|, we have an inclusion
aji : Aj = A; iff rj; : Rj — R;. But then, this implies the existence of a mono
arj; : Aj/r; < Ai/r,- For each A;/g,, we can obtain an isomorphic algebra by
replacing every element [a]% by [a]® (though [a]® C [a]® and the inclusion can
be proper, whenever R(ai,a2) and a1,a2 € |A;|, then also R;(a1,as)). This —
making all monos ar; and ar;; into inclusions — simplifies the argument below.
We want to show that A/p with all inclusions ar; is colimit of A /g. Obviosuly,
for each (existing) ar;; we do have that ar; = arj;;ar;, since all arrows are
inclusions. So assume an X with arrows z; : A;/g, — X such that z; = arj;;z;
for all (relevant) 4, j.

1. Since g;j;arj; = aji;q;, we obtain that for all (relevant) j,i : z; = arj;z; =
gj;T; = ;a7 Ty = aj;;¢;;x;. That is, X with g;;2; is a commutative cocone
over A. Since A is colimit of A, we obtain a unique arrow ax : A — X such that
for all i : g;;x; = a;; ax.

2. For every 1, since m;15q; = mi2;q;, SO also m1;¢i;x; = mio;q;;¢; and by 1,
Ti1; G55 ax = Ti2; aq; ax. By Fact 4.4, we thus have 71;ax = 79; az.

3. By Fact 3.11, (A/g,q) is coequalizer of 71,72, and thus we obtain a unique
arrow z : A/r — X making ¢;z = ax. This is the arrow we are looking for:

4. Commutativity: ¢;;ar;x = a;;q; ¢ S a;; ar L qi; ;- But ¢; is epi and so

ar;; T = ;.

5. Uniqueness: assume another arrow y : A/r — X with ar;;y = =z; for all .

Then also, ¢;;x; = q;;ar;;y = a;;q;y and thus, for every i : a;;q;y = a;;q;x.

Since a; are jointly epi, this means that ¢;y = ¢; = and now, since q is epi, z = y.
O



4.1 Cocompleteness and final objects of MAlgy,,.(X)

The positive results for the category MAlg,r(X) from table 2.5, generalise to
the extended category MAlgf,(X). We only mention the results needed in the
construction of final objects, suggesting the constructions used in the proofs.*

Proposition 4.6 MAlg¢,-(X) has initial objects and coproducts.

PRrROOF IDEA: Empty algebra is trivially an initial object.

Consider a class {A4; : i € I} of algebras. Its coproduct is the algebra C' whose
carrier is the disjoint union of the carriers of all A;, with operations defined as:

Ai (= _
cr— _ [ [H (@) ifforallz €T :x € |4
1@ = { 0 otherwise

and constants as disjoint unions: ¢¢ = ¥, c?i. The injections ¢; : A; — C are
obviously OT, and C is colimit of small subalgebras (of all A;’s). O

Proposition 4.7 MAlgt,(X) has all coequalizers.

PROOF IDEA: Given two arrows ¢1, ¢2 : A — B, we start as usual by considering
the equivalence closure ~ on B of the relation E = {{(¢1(a), $2(a)) : a € |A|}.
Equivalence classes induced by this relation are denoted Bi, Bs.... Assuming
the global axiom of choice, we can choose the representatives b; € B;, and the
carrier of the coequalizer object C is the collection of such representatives. (We
may occasionally write [b;] for B;.)> Operations are defined by:

by € fO(b1) < B> C fB(B1)

which for constants specializes to: b; € ¢ <= B; C ¢B. The arrow ce : B — C
is the usual Vz € B; : ce(x) = b;. By the definition of ~, it makes ¢;;ce = ¢o; ce.
Verification that it is OT and of the universality is rather lengthy and technical.

O

We have thus shown that the assumption (4.1), according to which MAIlgf (%)
contains only those colimits of small algebras which happen to exist there, indeed
is a category with all colimits. The main result is now obtained from the following
lemma (with a straightforward proof).

Lemma 4.8 For a given multialgebra A, let ~4 denote the mazimal congru-
ence on A (existing by Lemma 4.83). For any algebra B there is at most one
homomorphism B — A/, .

4 Notice that due to the difference in the definition of homomorphism, cocompleteness
of MAlg,,(X) is not a special case of the general fact about dialgebras, according
to which the category SET & has all colimits preserved by the functor F.

% In case some of the equivalence classes B;’s are proper classes, we have to follow the
trick of Dana Scott (quoted in [1], Appendix B) in order to obtain the quotient, i.e.,
to consider as B; only its subset of the elements having the least possible rank in
the cummulative hierarchy.



Theorem 4.9 MAlgl,-(X) has final objects.

ProOF: Let C be a coproduct of all small algebras in MAlgy,,-(%) (which exists
by proposition 4.6). For every A € MAlgp,;-(X) there exists (at least one) arrow
A — C since, by (4.1), A is a colimit of its small subalgebras, and there is an
arrow from each such to C.

Let ~¢ be the maximal congruence on C (existing by lemma 4.3), and let
Z = C/~,. We thus obtain (at least) one arrow from every algebra to Z and,
by lemma 4.8, this arrow is unique. By lemma 4.5, Z is colimit of its small
subalgebras and hence belongs to MAIgg,(X). O

5 Conclusion

Multialgebras lie at the intersection of several research currents. They

— represent relations and, generally, Boolean algebras with operators;

— generalise traditional algebras, in particular,

— provide a fundamental instance of power structure construction;

— with one-argument operations, provide particular examples of coalgebras;
— provide a specific and well-motivated example of dialgebras, [8].

The apparently poor algebraic structure and, on the other hand, a multiplic-
ity of choices when generalising most of the standard notions might discourage
investigation of multialgebras. We have argued that, as far as the notion of ho-
momorphism is concerned, the number of choices is, after all, not so large and
in fact limited to one, while further choices are mainly conditioned by this one.
The category of multialgebras with outer-tight homomorphisms is cocomplete
and the associated notion of congruence — bireachability — arises as an inverse
to the bisimulation equivalence.

We have shown that the category MAlgh (%) of multialgebras (admitting
proper classes as carriers) possesses final objects with interesting structure which
reflects the reachability relation in the way analogous to final coalgebras re-
flecting the similarity relation. We have considered only the class of all X-
multialgebras and although we expect the existence of final objects can be lifted
to (some) axiomatic classes, the possibility and scope of this lifting remain to be
investigated. The question which still remains open is the existence of products
which, intuitively, should be related (or even equal) to largest bireachability be-
tween the arguments. Attempts to construct counter-examples have failed and
we are convinced that products do exist in MAIlgf,;-(X), but the claim and an
explicit construction remain to be demonstrated. There remains also the open
question concerning the more specific conditions, than those given in (4.1), on
the actual algebras to be included in the category MAIgy(X). As can be seen
from the proof of lemma 4.6, we must allow constants (unary predicates) to de-
note proper classes. We suspect that the following condition may be sufficient
to ensure the existence of final objects and (co)completeness of the category: for
every operation f in an algebra A : if f4(X) is a set then so is X. Sufficiency of
this condition or, possibly, alternative fomulations remain to be investigated.
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