
Multialgebras, Power Algebras 
and Complete Calculi of Identities and Inclusions" 

Michal Walicki and Sigurd Meldal 
Department of Informatics, University of Bergen 

HiB, N-5020 Bergen, Norway 
{michal,sigurd} ~i.uib.no 

Abstract: After motivating the introduction of nondeterministic operators 
into algebraic specifications, a language s with two primitive predicates, 
identity and inclusion, for specifying nondeterministic operations is in- 
troduced. It is given a multialgebraic semantics which captures the singular 
(call-time-choice) strategy of passing nondeterministic parameters. A calculus 
NEQ, with restricted substitutivity rules, is introduced. NEQ is sound and 
complete wrt. the muhialgebraic semantics. 

A language s is obtained by a slight modification of s admitting plural 
(run-time-choice) parameters. The multialgebraic semantics is not sufficient 
for modeling such parameters and it is generalized to power algebras. Aug- 
menting NEQ with one rule for unrestricted substitutivity for the plural vari- 
ables yields NEQ* which is sound and complete wrt. to the power algebra 
semantics. 

1. Introduction 
A major motivating force behind research into abstract data types and algebraic speci- 
fications is the realization that software in general and types in particular should be 
descibed ("specified") in an abstract manner. The objective is to give specifications at 
some level of abstraction: on the one hand leaving open decisions regarding further 
refinement and on the other allowing for substitutivity of modules as long as they sat- 
isfy a particular specificaiton. 

We argue that the use of nondeterministic operators is an appropriate and useful 
abstraction tool, and more: nondeterminism is a natural abstraction concept whenever 
there is a hidden state or other components of a system description which are, meth- 
odologically, conceptually or technically, inaccessible at a particular level of abstrac- 
tion. 

Having established our motivation for using nondeterministic operators, we dis- 
cuss the distinction between two modes of parameter passing - "call by value" and 
"call by name." In deterministic programming this distinction is well known. The 
former corresponds to the situation where the actual parameters to function calls are 
evaluated and passed as values. The latter allows parameters which are function ex- 
pressions, passed by a kind of Algol copy rule [23], and which are evaluated whenever 
a need for their value arises. Thus call-by-name will terminate in many cases when the 
value of a function may be determined without looking at (some of) the actual pa- 
rameters, i.e., even if these parameters are undefined. Call-by-value will, in such cases, 

* This work has been partially supported by the Architectural Abstraction project under NFR 
(Norway), by CEC under ESPRIT-II Basic Reearch Working Group No. 6112 COMPASS, by 
the US DARPA under ONR contract N00014-92-J-1928, N00014-93-1-1335 and by the US Air 
Force Office of Scientific Research under Grant AFOSR-91-0354. 
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lead to an undefined result of the call. Nevertheless, the call-by-value semantics is 
usually preferred in the actual programming languages since it results in clearer and 
more tractable programs. 

The nondeterministic counterparts of these two notions 1 are what we call singu- 
lar (also called call-~me-choice and corresponding to call-by-value) and plural (run- 
time-choice corresponding to call-by-name) parameter passing [2, 7, 24]. In the con- 
text where one allows nondeterministic parameters the difference between the two se- 
mantics becomes quite obvious even without looking at their termination properties. 
Let us suppose that we have defined an operation g(x) as " f  x;0 then 0 elseifx~-i then 
1 e/se 2", and that we have a nondeterministic choice operation "L/ . :  Set(S)--. S" re- 
turning an arbitrary element from the argument set. The singular interpretation of 
g(U.{0,1}) will yield either 0 or 1, i.e., the result set ofg(u.{0,1}) is {0,1}. The plurat 
interpretation wilt give {0,1,2} as the set of possible results. (In a deterministic envi- 
ronment both semantics would yield the same results for this example.) 

Another important difference concerns reasoning in the presence of nondeter- 
ministic operations, in particular, the substitutivity property. The inside-out substitu- 
tion (corresponding, roughly speaking, to singular parameters) is not associative in the 
nondeterministic context [3, 4], and complicates the reasoning system by requiring 
specific restrictions on the substitution rules [12, 25]v Plural parameters, on the other 
hand, admit unrestricted substitution rules and, although semanti calty more complex, 
lead to simpler reasoning systems [25]. 

The above observations, together with the fact that the distinction has not re- 
ceived a thorough algebraic treatment, 2 motivate our investigation. 

Muttiatgebras, used to model singular parameters, are algebras where operations 
are interpeted as set-valued functions and composition is defined by pointw~se exten- 
sion. This reflects the fact that, when the argument to an operation is a "set" (i.e., a 
nondetenninistic expression), the choice of denotation for the expression (i.e. which 
element is to be used) is made at call-time, before passing the argument to the body of 
the operation. To model plural arguments, one has to generalize this construction and 
allow passing "whole sets" as arguments. 1"his is achieved by using power algebras - 
algebras with carriers being (subsets of) power sets, and with operations mapping sets 
to sets (which in this setting are just the elements of the carriers). 

In section 2 we give a general motivation for introducing nondeterministic op- 
erators as specification tools. In section 3 we define the language for specifying non- 
deterministic operators and its multialgebraic semantics which allow us to present, in 
section 4, two examples illustrating the usefulness of nondeterminism in achieving 
appropriate levels of abstraction. In section 5 we introduce a sound and Complete cal- 
culus and discuss some of its features. Then we present an algebraic perspective on the 
distinction between the singular and plural passing of nondeterministic parameters. In 
section 6 the multiatgebraic semantics for singular parameters is generalized to power 
algebras capable of modeling plural parameters. The corresponding sound and com- 
plete extension of the calculus is discussed in section 7. A comparison of both seman- 
tics in section 8 is guided by the similarity of the respective calculi. We indicate the 

1 We are not focusing here on the related distinctions (such as eager vs. lazy, IO vs. Ol evalua- 
tion), discussion of which is beyond the scope of this paper. 
2 Unified algebras [ 19, 20] of P.D.Mosses, and rewriting logic [ i7, 16] ofJ. Meseguer handle 
both kinds of parameters. However, they do it in a highly non-standard, albeit elegant, way. We 
feel that multi- and power algebras stay closer to the traditional algebraic framework. 
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increased complexity of the power algebra semantics reflecting the problems with in- 
tuitive understanding of plural arguments. We also point out that plural variables can 
be used meaningfully to increase expressibility of the specification formalism even if 
all operations have only singular arguments. 

The main (completeness) proofs are quite long and involved. The space limita- 
tion does not allow us to include them here, but all the proofs may be found in [26]. 

2. Nondeterminist ic  Operators as Specification Tools 
There are essentially two reasons why one might want to include the concept of non- 
determinism in the traditional algebraic specification methods: 
(1) Real nondeterminism. 

The system being specified realty is nondeterministic - its behavior is not fully 
predictable, nor fully reproducible. 

(2) Representational nondeterminism. 
The behavior of the system being specified may be fully predictable in its final 
implementation (i.e. deterministic), but it may not be so at the level of abstrac- 
tion of the specification. 

Though man)' think of representational nondeterminisrn as identical to underspecifi- 
cation, they turn out to be technically and conceptually quite distinct (as we shall see 
shortly). 

Whether the world really is nondeterministic or not we leave to the physicists 
and philosophers to ponder. A computer system in isolation certainly is deterministic: 
When started from a particular state (given in full detail) twice, both executions will 
demonstrate identical behavior. Possible sources.of perceived nondeterminism lie on ly  
in the unpredictability of the environment such as hardware failures or human factors. 
Considering all such factors as parts of the total state given in full detail may obviate 
the perceived nondeterminism, but leads to undesirable complexity- and is possible 
only in principle. 

The primary argument in favor of accepting nondeterministic operators is in- 
strumental, and identical to the credo of the abstract data type community: One 
should specify a system only in such detail that any implementation satisfying the specifi- 
cation also satisfies the user, and no more. It turns out that nondeterministic operators 
ease the process of specifying systems by allowing one to disregard irrelevant aspects - 
be they the external influences or implementation details - and thus reducing the 

danger of overspecification resulting from technical rather than methodical reasons. 
For purposes of discussion it may be convenient to further identify three variants 

of representational nondeterminism: (1) abstraction from hidden state, (2) abstraction 
from time, and (3) abstraction from external entities. Though dealt with uniformly 
within our framework, these have often been considered distinct. In particular, the 
introduction of nonde terminism as a result of abstraction from dine is usually taken as 
a given in the process algebra community without thereby necessesarily accepting 
abstraction over state as requiring nondeterminsm for specification purposes. 

How does this use of nondeterminism differ from the usual notion of under- 
specification? Consider for a moment a choice function U from sets of integers to in- 
tegers, returning one of the elements of the set: 

For instance, U.{0,1} may return either of the values 0 and 1. If u were just an 
underspecified function, then we would have that u .{0,1}=U.{1,0}, since the argu- 
ments of the function are equal (though not syntactically identical) in the two terms. 
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In practical terms, this would require the choice operator always to return the same 
value when applied to a particular set. I.e., U .{0,1} is always 0, or always 1. 

However, this kind of underspecification does not allow for abstraction from 
(conceptually) invisible entities that might influence the choice (such as a hidden 
state, timing or interaction with a human being). E.g., if set values were implemented 
as unordered sequences with new elements always added to the front of the sequence, 
this underspecified description of the choice function would disallow using a simple 
implementation of choice as the head-function, since such an implementation would 
sometimes return the value 0, sometimes the value 1, when applied to the set {0,1}, 
depending on which of the two elements were added first. If we were to treat U as a 
nondeterministic operator, on the other hand, then such a straightforward imple- 
mentation (though deterministic) would be quite acceptable (both formally and ac- 
cording to the usual intuition about the requirements of an operator picking some 
element from a set). 

Similarly, if the implementation of the choice function asked a human operator 
to pick an element then one would encounter the same difficulty: The behavior of 
human beings may be deterministic, but even were that the case their inner state de- 
termining that behavior is not available for inspection. A specification needs to ab- 
stract away from that inner state, and nondeterminism is the right concept for doing 
that. 

And similarly again, if the choice depended upon timing properties (e.g. the set 
was distributed among a number of processors, and the choice function simply que- 
ried them all, returning the first (in terms of time) value returned to it by one of these 
processors) the abstraction away from timing properties would introduce a seeming 
nondeterminism. 

In order to make further examples more understandable, we have to introduce a 
formal language for specifying (possibly nondeterministic) operators and its seman- 
tics. 

3. The Language £ and the Multialgebra Semantics 
A specification is a pair (X, II), where the signature ~ is a pair of a sets (S, F) of sorts S 
and operation symbols F (with argument and result sorts in S). There exists a denu- 
merable set V of variables for every sort. For any syntactic entity (term, formula, set of 
formulae) X, VDc] will denote the set of variables in X. 

The set of terms over the signature ~ and a variable set X is denoted W x x- We 
always assume that the set of ground terms of every sort S, S wx, is not empty. 1 ' 

rI is a set of sequents of atomic formulae written as a2,...,a n ~-. ev...,e m. The left 
hand side of ~ is called the antecedent and the right hand side the consequent, and 
both are to be understood as sets of atomic formulae (i.e., the ordering and multiplic- 
ity of the atomic formulae do not matter). In general, we allow either antecedent or 
consequent to be empty, in which case 0 is usually dropped in the notation. A se- 
quent with exactly one formula in the consequent (re=l) is called a Horn formula, and 
a Horn formula with empty antecedent (n=0) is a simple formula (or a simple sequent). 

An atomic formula is either an equation, t=s, or an inclusion, t-<s, of terms t, 

1 We do not address the problem of empty sorts here and will present calculi which work un- 
der the assumption that sorts are not empty. We use signatures with at least one constant for 
every sort but other ways of approaching this problem [ 5, 6, 11] seem to be compatible with 
our framework. 
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sEW:~ x.  All variables occurring in a sequent are implicitly universally quantified over 
the whole sequent. For a specification SP=(G, rI), £(sP)  is the restriction of Z to 

W:~'VThe semantics of Z specifications uses multistructures. Our definitions are very 
similar to those used by other authors [9, 12, 13, 21] except for the notion of equality. 
Also, we provide the means to interpret the occurrences of terms in L as applications 
of (possibly nondeterministic) operations rather than, as it is usually the case, as the 
sets of possible results. 

Definition 3.1 (Multistructures). Let SP be an ~ specification. M is an SP- 
mulflstructure if 

1. its carrier IM] is an S-sorted set and 
2. for every f:  $1X... XS, --- S in F there is a corresponding func- 

tion fM: S 1M X... X S~ ~'-* 2P ~(S M). 
[] 

where 2P ~ denotes the power set with the empty set excluded, We let MStr(SP) denote 
the class of SP-multistructures. It has the distinguished term structure: 

Definition 3.2 (Term multistructure). The term multistructure W~ for a 
specification SP=(G,I'I) is defined as: 

1. for each SE S, S w~ is the set of ground terms of sort S, 
2. for each f: S1x... XS n --. Sin F, t iEsiW~:fwz(tl . . . tn) = {f(tp..tn)} 

[] 

It is a known fact that, in the general case, one cannot guarantee the existence of ini- 
tial multimodels. Hut~mann [12] has shown that even if we restrict £ to simple for- 
mutae such multimodels may not exist. Therefore we admit general, and not only 
Horn, formulae in the specifications and will consider the whole class of muttimodels 
of a specification. 1 The significance of the term muttistructure is then summarized in 

Lemma 3.3. If M is an SP-multistructure then for every set X of variables 
and as s ignment  [~: X-~]MI, there exists a unique function [3[_]: 
~V~:~: ~/::~([M D such that: 

[3Ix] = {[3(x)), ~[c] = c M and ~[f(tl... tn)] = tiM(t/..,tn) ] t/E~[ti]} 
[] 

Application of multialgebraic operations to sets is defined by pointwise extension. 
Consequently, all operations in multistructures are _G.-monotonic, i.e., B[s]C_ B[t] 
t3~(s)] ~13~(t)]. 

Definition 3.4. An SP-multistructure M satisfies an L(SP) sequent 
~: ti=s i ..... tj-< s) ~-" p~=r~,...p~-< rr~ , 

written M ~ ~r, iff for every assignment ]3 : X ~]M] we have 

1 For a discussion of initiality the reader is referred to [12, 25], All the results reported in this 
paper remain valid for the specification language restricted to Horn formulae. 
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13[t~]=13[sd ^... ^ 13[tjl---I?,[sfl ~ 13[p,]-~,[r,,] v... v 13 [p,,,l _C l3 [r,,,] 
where A~ B iff A and B are the same 1-element set. 

An SP-rnultimodel is an SP-muttistrucmre which satisfies all the axioms of 
SP. MMod(SP) denotes the class of mulfimodels of SP. 

As a consequence of this definition, = is not an equivalence relation (it is not reflex- 
ive). ~ t=t holds in a multialgebra M only if t M has exactly one element, i.e., if the term 
t is deterministic. Of course, the set equality of two terms is expressible as two inclu- 
sions: ~s-~t and ~ t-(s. 

Note that all variables are used singularly, i.e., they range over individuals (t- 
element sets) arid not over arbitrary sets. In particular, assignments in lemma 3.3 and 
definition 3.4 assign to each variable a 1-element set. This fact is utilized to distin- 
guish between the result set of an operation (which is represented by the correspond- 
ing term) and the result returned by a particular application of the operation as the 
following example illustrates. 

Example 3.5. 
The axiom ~ xUy=x, xLJy=y would make the binary choice operation _U_: 
S×S--*S deterministic (though underspecified). It says that (for any value of 
x,y), the set xUy is either the same as the 1-element set x ory. In order to 
make LI a nondeterminisfic choice we have to say that any application o fxUy  
returns either x ory, This is expressed by the axiom: z-4xLJy ~-~ z=x, z=y. 
[3 

4. T w o  E x a m p l e s  

Consider the problem of generating a depth-first traversal tree of nodes reachable 
from a particular node in a directed graph. The algorithm is found in standard algo- 
rithms textbooks (e.g. [15]), arid is often given imperatively along the following lines 
(G is the graph, v is the start node, T is traversal tree being created and edges are or- 
dered pairs of nodes): 

Example 4. I.a 
DFS(G,v) = 

begin T := Q; 
trav(G,v,T); 
return T; 

end; 
trav(G,v,T) = 

begin mark v; 
for all edges (v,x) do 

if x is unmarked then  trav(G,x,T); T := TU(v,x); endif ; 
endloop ; 

end; 
D 

Now, consider an equational definition of DFS as a deterministic function. Let the 
function n(__,_) : Graph x Node ~ Set(Node) return the set of neighbors of a node in 
a given graph. 
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Example 4.1.b 
G , v , T , S , x ~ V :  

DFS(G,v) = trav(G,v,~) 
n(G,v)=g) ,-, trav(G,v,T)= T 

n(G, v) = add(S, x),'~ ~ trav(G,v,T) = trav(G~{( v,x)}, v, T) 
x ~ T = True J 

"n(G, v )=  add(S,x) ,~ ~ trav(G,v,T) = trav(G~{(v,x)}, v, trav(G~{(v,x)}, x,  ZU{(v,x)})) 
x E T = False J 

[] 

(The element tests check whether a node is in the tree (i.e., marked) already.) This 
definition looks plausible only as long as we do not inspect the Set sort. Adding ele- 
ments to a set should be commutative - we have that 

~, add(add(S,x),y)- add(add($,y),x) 
But then we also obtain 

tray(a&/(add(G,(v,a)),(v,b)), v, ~)  = tray(add(add(G,(v,b)),(v,a)), v, ~) 
In other words, for the graph 

which was not at all the intention - it collapses distinct tree values. 
The problem is that the internal structure of the set value (in this case, the defi- 

nition of DFS in terms of adding elements to the set) intrudes into the specification, 
quite contrary to the central tenet of abstract specifications. 

An abstract definition of the DFS operator could be 

Example 4.1.c 
G , v , T , S , x , y  E V: 

DFS(G,v) < trav(G,v,g)) 
n(G,v)=g) ~ trav(G,v,T)= T 

n(G, v) = add(S, y),] 
x -~ tl .n(G,v), ~ ~ trav(G,v,T)< trav(G~{(v,x)}, v, T) 
x ~ T = True J 

n(G, v) = add(S, Y),I 
x-~ U.n(G,v), ~ ~ trav(G,v,T).< trav(G~{(v,x)}, v, trav(G~{(v,x)}, x,  ZU{(v,x)})) 
x ~ T = False J 

[] 

Though the specification still makes use of the structure of the set-generator functions, 
this no longer intrudes into the valuation of the function itself beyond ensuring a dis- 
tinction between empty neighbor-sets and non-empty such. The variable x denotes 
the result of an arbitrary choice among these neighbors. The resultant definition de- 
fines the function without being concerned with (or specifying) the internal, repre- 
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sentational structure of the graph. We no longer collapse "distinct" trees, instead we 
only get the following (and plausible) result; that DFS-traversal will generate one of 
two  trees: 

tray( ( ~  , v, ®) -< 

In general, iterating over sets or other structures is a natural operation, even when 
there is no intrinsic total order on the elements of such a structure. Such iteration is 
often deterministic, but representation-dependent, and if the iteration operation is 
specified as determinis tic then we get an overspecification. The possibility to ignore the 
representation-dependent structure of the specified data is one of the fundamental 
requirements for a specification formalism. 

The last small example illustrates another aspect of the abstraction potential in- 
herent in nondeterminism. 

Abstracting over time is such a natural thing to do that many consider timing de- 
pendencies as representing real nondeterminism. However, time is just another com- 
ponent of state, and abstraction over time could therefore be handled similarly to ab- 
straction over state in general. As an example of how time can be removed from con- 
sideration in a specification, consider the specification of a merge function m. Its a r- 
guments are two streams of data, and the result a new stream which is a merger of the 
two (here the metric aspects of time have been removed, leaving time only in a ves- 
tigial form as a total order for each of the input- and output-streams, ignoring even 
the relative ordering of elements in distinct streams) (e.g. in [10, 18] and related 
works). 

Let M be a function with only one input stream, but constructed from m with the 
output stream fed back as one of the input streams of m (see fig~are). 

, 

A specification of these two functions could be (where ^ is the concatenation operator 
on streams and ~ is an empty stream): 

Example 4.2 
q ,p ,x , y , r  ~ V: 

[] 

r -< m(x^q,yAp) 

r -< M(xAq) 

rn(s,q) = q 
,--, m(q,e)= q 

r< X^m(q,yAp), r-< yAm(xAq, p) 

r-< x^m(q,r) 
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As we can see, m is deterministic when there is only one non-empty input stream. Buf 
if there are two, then the first element of the result stream (r) is the first element of one 
or the other of the two input streams. When we construct the feedback function M 
then any nonempty input stream results in an infinite output stream, but the compo- 
sition of the output is not determined - that would reflect the timing property of the 
function evaluation and of the input, which we have abstracted. Again, the abstraction 
shows up as nondeterminism. 

It may be an interesting excercise for the reader to convince himself that the 
above specification yields the intended meaning for the M operator and does not lead 
to the classical merge-anomalies [ 11, 14]. The example is discussed in more detail in 
[251. 

Finally, we can mention that the close relation between nondeterministic terms 
and sets makes it possible to use the former to define and handle subsorting directly at 
the term level. This is the basic intuition behind the framework of unified algebras 
[19, 20] and can also be done within the formalism we have introduced here. 

5. T h e  C a l c u l u s  N E Q  

The last axiom in the merge example 4.2 uses the variable r to specify the desired 
properties of each possible result produced by the M operator. It says that any such r is 
obtained by taking the first element x of the input sequence and then merging the rest 
of the input sequence with r itself. This is different from the axiom obtained by re- 
placing the occurrences of r with M(x^q): ~ MOo^q) -< x^m(q,M(xAq)) which, plausi- 
ble as it may seem, creates the usual merge-anomalies. 

This illustrates the inherent problem of reasoning with nondeterminism, namely, 
unsoundness of unrestricted substitution of terms for variables. In our formalism we 
handle this problem by turning = into a partial equivalence reakion and allowing sub- 
stitution of a term t for a variable only if ~ t=t is derivable (rule SB). The rules of the 
calculus NEQ are: 

RI: ~ x=x x E  V 

R2: 
r f~+A{  ; r'~+ s=t,A' 

r~ , r "  ~ a~ ,a '  

Ft-+A t ; P'v-~ s'<t,A'  R3: 
r , r '  ~ A~,/,, 

R4: e ~ e 

P.5: F~+A,e  ; £',ev-~A" 

x not in a RHS 1 of -< 

F ,F '  ~-+ A,A' 

R6: a) F~+A b) F~+A 
r ~-+ A,e F,e ~-+ A 

(CUT) 

(WEAK) 

1 RHS, resp. LHS, stand for right, resp. left, hand side. 
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RT: a) F , x - < t ~ A  b) F,x -~ t , y -~r~ -~A  (ELIM) 

x e  V\V[t]  x E  V\VI t] ,  y e  V 
at most one x in F ~ A no x in r ~ A 
x in F isn't in RI-IS of -< at most one x in r 

x and y are distinct variables 

X ~ denotes X with b substituted for a. The rule R1 expresses the fact that only vari- 
ables are guaranteed to be deterministic. The restriction on R3 prevents one, for in- 
stance, from drawing the unsound conclusion s-<p from the premises s-<t and p-<t: 

The R7 rules allow one to eliminate a redundant binding x < t  repI~cing x by t. 
Since x refers to one and the same value, such a replacement requires that there be at 
most one occurrence of x. Otherwise we could, for instance, derive t~  (for arbitrary t) 
from x-4t ~ x = x by a single application of R7a. 

A similar problem would occur if we removed the second or third restriction 
from R7b. The other restrictions are of purely technical character. Allowing x to occur 

x ~ t ( x ) ,  x = 1 in t would, for instance, lead to the unsound deduction (using RTa): 
t(x) = 1 

The last restriction in RTa excludes the speciaI case which is related to the sin- 
gular semantics and is treated by R7b. 

As an example of the semantic import of thes rules we give a few derived rules: 

NE: x-~ t ~ Restrictions as for RTa (Terms represent non-empty sets) 

SI: x -< t, s -.< r ~ ; ~ s = s Restrictions as for R7b (Arguments are singular) 
s-~ rt x 

This rule can be rephrased as V x ( x  e t ~ s ~ r(x)) which, read contravariantly, says: 
s ¢~ r(t) 

if s is in the result set of r(t) then there exists an individual x ~ t  such that s is in the 
result set r0c), i.e., the argument t to r is singular. 

SB: F ~ A F' ~-~ t=t ,~ '  (Variables are replacable by deterministic terms) 
r ~ , r '  ~ a'~,,~' 

The main theorem states soundness and completeness of NEQ wrt. the multialgebraic 
semantics: 

Theorem 5.1. For every specification SP=(E,FI), sequent ~r E £(SP) 
MMod(SP) ~ w iff II t--NE Q ,rr 

6. Power Algebras 
Singular arguments have the usual algebraic property that they refer to a unique value. 
This corresponds to evaluation at the moment of substitution and passing the result to 
the fol lowing computation. Plural arguments, on the other hand, are best understood 
as textual parameters. They are not passed as a single value but the expression receiv- 
ing them is first expanded and evaluation takes place only when the expansion is 
completed. 



463 

To capture this possibility we have to extend the multialgebra semantics to 
po~ver algebras where operations map sets to sets. We will allow both singular and 
plural parameter passing in anyone specification. The corresponding semantic dis- 
tinction will be between the power set functions which are merely _ -monotonic and 
those which also are u-additive. 

In the language we merely introduce a notational device for distinguishing the 
singular and plural arguments. We allow annotating the sorts in the profiles of the 
operation by a superscript, as in S *, to indicate that an argument is plural. Further- 
more, we partition the set of variables into two disjoint subsets of singular, X, and 
plural, X*, variables, x and x ÷ are to be understood as distinct symbols. We will say 
that an operation f is s~nguIar in the i z~ argument iff the i ~ argument (in its signature) is 
singular. The specification language extended with such annotations of the signatures 
will be referred to as £÷. By a singular specification we will mean one where all argu- 
ments to all operations are singular. 

Definition 6.1. Let each S i be the power set of some underlying set S~, i.e., S~ 
= 1 / :~) .  A function f: S 1 ×... ×S n --* S is U-additive in the i~argument iff for 
all xi~Si and allx~ES k (for kei) :f(xz...xv..x~) = U {j(xi...{xl..x.)l x~x~ }. 

Definition 6.2. Let ~ be a £+-signature. A is a ~,-powerstructure, A EPStr(E), 
iff A is a (deterministic) structure such that: 

1. for every S ES, the carrier S a c_ 2/~ S(S), for some underlying set S, 
2. for every f: $1 ×... xS~--*S in E ,  f a  is a __ -monotonic function 

A × A _ .  rA " "  • q h  • . . S l X... S n S suchthat, t f thet  argumentoff lssmgular thenfAls  
additive in the i ~ argument. 

D 

Note the unorthodox point in definition 6.2 - w e  do not require the carrier of a power 
structure to be the whole power set but allow it to be a subset of some power set. All 
finite subsets are needed, for instance, if one assumes a primitive nondeterminisfic 
choice with predefined semantics of set union. We do not assume anything of the 
kind and expect that quite many meaningful specifications may do very well without 
all possible subsets. In addition, using full power sets as carriers would always yield 
unreachable structures whenever the underlying set is infinite. 

Given an f:S× S ÷ -T,  we will say that an actual argument at the first position has 
a singular occurrence. E.g., in f ( t , t ) ,  the first t has a singular, and the second one a plu- 
ral occurrence. More precisely: 

Definition 6.3. a has a singular occurrence in a term t i ff  one of the following 
holds ( -  denotes syntactical identity): 

I .  t ' = a  
2. t - f(...,a,...) and f i s  singular in the argument corresponding to a, 
3. t -~ f(tl,...,t n) and a has a singular occurence in one of t i. 

The first point is included for the technical reasons - the definition will be used to 
specify additional restrictions on the application of some reasoning rules. To define 
satisfiability of formulae by a power structure we only need to extend the definition of 
an assignment 
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Defini t ion 6.4. Let X be a set of singular and X + a set of  plural variables. BE 
an msignment into a power  structure A we mean a function [3: XUX + - ,  [A[ 
such that, for all xEX, 1[3(x)[ = 1. 
[] 

If t3 is as in this definition, then every term t(x,x*)~W~ x,x" has a unique set interpre- 
tation 13[t(x,x÷)] in A defined as tA(~(X),B(X÷ )). Satisfiability of  sequents  over  
L+(~,X,X *) by a power structure is then defined exactly as before (def. 3.4) and the 
class of power models of a specification SP is denoted PMod(SP). 

Since functions from A to P÷  (B) are isomorphic tO U-addit ive functions from 
P~(A) to P~(B), [A---~(B)]  "-" [ ~ ( A )  - , u P ( B ) ] ,  we may consider every multistruc- 
t-are A to be a power structure A* by taking [A* 1 = I:~(A) and extending all operations 
in A pointwise. We then have the obvious 

L e m m a  6.5. Let SP be a singular specification, AEMStr(SP), and .tr be a se- 
quent  in L ( S P ) .  Then  A ~ r  iff A ÷N~r, and so AEMMod(SP)  iff 
A*EPMod(SP). 
[] 

7. The Calculus NEQ ÷ for Join Semantics 
We let V[t] be the set of singular and V÷ [t] the set of plural variables in t. Rules R1-R7 
are as in NEQ (except for a new restriction in R7) but  now all terms t t belong to 
Wz,x,x,. In particular, any ti may be a plural variable. 

RI: ~-> x=x xE  V 

R2: 
x x • F '  A" r '  t ~-> A t , ~ S= t, 

r~ , r"  ~ A],A' 

R3: F~--~A~ ; F ' ~  s-et, A" . . . . . . . . .  x ; x not in a RHS of -< 
F , F "  ~ As, A 

R4: e~-) e 

R5: F ~ A , e  • F ' , e ~ h  ~ " (CUT)  
F , F ' ~  A,A '  

R6: a) F ~ h b) F ~ A (WEAK) 
F ~-> A,e F,e  ~-~ A 
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R7: a) F,x-et~-4A b) F,x-et ,  y-~r~-~A (ELIM) 

x E  V\V[t] xE V\V[t], yE V 
at most onex i n F  ~-~ A no x i n F  ~ A 
x in F isn't in RHS of -< at most one x in r 
the occurrence ofx is singular the occurrence ofx in r is singular 

x and y are distinct variables 

F ~ A  R8: (SUBP) 
l~tX ~" X + At 

We used R7b from NEQ to derive SI, which expressed singularity of all arguments. 
Therefore, in NEQ ÷ we need an additional restriction to make sure that the substitu- 
tion for x takes place only at the arguments which are singular. The derived rules MO, 
NE, SB are the same as for NEQ, but SI is now restricted to the singular occurrences 
ofx. 

The new rule R8 expresses the semantics of plural variables. It allows us to sub- 
stitute an arbitrary term t for a plural variable x +. Taking t to be a singular variable x, 
we can thus exchange plural variables in a provable sequent rr with singular ones. The 
opposite is, in general, not possible because rule R1 applies only to singular variables. 
Thus a plural variable x ÷  will satisfy ~ x + -<x ÷, but this is not sufficient for performing 
a substitution for a singular variable according to SB. 

The result corresponding to theorem 5.1 is: 

Theorem 7.1. For any L+-specification SP and L+(SP) sequent 'rr: 
PMod(SP) w rr iff II ~- NEC~ 7r 

8. S i n g u l a r  vs .  P lu r a l ,  A r g u m e n t s  vs .  V a r i a b l e s  

NEQ + has the additional rule R8 which could suggest that more formulae are deriv- 
able with it than with NEQ. This would go counter lemma 6.5 and the intuition that 
power models form a more general class than multimodels. There is no contradiction, 
however, because what actually limits the number of derivations in NEQ ÷ is the addi- 
tional restriction on the rules R7. For instance, having operations g:S--- T, andf:S ÷ ~T,  
we may in both calculi prove: 

x-<t,y-~ g ( x ) ~  RTb 
y -~ g(t) ~-~ 

Replacing g with f in the assumption would disallow the analogous conclusion in 
NEQ ÷ . 

Rule R8, admitting instantiation of plural variables, is useful only if the axioms of 
the specification contain such variables. Axioms with plural variables can also be 
viewed as axiom schemata for axioms without such variables. From the logical point 
of view, axiom F---~f(x+)-<r(x+,x ÷) leads to the same formulae (without plural variables) 
as the set of axioms { ~--~f(t)-<r(t,t) I tEW~ x }. 

Thus we can see that rule R7 ~ is concerned with plural arguments, while rule R8 
with plural variables. In fact, introducing plural arguments does not force one to use 
plural variables and, on the other hand, axioms containing plural variables can be 
used even if all operations are singular. "We may set up the relations between the use 
of singular/plural variables/arguments and the associated sound and complete rea- 
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soning systems in the following way (R7 + denotes R7 with the restrictions from 
NEQ*): 

v ~ t S  singular plural 

1 ............. 2 
singular NEQ NEQ,R7* 

[ 3  .. . . . . . . . . . . .  4 

plural : NEQ,R8 NEQ ÷ 

If a specification contains only singular variables, then NEQ is sufficient for proving 
all its consequences if all operations are singular (1) - if some arguments are plural (2) 
then we have to use the more restricted version R7*. Obviously, we have that 2 _c1 
and 4_c3, 

If all operations are singular then we may still use plural variables in the formu- 
lae and need to extend NEQ with the rule R8 (3). In this case, we have to consider 
multialgebras as power algebras with all operations being additive (according to 
lemma 6.5), in order to obtain a proper notion of assignment to the plural variables. 
In fact, this is the alternative we would prefer in general, unless one is explicitly inter- 
ested in the specification of plural arguments. We feel that this combination of the 
singular semantics of parameter passing with the use of plural variables gives us both 
simplicity of multialgebras (as compared to power algebras) and the increased expres- 
sive power in writing specification as illustrated by the following example. 

Example 8.1. 
Consider the following (singular) specification of binary choice U . 
S ×S ~S  as the join operator: 

~-~ x+-~ x+Uy + 
y* < x + Uy ÷ 

x*-~ z ,y -~ z* x y z 
An analogous attempt to specify join with singular variables only would fail, 
because the last axiom would then be x~z,y-~z ~ xUy~z which is 
equivalent to ~-~ zUz=z. This observation indicates that plural variables may 
be an alternative to disjunctions which had to be used for the specification of 
choice in example 3.5. 
[] 

9. Conclusions and Further Work. 
We have introduced a formalism for specification of (possibly) nondeterministic oper- 
ations and defined multialgebra and power algebra semantics for the singular, respec- 
tively, plural parameters. The main resuk of the paper are the two reasoning systems 
which are sound and complete for the respective semantics. 

The comparison of the two semantics led us to point out that the singular/plural 
distinction has two, reIatively independent, facets. On the one hand, it may be taken 
as a purely semantic distinction concerning the mechanism of parameter passing. On 
the other hand, plural variables may be used as a merely syntactic device to increase 
expressiveness of the specification language, which does not force one to accept the 
plural semantics of parameter passing. 
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We have considered only fiat Specifications and consequently the current results 
mtist be seen only as the first step toward a full specification formalism which would 
be applicable in software develompment practice. The work on structural specification 
with nondeterminism is in progress and we can only indicate some main points. The 
central idea is the one emphasized in this and other papers [7, 22, 25, 27]: non- 
determinism is a natural abstrac tion tool and this fact may prove valuable when consid- 
ering the implementation and composition of specifications. 

Specification-building operations such as enrich (+), derive, (reduct) and hence 
export and rename should extend smoothly to the nondeterministic context. 

Quotient needs a slight generalisation since we have only partial equivalence and 
not congruence. Releasing the congruency claim w.r.t, nondeterminisitc operations 
may seem a blasphemy to the mathematical practice, but it turns out to be a crucial 
move in achieving a sound data refinement in a nondeterminisitic setting. Our current 
experiences and [22] show that some problematic cases may be elegantly handled us- 
ing our nondeterministic framework. Consider for instance the implementation of 
abstract sets with a (non- or underdetermined) choice operator. A natural and simple 
implementation would represent sets as sequences with the "head" operation imple- 
menting choice. Accepting this as a correct implementaiton would traditionally re- 
quire the notion of behavioral equivalence. In such cases, the abstract character of non- 
deterministic operations may be used successfully as an alternative to the behavioural 
abstraction. Whether this is a viable way for a wider range of applications and whether 
this will allow one to limit the need for behavioral abstraction remains to be seen. 

As we have observed, initial multialgebras do not exist even in very elementary 
eases. Since initiality and quotient are special cases of free extensions, one shouldn't 
expect much of the extend-freely operation. Reachable extensions seem still possible 
but one will face several choices of the notion of teachability [ 25]. 
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