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Abstract: After motivating the introduction of nondeterministic operators
into algebraic specifications, a language £ with two primitive predicates,
identity and inclusion, for specifying nondeterministic operations is in-
troduced. It is given a multialgebraic semantics which captures the singular
(call-time-choice) strategy of passing nondeterministic parameters. A calculus
NEQ, with restricted substitutivity rules, is introduced. NEQ is sound and
complete wrt. the multialgebraic semantics.

A language L is obtained by a slight modification of £ admitting plural
(run-time-choice) parameters. The multialgebraic semantics is not sufficient
for modeling such parameters and it is generalized to power algebras. Aug-
menting NEQ with one rule for unrestricted substitutivity for the plural vari-
ables yields NEQ" which is sound and complete wrt. to the power algebra
semantics.

1. Introduction

A major motivating force behind research into abstract data types and algebraic speci-
fications is the realization that software in general and types in particular should be
descibed (“specified”) in an abstract manner. The objective is to give specifications at
some level of abstraction: on the one hand leaving open decisions regarding further
refinement and on the other allowing for substitutivity of modules as long as they sat-
isty a particular specificaiton.

We argue that the use of nondeterministic operators is an appropriate and useful
abstraction tool, and more: nondeterminism is a natural abstraction concept whenever
there is a hidden state or other components of a system description which are, meth-
odologically, conceptually or technically, inaccessible at a particular level of abstrac-
tion.

Having established our motivation for using nondeterministic operators, we dis-
cuss the d1stmct10n between two modes of parameter passing — “call by value” and

“call by name.” In deterministic programming this distinction is well known. The
former corresponds to the situation where the actual parameters to function calls are
evaluated and passed as values. The latter allows parameters which are function ex-
pressions, passed by a kind of Algol copy rule [23], and which are evaluated whenever
a need for their value arises. Thus call-by-name will terminate in many cases when the
value of a function may be determined without looking at (some of) the actual pa-
rameters; i.e., even if these parameters are undefined. Call-by-value will, in such cases,
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lead to an undefined result of the call, Nevertheless, the call-by-value semantics is
usually preferred in the actual programming languages since it results in clearer and
more tractable programs.

The nondeterministic counterparts of these two notions?® are what we call singu-
lar (also called call-time-choice and corresponding to call-by-value) and plural (run-
time-choice corresponding to call-by-name) parameter passing {2, 7, 24]. In the con-
text where one allows nondeterministic parameters the difference between the two se-
mantics becomes quite obvious even without looking at their termination properties.
Let us suppose that we have defined an operation g(x) as “if x=0 then O elseif x=1 then
1 else 27, and that we have a nondeterministic choice operation “LI._: Set(S)— S re-
turning an arbitrary element from the argument set. The singular interpretation of
g(L1.{0,1}) will yield either O or 1, i.e., the result set of g(ti.{0,1}) is {0,1}. The plural
interpretation will give {0,1,2} as the set of possible results. (In a deterministic envi-
ronment both semantics would yield the same results {or this example.)

Another important difference concerns reasoning in the presence of nondeter-
ministic operations, in particular, the substitutivity property. The inside-out substitu-
tion (corresponding, roughly speaking, to singular parameters) is not associative in the
nondeterministic context [3, 4], and complicates the reasoning system by requiring
specific restrictions on the substitution rules [12, 25]. Plural parameters, on the other
hand, admit unrestricted substitution rules and, although semanti cally more complex,
lead to simpler reasoning systems [25].

The above observations, together with the fact that the distinction has not re-
ceived a thorough algebraic treatment, 2 motivate our investigation.

Multialgebras, used to model singular parameters, are algebras where operations
are interpeted as set-valued functions and composition is d efined by pointwise exten-
sion. This reflects the fact that, when the argument to an operation is a “set” (i.e., a
nondeterministic expression), the choice of denotation for the expression (i.e. which
~ element is to be used) is made at call-time, before passing the argument to the body of
the operation. To model plural arguments, one has to generalize this construction and
allow passing “whole sets” as arguments. This is achieved by using power algebras —
alge bras with carriers being (subsets of) power sets, and with operations mapping sets
to sets (which in this setting are just the elements of the carriers).

In section 2 we give a general motivation for introducing nondeterministic op-
erators as specification tools. In section 3 we define the language for specifying non-
deterministic operators and its multialgebraic semantics which allow us to present, in
section 4, two examples illustrating the usefulness of nondeterminism in achieving
appropriate levels of abstraction. In section 5 we introduce a sound and complete cal-
culus and discuss some of its features, Then we present an algebraic perspective on the
distinction between the singular and plural passing of nondeterministic parameters. In
section 6 the multialgebraic semantics for singular parameters is generalized to power
algebras capable of modeling plural parameters. The corresponding sound and com-
plete extension of the calculus is discussed in section 7. A comparison of both seman-
tics in section 8 is guided by the similarity of the respective calculi. We indicate the

1 We are not focusing here on the related distinctions (such as eager vs. lazy, IO vs. Ol evalua-
tion), discussion of which is beyond the scope of this paper.

2 Unified algebras [19, 20] of P.D.Mosses, and rewriting logic [17, 16] of J. Meseguer handle
both kinds of parameters. However, they do it in a highly non-standard, albeit elegant, way. We
feel that multi- and power algebras stay closer to the traditional algebraic framework.
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increased complexity of the power algebra semantics reflecting the problems with in-
tuitive understanding of plural arguments. We also point out that plural variables can
be used meaningfully to increase expressibility of the specification formalism even if
all operations have only singular arguments.

The main (completeness) proofs are quite long and involved. The space limita-
tion does not allow us to include them here, but all the proofs may be found in [26].

2. Nondeterministic Operators as Specification Tools

There are essentially two reasons why one might want to include the concept of non-
determinism in the traditional algebraic specification methods:
(1) Real nondeterminism.

The system being specified really is nondeterministic — its behavior is not fully

predictable, nor fully reproducible.
(2) Representational nondeterminism.

The behavior of the system being specified may be fully predictable in its final

imple mentation (i.e. deterministic), but it may not be so at the level of abstrac-

tion of the specification. ,

Though many think of representational nondeterminism as identical to underspecifi-
cation, they turn out to be technically and conceptually quite distinct (as we shall see
shortly).

Whether the world really is nondeterministic or not we leave to the physicists
and philosophers to ponder. A computer system in isolation certainly is deterministic:
When started from a particular state (given in full detail) twice, both executions will
demonstrate identical behavior. Possible sources of perceived nondeterminism lie only -
in the unpredictability of the environment such as hardware failures or human factors.
Considering all such factors as parts of the total state given in {ull detail may obviate
the perceived nondeterminism, but leads to undesirable complexity and is possible
only in principle. '

The primary argument in favor of accepting nondeterministic operators is in-
strumental, and identical to the credo of the abstract data type community: One
should specify a system only in such detail that any implementation satisfying the specifi-
cation also satisfies the user, and no more. It turns out that nondeterministic operators
ease the process of specifying systems by allowing one to disregard irrelevant aspects —
be they the external influences or implementation details — and thus reducing the
danger of overspecification resulting from technical rather than methodical reasons.

For purposes of discussion it may be convenient to further identify three variants
of representational nondeterminism: (1) abstraction from hidden state, (2) abstraction
from time, and (3) abstraction from external entities. Though dealt with uniformly
within our framework, these have often been considered distinct. In particular, the
introduction of nonde terminism as a result of abstraction from time is usually taken as
a given in the process algebra community without thereby necessesarily accepting
abstraction over state as requiring nondeterminsm for specification purposes.

How does this use of nondeterminism differ from the usual notion of under-
specification? Consider for 2 moment a choice function LI from sets of integers to in-
tegers, returning one of the elements of the set:

For instance, 11.{0,1} may return either of the values 0 and 1. If Ut were just an
underspecified function, then we would have that U.{0,1}=11.{1,0}, since the argu-
ments of the function are equal (though not syntactically identical) in the two terms.
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In practical terms, this would require the choice operator always to return the same
value when applied to a particular set. Le., L1.{0,1} is always 0, or always 1.

However, this kind of underspecification does not allow for abstraction from
(conceptually) invisible entities that might influence the choice (such as a hidden
state, timing or interaction with a human being). E.g., if set values were implemented
as unordered sequences with new elements always added to the front of the sequence,
this underspecified description of the choice function would disallow using a simple
imple mentation of choice as the head-function, since such an implementation would
sometimes return the value 0, sometimes the value 1, when applied to the set {0,1},
depending on which of the two elements were added first. If we were to treat Ll as a
nondeterministic operator, on the other hand, then such a straightforward imple-
mentation (though deterministic) would be quite acceptable (both formally and ac-
cording to the usual intuition about the requirements of an operator picking some
element from a set).

Similarly, if the implementation of the choice function asked a human operator
to pick an element then one would encounter the same difficulty: The behavior of
human beings may be deterministic, but even were that the case their inner state de-
termining that behavior is not available for inspection. A specification needs to ab-
stract away from that inner state, and nondeterminism is the right concept for doing
that.

And similarly again, if the choice depended upon timing properties (e.g. the set
was distributed among a number of processors, and the choice function simply que-
ried them all, returning the first (in terms of time) value returned to it by one of these
processors) the abstraction away from timing properties would introduce a seeming
nondeterminism.

In order to make further examples more understandable, we have to introduce a
formal language for specifying (possibly nondeterministic) operators and its seman-
tics.

3. The Language £ and the Multialgebra Semantics

A specification is a pair (2, II), where the signature Z is a pair of a sets (S, F) of sorts S
and operation symbols F (with argument and result sorts in S). There exists a denu-
merable set V' of variables for every sort. For any syntactic entity (term, formula, set of
formulae) x, V[x] will denote the set of variables in x.

The set of terms over the signature 2 and a variable set X is denoted Wy . We
always assume that the set of ground terms of every sort S, s%z, is not empty. !

II is a set of sequents of atomic formulae written as a,,....a,~ €j,...€,,. The left
hand side of > is called the antecedent and the right hand side the consequent, and
both are to be understood as sets of atomic formulae (i.e., the ordering and multiplic-
ity of the atomic formulae do not matter). In general, we allow either antecedent or
consequent to be empty, in which case @ is usually dropped in the notation. A se-
quent with exactly one formula in the consequent {(m=1) is called a Horn formula , and
a Horn formula with empty antecedent (n=0) is a simple formula (or a simple sequent).

An atomic formula is either an equation, t=s, or an inclusion, t<s, of terms ¢,

1'We do not address the problem of empty sorts here and will present caleuli which work un-
der the assumption that sorts are not empty. We use signatures with at least one constant for
every sort but other ways of approaching this problem [5, 6, 11] seem to be compatible with
our framework.
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SEWs5 . All variables occurring in a sequent are implicitly universally quantified over
the whole sequent. For a specification SP=(Z, 1), L(SP) is the restriction of L to
WS,V-

The semantics of L specifications uses multistructures. Our definitions are very
similar to those used by other authors {9, 12, 13, 21] except for the notion of equality.
Also, we provide the means to interpret the occurrences of terms in . as applications
of (possibly nondeterministic) operations rather than, as it is usually the case, as the
sets of possible results.

Definition 3.1 (Multistructures). Let SP be an L specification. M is an SP-
multistructure if

1. its carrier |M] is an S-sorted set and
2. foreveryf: 5, X..XS — SinF there is a corresponding func-
tion fM: S M. xS M — P (M,

&=

where P* denotes the power set with the empty set excluded. We let MStr(SP) denote
the class of SP-multistructures. It has the distinguished term structure:

Definition 3.2 (Term multistructure). The term multistructure Wy for a
specification SP=(Z II) is defined as:

1. foreach SES, 5™z is the set of ground terms of sort S,
2. foreach f:S;X..XS, = Sin F,t,eSVe: V3¢, .t ) = {f(t...t.)
&l

It is a known fact that, in the general case, one cannot guarantee the existence of ini-
tial multimodels. Hufmann [12] has shown that even if we restrict L to simple for-
mulae such multimodels may not exist. Therefore we admit general, and not only
Horn, formulae in the specifications and will consider the whole class of multimodels
of a specification.! The significance of the term multistructure is then summarized in

Lemma 3.3. If M is an SP-multistructure then for every set X of variables
and assignment B: X—|M/|, there exists a unique function B[]:
Wy x— P(IM]) such that:

. Blx] = {BCOY, Blcl = ™ and BIf(t;...£)] = (M@ ..m) | HEBIL,]}

Application of multialgebraic operations to sets is defined by pointwise extension.
Consequently, all operations in multistructures are S-monotonic, i.e., Bls]€Blt] =

BN =BIF®].

Definition 3.4. An SP-multistructure M satisfies an L(SP) sequent

WL <5 Pl D Ty

written M & 1, iff for every assignment B : X —[M| we have

! For a discussion of initiality the reader is referred to [12, 25]. All the results reported in this
paper remain valid for the specification language restricted to Hom formulae.
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Blt)=Bls] A... A BIEISBIs] = Blp,J=Blr,] V..V Blp,ISBlr,)
where A=B iff A and B are the same 1-element set.
An SP-multimodel is an SP-multistructure which satisfies all the axioms of
SP. MMod(SP) denotes the class of multimodels of SP.
£}

As a consequence of this definition, = is not an equivalence relation (it is not reflex-
ive). = t=t holds in a multialgebra M only if tM has exactly one element, i.e., if the term
t is deterministic. Of course, the set equality of two terms is expressible as two inclu-
sions: —s<tand = £<s.

Note that all variables are used singularly, i.e., they range over individuals (1-
element sets) and not over arbitrary sets. In particular, assignments in lemma 3.3 and
definition 3.4 assign to each variable a l-element set. This fact is utilized to distin-
guish between the result set of an operation (which is represented by the correspond-
ing term) and the result returned by a particular application of the operation as the
following example illustrates.

Example 3.5.
The axiom ~ xLly=x, xUy=y would make the binary choice operation _1J_:
§XS5—S deterministic (though underspecified). It says that (for any value of
x,y), the set xLly is either the same as the 1l-element set x or y. In order to
make U 2 nondeterministic choice we have to say that any application of xUy
returns either x or y. This is expressed by the axiom: z<xUy = z=x, z=y.
B

4. Two Examples

Consider the problem of generating a depth-first traversal tree of nodes reachable
from a particular node in a directed graph. The algorithm is found in standard algo-
rithms textbooks (e.g. [15]), and is often given imperatively along the following lines
(G is the graph, v is the start node, T is traversal tree being created and edges are or-
dered pairs of nodes):

Example 4.1.a
DFS(G,v) =
begin T = Q;
trav(G,v,T),
return T;
end;
trav(Gv,T) =
begin mark v;
for all edges (v,x) do
if x is unmarked then trav(Gx,T); T := TU{v,x); endif ;
endloop;
end;
Q]

Now, consider an equational definition of DFS as a deterministic function. Let the
function n{_,_) : Graph X Node — Set(Node) return the set of neighbors of 2 node in
a given graph.
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Example 4.1.b
Gv,TI5xeV:
— DFS(G,v) = trav(G,v,Q)
n(Gy)=0 — tralGv,T) =T

n(G,v) = add(S,x)s} = trav(Gv,T) = trav(G\(v, %)}, v, T)
xeT=True

WG, v) = add(S, x),
xeT = False

]

(The element tests check whether a node is in the tree (i.e., marked) already.) This

definition looks plausible only as long as we do not inspect the Set sort. Adding ele-

ments to a set should be commutative — we have that
= add (add (S,x),y) = add (add(S,y),x)

} = trav(Gv,T) = trav(GN(v,%)}, v, trav(G\(v, %)}, x, TU{{(v,x)}))

But then we also obtain
— trav( add(add (G (v,a)),(v,b)), v, @) = trav( add (add (G (v.p)).(v.a)), v, D)
In other words, for the graph

(¥) () ()
G= O‘o we get the DFS-tree equality: (2) &) = @ )

which was not at all the intention — it collapses distinct tree values.

The problem is that the internal structure of the set value (in this case, the defi-
nition of DFS in terms of adding elements to the set) intrudes into the specification,
quite contrary to the central tenet of abstract specifications.

An abstract definition of the DFS operator could be

Example 4.1.c :
Gv,T.S,xye V
— DFS(G,v) < trav(G,v,®)
n(Gv)=0 — travlGyv,D =T
P(G.v)= add(S,y),
x <U.n(G,v), = trav(G,v,T)< trav(GM(v,x)}, v, T)
xeT=True

n(G,v) = add(S,y),
x < LLn(G,v), = trav(G,v,T)< trav(GN(v,x)}, v, travQ{(v, %)}, x, TU{{(v,x)}))
x €T = False

O

Though the specification still makes use of the structure of the set-generator functions,
this no longer intrudes into the valuation of the function itself beyond ensuring a dis-
tinction between empty neighbor-sets and non-empty such. The variable x denotes
the result of an arbitrary choice among these neighbors. The resultant definition de-
fines the function without being concerned with (or specifying) the internal, repre-
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sentational structure of the graph. We no longer collapse “distinct” trees, instead we
only get the following (and plausible) result; that DFS-traversal will generate one of

two trees: _
(v) O, )

wav( () ORI Q' (b), @ )—»(b}1

©) ©

In general, iterating over sets or other structures is a natural operation, even when
there is no intrinsic total order on the elements of such a structure. Such iteration is
- often deterministic, but representation-dependent, and if the iteration operation is
specified as deterministic then we get an overspecification. The possibility to ignore the
representation-dependent structure of the specified data is one of the fundamental
requirements for a specification formalism.

The last small example illustrates another aspect of the abstraction potential in~
herent in nondeterminism.

Abstracting over time is such a natural thing to do that many consider timing de-
penidencies as representing real nondeterminism. However, time is just another com-
ponent of state, and abstraction over time could therefore be handled similarly to ab-
straction over state in general. As an example of how time can be removed from con-
sideration in a specification, consider the specification of a merge function m. Its ar-
guments are two streams of data, and the result a new stream which is a merger of the
two (here the metric aspects of time have been removed, leaving time only in a ves-
tigial form as a total order for each of the input- and output-streams, ignoring even
the relative ordering of elements in distinct streams) (e.g. in [10, 18] and related
works).

Let M be a function with only one input stream, but constructed from m with the
output stream fed back as one of the input streams of m (see figure).

Y R
A specification of these two functions could be (where » is the concatenation operator
on streams and € is an empty stream):

Example 4,2
gp.xyr€V.
= meq)=q
~ m{q.&) = q
r < mixAgyrp) = r< x*mlgypl, r< y'mxAq,p)
— M{g)=¢&

r< Mx~g = r<x"miq,r)
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As we can see, m is deterministic when there is only one non-empty input stream. Buf
if there are two, then the first element of the result stream {r) is the first element of one
or the other of the two input streams. When we construct the feedback function M
then any nonempty input stream results in an infinite output stream, but the compo-
sition of the output is not determined ~ that would reflect the timing propetty of the
function evaluation and of the input, which we have abstracted. Again, the abstraction
shows up as nondeterminism.

It may be an interesting excercise for the reader to convince himself that the
above specification yields the intended meaning for the M operator and does not lead
to the classical merge-anomalies [11, 14]. The example is discussed in more detail in
[25]. |

Finally, we can mention that the close relation between nondeterministic terms
and sets makes it possible 1o use the former to define and handle subsorting directly at
the term level. This is the basic intuition behind the framework of unified algebras
[19, 20] and can also be done within the formalism we have introduced here.

5. The Calculus NEQ

The last axiom in the merge example 4.2 uses the variable r to specify the desired
properties of each possible result produced by the M operator. It says that any such r is
obtained by taking the first element x of the input sequence and then merging the rest
of the input sequence with r itself. This is different from the axiom obtained by re-
placing the occurrences of r with M(xAg): — M(x*q) < x*mig,M(x"q)) which, plausi-
ble as it may seem, creates the usual merge-anomalies.

This illustrates the inherent problem of reasoning with nondeterminism, namely,
wsoundness of unrestricted substitution of terms for variables. In our formalism we
handle this problem by turning = into a partial equivalence realtion and allowing sub-
stitution of a term ¢ for a variable only if = t=t is derivable (rule SB). The rules of the
calculus NEQ are:

Rl: o x=x xeV

R TTeA , T'es=tA
‘ 5T = AL, A

1‘* Ax ; I*! , 4

R3: il - i—) s}-<r a x not in a RHS! of <
LT - ALA
R4 ere
RS: T Ae ; TV e A (cuT)
LT/ = AA
RG: @) LA py T4 (WEAK)
T Ae IFe—mA

L RHS, resp. LHS, stand for righ, resp. left, hand side.
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Nx<tr A x<ty<rimsA

R7: a) I'f . éf 7 b) Ty _{},}x A (ELIM)
x€ VWV x€ W), ye V
atmostonex inl = A noxinl = A
x in T isn’t in RHS of < ' at mostone x inr

xand y are distinct variables

X 3 denotes x with b substituted for a. The rule R1 expresses the fact that only vari-
ables are guaranteed to be deterministic. The restriction on R3 prevents one, for in-
stance, from drawing the unsound conclusion s<p from the premises s<t and p <t.

The R7 rules allow one to eliminate a redundant binding x<t replacing x by t.
Since x refers to one and the same value, such a replacernent requires that there be at
most one occurrence of x. Otherwise we could, for instance, derive t=t (for arbitrary t)
from x<t — x = x by a single application of R7a.

A similar problem would occur if we removed the second or third restriction
from R7b. The other restrictions are of purely technical character. Allowing x to occur
x<Hx),x=1

tHx)=1
The last restriction in R7a excludes the special case which is related to the sin-

gular semantics and is treated by R7b.
As an example of the semantic import of thes rules we give a few derived rules:

in t would, for instance, lead to the unsound deduction (using R7a):

NE: X222 Restrictions as for R7a (Terms represent non-empty sets)
=
X<bLS<rb> ; k3s§=S§ - :
SI: . - Restrictions as for R7b  (Arguments are singular)
s=<1"
This rule can be rephrased as Vx(xe: ::>( '; £r(x) which, read contravariantly, says:
ser(t

if 5 is in the result set of r{t) then there exists an individual x&t such that s is in the
result set r{x), i.e., the argument t to r is singular. ‘

r’ =t A . .
SB: il 2 =t (Variables are replacable by deterministic terms)

I, T A, A

The main theorem states soundness and completeness of NEQ wrt. the multialgebraic
s mantics.

Theorem 5.1. For every specification SP=(Z,TI), sequent w & L(SP)
MMod(SP) &= 7 Hf II by 7
oY)

6. Power Algebras

Singular arguments have the usual algebraic property that they refer to a unique value.
This corresponds to evaluation at the moment of substitution and passing the result to
the fol lowing computation. Plural arguments, on the other hand, are best understood
as textual parameters. They are not passed as a single value but the expression receiv-
ing them is first expanded and evaluation takes place only when the expansion is

completed.
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To capture this possibility we have to extend the multialgebra semantics to
power algebras where operations map sets to sets. We will allow both singular and
plural parameter passing in anyone specification. The corresponding semantic dis-
tinction will be between the power set functions which are merely S -monotonic and
those which also are U-additive.

In the language we merely introduce a notational device for distinguishing the
singular and plural arguments. We allow annotating the sorts in the profiles of the
operation by a superscript, as in 5%, to indicate that an argument is plural. Further-
more, we partition the set of variables into two disjoint subsets of singular, X, and
plural, X*, variables. x and x™ are to be understood as distinct symbols. We will say
~ that an operation { issingular in the i* argument iff the i argument (in its signature) is
singular. The specification language extended with such annotations of the signatures
will be referred to as L™, By a singular specification we will mean one where all argu-
ments to all operations are singular.

Definition 6.1. Let each 5, be the power set of some under%zing set $,, ie., S
= P'(S). Afunction f: §; X... XS, — S is U-additive in the i" argument iff for
all x; €S, and all x, €5, (or kD)« flx;.. x,..x,) = U {f0x;.. x) . x ) x€x, ).

o

Definition 6.2. Let = he a f’-signature. A is a Z-powersiructure, A EPStr(Y),
iff A is a (deterministic) structure such that:

1. for every SES, the carrier $* € P*(9), for some underlying set S,

2. for every £ 5;X..X5 —S in Z, f4 is a C -monotonic function
$,4%... XS *—+5% such that, if the i argument of f is singular then f* is
additive in the i* argument.

]

Note the unorthodox point in definition 6.2 — we do not require the carrier of a power
structure to be the whole power set but allow it to be a subset of some power set. All
finite subsets are needed, for instance, if one assumes a primitive nondeterministic
choice with predefined semantics of set union. We do not assume anything of the
kind and expect that quite many meaningful specifications may do very well without
all possible subsets. In addition, using full power sets as carriers would always yield
unreachable structures whenever the underlying set is infinite.

Given an f:SXS™ T, we will say that an actual argumnent at the first position has
a singular occurrence. E.g., in f(t,t), the first t has a singular, and the second one a plu-
ral occurrence, More precisely:

Definition 6.3. « has a singular occurrence in a term t iff one of the following
holds (= denotes syntactical identity):
1. t=a
2. t=f(.,a,.)and fis singular in the argument corresponding to o,
3.t = f{t;,....t,) and @ has a singular occurence in one of ¢,
O]

The first point is included for the technical reasons — the definition will be used to
specify additional restrictions on the application of some reasoning rules. To define
satisfiability of formulae by a power structure we only need to extend the definition of
an assignment
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Definition 6.4. Let X be a set of singular and X" a set of plural variables. By
an assignment into a power structure A we mean a function B: XUX" — [4]
such that, for all x€X, |B(x)| = 1.

0]

If B is as in this definition, then every term t(xx )EWx 4 » has a unique set interpre-
tation Blt(xx")] in A defined as t*(B(x),B(x")). Satisfiability of sequents over
L'(E X.X) by a power structure is then defined exactly as before (def. 3.4) and the
class of power models of a specification SP is denoted PMod(SP).

Since functions from A to P*(B) are isomorphic to U -additive functions from
P o P®, [A=P B)} =.[P'(A) =P (B)], we may consider every multistruc-
ture A to be a power structure A” by taking |A*| = P'(A) and extending all operations
in A pointwise. We then have the obvious

Lemma 6.5. .Let SP be a singular specification, AEMStr(SP), and 1 be a se-
quent in L(SP). Then AkEw iff A =w, and so AEMMod(SP) iff
ATEPMod(SP).

&

7. The Calculus NEQ" for Join Semantics

We let Vt] be the set of singular and V*[¢] the set of plural variables in ¢. Rules R1-R7
are as in NEQ (except for a new restriction in R7) but now all terms ¢ belong to
Wy xx+ In particular, any ¢, may be a plural variable.

R1: > X=X xeV

A 3 T os=rA
7.7 ALA

RZ:

;b A 5 ' s<, A

R3: x notin a RHS of <
T, A%, A

R4: erse

RS5: FHA,E M F,EHA (CUT)
' > AA

RG: 2) L4 p LrmA (WEAK)

T Ae IemA
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Tx =t
R7, o) DEXIEA py LX<by<rm4 (ELIM)
7= A Fy<ry A
xe V\Vit] x€WV\V[t], yeV
atmostonex inI' > A noxinl'+> A
x inT isn't in RHS of < atmostone x inr
the occurrence of x is singular the occurrence of x in r is singular
xand y are distinct variables
RS 28 (SUBP)
I7 » A

We used R7b from NEQ to derive SI, which expressed singularity of all arguments.
Therefore, in NEQ' we need an additional restriction to make sure that the substitu-
tion for x takes place only at the arguments which are singular. The derived rules MO,
NE, SB are the same as for NEQ, but SI is now restricted to the singular occurrences
of x.

The new rule R8 expresses the semantics of plural variables. It allows us to sub-
stitute an arbitrary term t for a plural variable x*, Taking t to be a singular variable x,
we can thus exchange plural variables in a provable sequent 7 with singular ones. The
opposite is, in general, not possible because rule R1 applies only to singular variables.
Thus a plural variable x™ will satisfy — x"<x", but this is not sufficient for performing
a substitution for a singular variable according to SB.

The result corresponding to theorem 5.1 is:

Theorem 7.1. For any L -specification SP and L* (SP) sequent ar:
PMod(SP) &= o iff I + Neqr T
0|

8. Singular vs. Plural, Arguments vs. Variables

NEQ" has the additional rule R8 which could suggest that more formulae are deriv-
able with it than with NEQ. This would go counter lemma 6.5 and the intuition that
power models form a more general class than multimodels. There is no contradiction,
however, because what actually limits the number of derivations in NEQ" is the addi
tional restriction on the rules R7. For instance, having operations g.S— T, and f:5"—T,
we may in both calculi prove:
x=<ty=<glx)- R7b
y<gt) =

Replacing ¢ with f in the assumption would disallow the analogous conclusion in
NEQ".

~ Rule R8, admitting instantiation of plural variables, is useful only if the axioms of
the specification contain such variables. Axioms with plural variables can also be
viewed as axiom schemata for axioms without such variables. From the logical point
of view, axiom > f(x")<r(x" ,x) leads to the same formulae (without plural variables)
as the set of axioms { =f{)<r{tt) | tEWs 4 ).

Thus we can see that rule R7" is concerned with plural arguments, while rule R8
with plural variables. In fact, introducing plural arguments does not force one to use
plural variables and, on the other hand, axioms containing plural variables can be
used even if all operations are singular. We may set up the relations between the use
of singular/plural variables/arguments and the associated sound and complete rea-
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soning systems in the following way (R7* denotes R7 with the restrictions from
NEQ"):

arguments
singular plural
variables
singular | NEQ |’ NEQR7'
3 4
plural NEQR8 | NEQ'

If a specification contains only singular variables, then NEQ is sufficient for proving
all its consequences if all operations are singular (1) - if some arguments are plural (2)
then we have to use the more restricted version R7”. Obviously, we have that 2&1
and 4 S3.

If all operations are singular then we may still use plural variables in the formu-
lae and need to extend NEQ with the rule R8 (3). In this case, we have to consider
multialgebras as power algebras with all operations being additive (according to
lemma 6.5), in order to obtain a proper notion of assignment to the plural variables.
In fact, this is the alternative we would prefer in general, unless one is explicitly inter-
ested in the specification of plural arguments. We feel that this combination of the
singular semantics of parameter passing with the use of plural variables gives us both
simplicity of multialgebras (as compared to power algebras} and the increased expres-
sive power in writing specification as illustrated by the following example.

Example 8.1.

Consider the following (singular) specification of binary choice _Li_.
SXS—S as the join operator:

P x < XUy

Py < XLy

<Y< Uy <7 ,

An analogous attempt to specify join with singular variables only would fail,
because the last axiom would then be x<z,y<z +» xlly<z which is
equivalent to » zlJz=z. This observation indicates that plural variables may
be an alternative to disjunctions which had to be used for the specification of
choice in example 3.5.
&3

9. Conclusions and Further Work.

‘We have introduced a formalism for specification of (possibly) nondeterministic oper-
ations and defined multialgebra and power algebra semantics for the singular, respec-
tively, plural parameters. The main result of the paper are the two reasoning systems
which are sound and complete for the respective semantics.

The comparison of the two semantics led us to point out that the singular/plural
distinction has two, relatively independent, facets. On the one hand, it may be taken
as a purely semantic distinction conceming the mechanism of parameter passing. On
the other hand, plural variables may be used as a memrly syntactic device to increase
expressiveness of the specification language, which does not force one to accept the
plural semantics of parameter passing.
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We have considered only flat specifications and consequently the current results
must be seen only as the first step toward a full specification formalism which would
be applicable in software develompment practice. The work on structural specification
with nonde terminism is in progress and we can only indicate some main points. The
central idea is the one emphasized in this and other papers [7, 22, 25, 27]: non-
determinism is a natural abstraction tool and this fact may prove valuable when con51d~
ering the implementation and composition of specifications.

Specification-building operations such as enrich (+), derive, (reduct) and hence
export and rename should extend smoothly to the nondeterministic context.

Quotient needs a slight generalisation since we have only partial equivalence and
not congruence. Releasing the congruency claim w.r.t. nondeterminisitc operations
may seem a blasphemy to the mathematical practice, but it turns out to be a crucial
move in achieving a sound data refinement in a nondeterminisitic setting. Qur current
experiences and [22] show that some problematic cases may be elegantly handled us-
ing our nondeterministic framework. Consider for instance the implementation of
abstract sets with a (non- or underdetermined) choice operator. A natural and simple
implementation would represent sets as sequences with the “head” operation imple-
menting choice. Accepting this as a correct implementaiton would traditionally re-
quire the notion of behavioral equivalence. In such cases, the abstract character of non-
deterministic operations may be used successfully as an alternative to the behavioural
abstraction. Whether this is a viable way for a wider range of applications and whether
this will allow one to limit the need for behavioral abstraction remains to be seen.

As we have observed, initial multialgebras do not exist even in very elementary
cases. Since initiality and quotient are special cases of free extensions, one shouldn’t
expect much of the extend-freely operation. Reachable extensions seem still possible
but one will face several choices of the notion of reachability [25].
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