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Abstract

Multialgebras are relational structures where selection of one argument as the “result”
yields strong algebraic properties missing in the case of relations. However, such properties
can be obtained only by choosing an appropriate definition of homomorphism and this ques-
tion has been neglected or left implicit in most of the literature on power structures. We
summarize our earlier results on the possible notions of compositional homomorphisms of
multialgebras and investigate in detail one of them, the outer-tight homomorphisms which,
unlike other alternatives, yield rich structural properties and interesting constructions. A se-
ries of classical algebraic properties is demonstrated for the resulting category and the notion
of associated congruence — bireachability — is presented. It reflects the “observational” nature
of multialgebras with the chosen homomorphisms in that it requires propagation of distinc-
tions, the complement of the relation, dually to the traditional congruences and bisimulations,
which require propagation of the relation.

The category is cocomplete. Final objects have quite interesting nature but, unfortunately,
are not guaranteed to exist. To guarantee their existence, we have to extend the category by
admitting algebras over proper classes, in the same way as it has to be done for coalgebras
involving power-set functor. We give an exact characterisation of the large objects as colimits
of small algebras or, equivalently, as algebras were each element is reachable from at most a set
of other elements. Finally, we give a construction of products. A particular case gives a new
construction of products for coalgebras over (bounded) power-set functor. The results (for the
category of small algebras) extend to this category which is thus complete and cocomplete.
The category of small algebras may lack final objects and products, but possesses other limits
and all colimits. We characterize its subcategories, of k-bounded multialgebras, which are
complete and cocomplete.

Examples and remarks illustrate relations to total and partial algebras, coalgebras, au-
tomata theory and topology.
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1 Background

Multialgebras are algebras where operations can return not only single values but also sets
thereof. Multialgebras, or variants of power-set structures, have been given some attention in
the mathematical community, e.g., [36, 37, 14, 39, 7, 30], with [6] presenting a comprehensive
overview. The seminal work here was [25, 26] which introduced multialgebras (algebras of com-
plexes) for representation of relational structures and demonstrated general representability
of Boolean algebras with operators by such algebras. As Kripke-frames are naturally rep-
resented by such algebras, their relevance for modal logic has also been acknowledged, e.g.,
[4], if not widely recognized. (The works of McKinsey and Tarski, [31, 32, 33], provided the
semantics for S4 logic directly in terms of Boolean algebras with closure operator.) Likewise,
automata can be modeled as multialgebras where the power-set operation allows for a natural
inclusion of nondeterminism. In the tradition of algebraic specifications, multialgebras have
been used as an extension of algebraic semantics precisely for the purpose of modelling non-
determinism, e.g., [20, 21, 23, 44, 46]. In this context, it is important to distinguish between
arbitrary sets and one-element sets (nondeterministic operations vs. usual functions), as well
as to pay attention to the distinction between sets being second-order or first-order objects
— the former corresponds to multialgebras (application of operations to sets is obtained by
pointwise extension and hence is monotone) and the latter to power-set algebras (where op-
eration applied to a larger set may yield a smaller result) — the distinction was investigated
and used in [45, 47]. Some variants of multialgebras disallow empty result-sets, e.g., [44, 14],
but most do not. Then, applying the standard isomorphism

Al X ... x Ay = P(A) ~ P(A1 X ... x A, x A), (1.1)

one obtains another representation of relational structures, although with more algebraic
properties, as will be shown in what follows. This is the variant of multialgebras we will be
using.

Following [18] (definition 3.1.2), a one-sorted multialgebraic operation « over a set A can
be seen as a dialgebra (A, a), namely, a function a : F(A) — P(A), where the endofunctor
F : Set — Set on the category of sets gives the source of the operation and P : Set — Set
is the covariant existential-image power-set functor, i.e., sending a function f: A — B onto
P()(X)={f(z) | z € X}, for X C A. Although we will not use this model of multialgebras,
we may occasionally refer to it. [41] presents a series of basic facts about dialgebras (called
“bialgebras”) which can be instantiated to either algebraic or colagebraic version depending on
the choice of the functors. In general, instead of P one can use any endofunctor G : Set — Set
and a morphism {(A,a) — (B, ) in the category Setl is a function f : A — B, such that
F(f);8 = a;G(f). The variations in the definitions of homomorphisms to be encountered
below could be then seen as variations over this notion of morphism (requiring, in addition, lax
transformations). Less abstractly, we can use the isomorphism (1.1), and view a multialgebra
as a relational structure where, for each relation, one argument is designated as its “result”
and used for composing the relation with others. This composition is obtained by pointwise
extension.

Definition 1.2 For a signature ¥ = (S, F), a X-multialgebra M is given by:
o a (family of ) carrier set(s) |M| = {s™ | s € S},

o a function fM : sM x..xsM — P(sM) for each f : s1%x..x8, — s € F, with composition
defined through additive extension to sets, i.e. fM(Xq,..., Xyn) = Usiex, M (x1, .y ).

We will not distinguish in the notation between an algebra A and its carrier. Expressions
involving set operations, e.g., ¢ € A, X C A, suggest that the carrier of A is meant. The
only structures addressed in the paper are multialgebras, so “multialgebra” and “algebra”
will be used interchangeably. We assume a given signature with f/R ranging over all opera-
tion /relation symbols.

Selection of the “result” argument corresponds, in a sense, to turning our considerations
to binary relations with the additional operation of tupling the arguments. Composition of
relations R; : X11...X1n — Xl, ey Ry Xg1---Xgn = Xk and R : X1.. X — X, COI‘I‘BSpOIldS
to application of R to the tupling (Ri...Rr). When using relational notation, we write com-
position in diagrammatic order, R; ¢, resp. ¢; R, assuming implicitly ¢ to be binary (in fact,



homomorphism or, in the case of ¢; R, a tuple (¢1 X ... X ¢pn41) of unary functions, for each
relevant argument/sort ¢ of R.) The composition is, as just explained, an abbreviation for the
multialgebraic one, i.e.:

{@1.-045,b) E R;¢ <= Fa:{(ai...an,a) € RA{a,b) € ¢
resp. (@1...an,b) € (¢1 X ... X ¢pp); R <= Tb1..by : (@i, bi) € ¢pi A (b1...bs,b) € R

(1.3)
The central definition of OT-homomorphisms involves the converse of a function ¢ : A - B

and this also makes the use of relational notation often more convenient. We will freely switch
between two equivalent formulations, in the category Rel, of sets with binary relations, and
in Set, of sets with functions, as illustrated by the following diagrams:

Rel Set
RA i
A ——1¢4 P(s?) ——= P(H)
T T (1.4)
by by m‘T T'P(cb: )
RE B
sB——1¢B B ——= P(t?)

Having made these precautions, we will write things as if all relations were binary, (most)
algebras were one-sorted and homomorpisms simple functions (and not their families), but
all considerations apply to the general case. (Occasionally, we may write argument sequences
explicitly.)

Selection of the “result” among the relational arguments leads to more algebraic structure
reflected by homomorphisms. (In particular, derived operators of a multialgebra are analogous
to those of classical algebra, so that for a given signature X, the term structure Ty is itself a
X-algebra, and preservation/reflection of ¥ operations leads to the corresponding behaviour
of the derived operators. For relational structures (without specified composition argument),
on the other hand, derived operators are just boolean operators which are only very weakly
related to the actual signature and need not be preserved by homomorphisms preserving
the basic relations. [11], V.3, p.203, considers this the reason for the subordinate role of
homorphisms in the study of relational structures.) This, however, does not simplify the
study of the resulting structure — the number of possible definitions of homomorphisms,
congruences, etc. hardly diminishes.

As the first step towards a simplification of the rather complicated picture, we have earlier
in [43] classified compositional homomorphisms of (relational structures modeled as) multial-
gebras. In order to motivate our choice of the outer-tight homomorphisms, we recall now these
results and in 1.2 review finite (co)completeness of the respective categories. Section 2 studies
the basic algebraic notions (congruences, subalgebras) in the category of multialgebras with
outer-tight homomorphisms. Section 3 extends this category allowing algebras with proper
classes as carriers and shows its cocompleteness and existence of equalizers and final objects.
Section 4 demonstrates then the existence of products, thus finishing the proof of completeness
of the category. All constructions can be performed also (for small diagrams) in the category
of small algebras with the exception of the constructions of final objects and products. These
need not exist in the category of small algebras, and in Section 5 we identify a wide class of
its subcategories of k-bounded multialgebras, which are complete and cocomplete. Section 6
contains a brief summary and suggestions for further development. The appendix summarizes
the assumptions used in the treatement of classes.

1.1 Compositional homomorphisms of multialgebras

Besides some preservation properties, the first minimal requirement for a definition of homo-
morphism seems to be compositionality: composition of two homomorphisms should yield a
homomorphism. In fact, various proposed definitions (used to obtain specific results) violate
this requirement. We therefore start by inquiring into the possible compositional definitions.
Definition 1.5 A definition A[] of a function ¢ : A — B being a homomorphism of the
multialgebraic structures A — B has the form:

Alg] <= Llgh RY;rild] b L[g]; R®;7a[¢)



where I[]’s and r[]’s are relational expressions (using only relational composition and con-
verse), and <1 € {=,C,D}.

One can certainly consider other formats but most proposed definitions of homomorphisms
conform to this one as do, in particular, all compositional definitions which we have encoun-
tered.’

Definition 1.6 A definition is compositional iff for all ¢ : A — B, ¥ : B — C, we have
Alg] & Aly] = Alg; 9], i-e.:

L[gl; RYmlg] > L[g];R7mlg] &
Lyl Rmy] >0 b[y) R raly]
= higyl RYmlgie] = blgsvl RS rale; ¢l

The number of syntactic expressions of the kind [[¢] is infinite, however, since homomorphisms
are functions we have the simple fact:
Fact 1.7 0) ¢ 50" =¢~ b)) §d ;0=9¢ )¢ ;¢ =1idya
Thus the length of each of the expression I[$], resp. r[¢] (measured by the number of occurring
@’s or ¢~ ’s) can be limited to 2.
On the other hand, both sides of definition 1.5 must yield relational expressions of the same
type, i.e., of one of the four types A x A, A x B, ..., which will be abbreviated as AA, AB, ...
For each choice of 4, this leaves us with four possibilities for each type. For instance, for
AB we have the following four possibilities:
Tap:d;¢7;RY ¢ > 6;RP;675¢  Lap : R%¢ = ¢;R®
Eap : ¢;¢ ;R ¢ > ¢;RP Wap : R ¢ > ¢;R%67;¢
The symbols denoting the respective possibilities are chosen for the following reason. Re-
lational composition preserves each of the relations i, i.e., given a particular choice of <
and any relations C, D (of appropriate type), we have: Ry < Ry = C;R; < C; Ry and
Ri < Ry = Ri1;D < Ry; D. Starting with | 4p and pre-composing (on the “Fast”) both
sides of > with ¢; ¢ ; (), we obtain Fap; post-composing (on the “West”) both sides of >
with (_); ¢ ; @, we obtain W4p. Dual compositions lead from there to T 4p. Thus we have
that Lap = Eap,Wap = Tap and the corresponding lattices are obtained for the other
three types starting, respectively, with

Llaa:R* = $;R%;¢°  Lpp:¢ ;R ¢ > R® L1pa:¢ ;R* x RZ;¢~

Figure 1.8 shows the four lattices for each type (the choice of x is uniform for all four).

T AR oo >Taa
w1 e so-i3 N O
ST B STV B
EAB E WAB SRS >_ WAA EAA
G LI N O e een a0
R4 ¢ b1 ¢; RP RA b1 ¢;RB; ¢
v v
TR e > Tpa
P -
1) 7(_)v /(—):¢ Ho [ :¢1(< ( /¢ v¢’(—) (—)7¢a¢\ Vd) ,(_)
Egpg WgR < > Wpa Ega
N~ 7 -)i¢ S _
[ ?¢ﬁ(—) (—)7¢ o (—)§¢ ] [ ’d)v(—)
¢7;R% 6 > RP ¢7;R* > RP; 9

Figure 1.8: Lattices for each relation type (for each choice of ).

LOf course, one can consider homomorphisms which are themselves relations, but such a generalisation goes
beyond the scope of the present investigation.



The additional equivalences (indicated with dotted arrows) are easily verified using the fact
that composition preserves each of >t and Fact 1.7. Also all the top definitions are equivalent
which follows by simple calculation.

These observations simplify the picture a bit, leading, for each choice of X, to the order

of 9 possible definitions shown in figure 1.9.

Esp/BB Wpa/BB Waa/aB Eja/Ba

P> == =1

1BB lap 1BA Laa

T

Figure 1.9: Possible definitions (for a given choice of ).

When the mappings between the structures are, as in our case, functions and not arbitrary
relations, several elements of the ordering from 1.9 collapse.

Fact 1.10 All definitions (of the form 1.5) involving C are equivalent.

We are thus left with one definition involving C and 18 other definitions obtained from two
instances (with =, resp. D for <) of the orderings in figure 1.9. The following, main theorem
shows that only the bottom elements of these orderings yield compositional definitions.

Theorem 1.11 A definition is compositional iff it is equivalent to one of:
) R%¢ b R” 2)¢73RY 4> R® 3)¢75R" v R%;¢7  4) R > ¢ R%; 47
where < € {=,C,D} and > € {=, D}.

PROOF: For the “if” part, one easily checks that 1)-4) do yield compositional definitions. In
fact, this part of the theorem holds for any transitive set-relation . For instance, for 1) we
verify:

¢7;R* = RP;¢” & $p;RP 0 ROy
= ¢3¢ ;R* = Y ;R%¢ & Y ;RP%¢  RYGYT4
= (¢;9);R* > R (d59)

The “only if” part is shown providing counter-examples for the remaining possibilities. Al-
though there are 10 cases left, they are easily shown by the following three counter-examples.
In all cases, the given homomorphisms ¢, satisfy the respective definition with = for >
(hence, also for D), while their composition does not satisfy the respective definition with D
for . Thus we obtain immediately counter-examples for both > € {=, D}.

Vertical arrows represent the relation (R) in respective multialgebras; the dotted arrows il-
lustrate the images under the respective homomorphisms:

A2t o A2 p o At>p 50
b3_. . b3 )

@ o by = C as by c2 by

(j; ....... > by >\\c$1 61 ' b \\c¢1 @y by e : CD

a) b) c)

a) for Wan : ¢ s R* ¢ > RP;¢7;¢. We have: ¢, ; R*;¢a = R®; 95 da and ¢ ; R%; 00 =
RC; 47 ;1,. However, for the composition ps = ¢a; e, we have {c2,c1) € RC; p7: pa but
(c2,¢1) € pas RY; pa, i, pos R pa 2 RY; p7s pa



b) for Egp : ¢~ ; R4, ¢p¢p~; ¢; RE is quite analogous. Dy R*; ¢, = RE,; @, 3 ¢p and 1, ; RE: 4y, =
R4, by, but py s R*; pp 2 py 5 po; RY with (c2,c1) as a witness to this negation.

Both these examples can also be used as counter-examples for compositionality of T, rep-
resented by Tpp. For instance, in the first case, we have RP; ¢, ;0 = ¢o;0a; RE; by ; ba
and the corresponding equality holds for 1, and R® - so exactly the same argument yields a
counter-example also for this case.

c) Wauajap and Epg/pa @ ¢ and 1), are obviously Wap: RA;¢C = ¢e; R?; 07 ; ¢ and
R®; 4o = 1c; RY; 97 ;9. But their composition gives: @ = R; pe 2 pe; RC; pZ; pe = (c1,c1).
This gives also counter-example for Epa : ¢7; RA b ¢ ; ¢o; RE; 07 . O

Table 1.11 summarises the naming conventions for the compositional cases. The name consists
of two parts, the first (inner/left/...) indicating one of the four main cases in the theorem and
the second (closed/tight/weak) the choice of the set relation.

| RY¢ > 4R | ¢ ;R v RP | ¢ ;R v RP%¢° | R v ¢;R%; ¢

inner left outer right
closed MAlgo(2) : MAlg.-(Z) : MAlgoo(2) : MAIgp-(2) :
RY%¢D ¢ RP | ¢ sRY6DRP | ¢ sRYDORP ¢ | RAD G RY 6
gt | MAlg,,(X): | MAlg,,(5) : MAlg (5) - MAlgp (5) -
RY¢=¢;R® | ¢7;RY¢=R" | ¢7;R*=RP;¢~ | R=¢;RP;¢~
weak MAlg,, (2) : R4 C ¢; RE

Table 1.11: Compositional homomorphisms

[12] studied in detail the four cases of weak morphisms as models of simulations between data
types. However, as we observed in lemma 1.10, these four cases coincide when the morphisms
are, as in our case, functions and not arbitrary relations, as in [12].

1.2 Finite completeness and cocompleteness

Earlier study of finite (co)completeness of the resulting categories, [43], is summarized in
table 1.12.

initial | co-prod. | co-equal. || final | prod. | equal.
MAlgy () + + + + + +
MAgo(S) | — | - - + | -] -
MAlg;7 (%) - - + - - -
MAlg;~(2) — — + + - -
MAlg (%) - - + - - -
MAlgoo(2) + + - + - +
[MAlgor(®) | + | + + [T+-1 771 + ]
MAIlg (%) + + + + + +
MAIg - (2) + — — — — +

Table 1.12: Finite limits and colimits in the categories of multialgebras

The present paper addresses the category of outer-tight homomorphisms (the double row)
and, in particular, provides the full answers to the places marked +/— and ?. In general,
both are negative, but we will identify a wide range of subcategories of MAlg, (%) which are
complete and cocomplete. First, however, a few words about the possible alternatives.

Remark 1.13 Viewing (binary) relations as coalgebras for the existential image power-set
functor (P(f)(X) =U,ex f(x)), yields the homomorphism condition R*, ¢ = ¢; RP, that is,
the IT homomorphisms. As we see from the table, the category MAIg;(X) has rather few



(co)limits. This, of course, looks suspicious, since we know from [38] that this category of
coalgebras over sets will be, at least, cocomplete. The difference is, however, due to the fact
that although the homomorphism conditions look the same, the respective representations of
relations are not:

The absence of final objects is here due to the fact that the table addresses only categories
based on sets. The non-ezistence of colimits is due to the algebraic character of operations,
in particular, constants which correspond to predicates. (Restriction to signatures containing
only binary relations would yield the same category as coalgebras mentioned in the first line
of this remark.) For instance, for a signature with a single sort and constant c :— S, the
category MAIg;1(X) has no intial multialgebra I. A multialgebraic constant is ¢! C ST, which
corresponds to the arrow ¢’ : 1 — P(ST), where 1 is a one-clement set. Consequently, for
any (in particular, empty) ¢! there is no IT-homomorphism ¢ : I — A making ¢(c!) = ¢*
when |c!| < |c?|. The desired equality ¢'; ¢ = ¢;c?, for I = @, is achieved when constants
are coalgebraic arrows, namely, ¢’ : ST — 2 (with 2 being, for instance, {1, T}). The two
diagrams illustrate the difference.

o—2 o4 g— " 4
ida P(9)

[

2 2
cl] ]cA CIT ]CA
4 d
idy 1

g —> A
c'yida = @ = ¢yt iP@)=2 #

The meaning of the condition is different in the two cases in that for coalgebras it requires
equality of two functions while for multialgebras of two sets. As an example, take the carrier
X = {1,2} and one constant c. Let, in a multilagebra M, ™ = {1,2}, while in a coalgebra
C,c(l)=c(2) =T. Let X' ={1,2,3} and M = {1, 2,3} while in a coalgebra C', ¢'(1) =
d(2) = (3) = T. Although both M and C, resp., M' and C' represent the same predicates,
the inclusion i : X — X’ is a coalgebraic homomorphism, since indeed c;idz = i;c’, but it is
not a multialgebraic IT-homomorphism since i(c™) = i({1,2}) = {1,2} # {1,2,3} = M.

This might be taken as a suggestion that the multialgebraic representation of relations is
not the most sucessful one. However, using coalgebras as models of relations is by no means
straightforward. For the first, one has to decide whether to use the functor P(X") or 2(X™)
— the difference in homomorphisms will be similar to that suggested in the above remark
(between equality of sets and of functions). In either case one has to decide which power-set
functor to use. Any choice involves sacrificing the pleasant and well understood behavior
of polynomial functors. Additional complications arise if one wants to model many-sorted
relations. (Although these are hardly theoretically demanding, they are complications, at
least of the same order as in the case of many-sorted algebras.) Multialgebraic model, on the
other hand, is in agreement with the traditional notion of relation/predicate as a subset. It
deals with many-argument, as well as many-sorted, relations in the uniform and elementary
way. In addition, one should also remark that multialgebras were introduced not merely as
representations of relational structures but of Boolean algebras with operators and, on the
other hand, as a generalisation of algebraic semantics to handle nondeterminism and partiality
(most common institutions can be naturally embedded into the institution of multialgebras,
with weak homomorphisms as morphisms in the model categories, [28]). The investigation of
homomorphisms arises from this background and was motivated primarily by the search for the
interesting canonical objects (initial or final) for algebraic specifications with nondeterminism.

Now, weak homomorphisms are those which are most commonly used. Unfortunately, this
is an extremely weak notion which is also reflected in its name. Although the initial objects
exist, they are of little interest having all predicates and relations empty. Lifiting existence
of initial objects to the axiomatic classes depends, of course, on the language one wants to
use, and this is by no means a clarified issue. Most approaches suggest, at least, the use of
inclusions, but this again leads only to empty relations in the initial objects. Furthermore,
even simplest formulae are not preserved. E.g., having two constants a,b interpreted in A as



RA

{1}, resp., {1,2} makes A |= a C b. But the inclusion, which is a weak homomorphism, into
B with a® = {1,3} and b® = {1,2} does not preserve this formula. Counterexamples can
be easily found also for preservation under homomorphic images. (Similar remarks apply to
the other (co)complete category MAlgg(X).) One way would be to design a specific syntax
ensuring adequate restrictions of the model classes, as was done, for instance, with membership
alegbras, [35]. But this amounts to a specialisation of the problem motivated by particular
applications which we are not addressing here. Perhaps even more serious shortcomming of
the weak homomorphisms is that the associated congruence becomes simply equivalence.
The outer-tight homomorphisms seem to possess many desirable properties which are ab-
sent in the case of weak homomorphisms and vainly sought in other cases. (The condition
¢ ;R = RP; ¢~ is suggested as the definition of homomorphism between Boolean poly-
algebras (yet another name for multialgebras) in [24], p.262 and p.264, def. 2.3.3. It is,
however, not investigated there and seems to arise in order to preserve the Boolean structure
which is not part of the definition of our multialgebras.) The objective of this paper is to
substantiate the positive aspect of this claim: firstly, by showing the existence of several uni-
versal constructions in the category MAIg, () for an arbitrary signature ¥ and, secondly, by
observing how these constructions give rise to tight algebraic relationships missing in the case
of weak homomorphism. The following section 2 summarizes some basic facts concerning the
category MAIlg,,(X), discusses OT-congruences, subalgebras and illustrates the character of
final objects. However, as the +/— in the table 1.12 indicates, such objects can be constructed
only in special cases and, generally, do not exist due to the simple cardinality reasons. (The
problem here is exactly the same as with coalgebras involving power-set functor.) Subsec-
tion 2.4 shows a special case when final objects exist by imposing some restrictions on the
signature. The existence of final objects is shown in section 3 for the extended category
MAIgf 1 (X2) where algebras may have carriers being proper classes. (The proof is analogous
to that used for showing the corresponding fact for the categories of coalgebras for “set-based”
functors in [2].) We show cocompleteness of this category (which result transfers easily to
MAlg,+(X)). In section 4 we give a construction of products in MAIlgy,.(32), which is entirely
new result. The corresponding construction can fail in MAlg, (%), again due to cardinality
reasons. Thus, for any signature X, we obtain a complete and cocomplete category of large
algebras MAlgy, (%), and a cocomplete category of small algebras MAlg,, (%), with equaliz-
ers, but in general without final objects or products. We identify however a subcategory of
k-boundend multialgebras for any infinite cardinal x, which is complete and cocomplete.

2 The category Outer-Tight, MAlg,r (%)

The outer-tight homomorphism, OT-homomorphism, ¢ : A — B, is a function from the
carrier of A to that of B, satisfying the condition that for every relation R € X :

¢~ ;R*=R"; ¢~ i.e., in the functional notation: R (¢ (b)) = ¢~ (RE(d))

which for constants specializes to ¢ = ¢~ (c?).

1) be ¢lA] =

UaiE(ﬁ_(b) R*a;) = ¢~ (RB(b))

or, equivalently

2) V' ¢ ¢[A] = RP(V')N[A] = @
o z € ¢[A]Az € RB(b) = b € ¢[A]

as

Figure 2.1: OT-homomorphisms



The converse of the defining equation yields an equivalent definition: (R*)™;¢ = ¢; (R?),
or functionally, ¢((R*)™(a)) = (R®)™ (¢(a)). This requirement of preservation and reflection
of pre-image sets of the operations gives a simpler picture as shown in Figure 2.2.

a ¢ $(a)

Figure 2.2: OT-homomorphisms

The OT-requirement is strictly stronger than that of the weak homomorphism which re-
quires merely preservation of images, i.e.,, R4 ¢ C ¢;RE. In fact, ¢ ;R* = RZ;¢~ =
¢;0 ;R ¢ = ¢; RB;¢7; ¢, and since ida C ¢;¢~ and ¢ ;¢ C idp, this equality yields
R*; ¢ C ¢; RP. Thus, every OT-homomorphism is also weak.
Remark 2.3 As OT implies weakness and, in the special case when the involved multialge-
bras are classical (with all operations being total, deterministic functions), weakness implies
classical homomorphism condition so, in this special case, the OT-homomorphisms become
classical homomorphisms, i.e., ¢~; R* = RB; ¢~ = R ¢ = ¢; RE. (For any a, RB(4(a)) is
then a unique value and so is R*(a); hence the inclusion R*; ¢ C ¢; R becomes the equality
#(R*(a)) = R®(¢(a)) of single values.)

However, not every classical homomorphism 1 : A — B can be obtained as such a special
case of an OT-homomorphism. E.g., for a signature with one operation R : s — t and the
two algebras as shown below, the mapping ¢ is a classical homomorphism satisfying Va :

$(R*(a)) = R (1(a)):

ap—Y o p,
t: a1 ———=>b;
RA RE
S: a———) 14

However, v is not OT since R* (¢~ (') = @ # {a2} = ¢~ (RE(V)). In general, for classical
algebras, we only have the implication R*;4 = ¢; R® = ¢~ ; R* = ¢ ;9; RB;4~ C RB; ¢~
and the above example shows that the inclusion can be proper. Thus, if we restrict the category
MAIlg,1(X) to classical algebras only, we will obtain a wide — but not full — subcategory of the
category Alg(X) of classical algebras and homomorphisms.

Remark 2.4 Partial algebras can be seen as deterministic multialgebras where operations
return esther 1-element sets or the empty set. OT-homomorphisms have here close associates,
namely, the full homomorphisms. A mapping ¢ : A — B is a full homomorphism iff

1) ¢(f*(a)) € P (¢(a))

2) ¢(a) € (f7)7 A P (¢(a)) € ¢[A] = 3a’ € (f*) : $(a) = ¢(a")
where membership in the inverse image of an operation, a € f~, is the same as membership
wn its definition domain, a € dom(f). OT implies fullness: the first condition is just the
requirement of weak homomorphism, while the second follows since for OT homomorphism, the
mere fact of f2(b) € ¢[A] implies that b € $[A] and, moreover, that f2 (¢~ (b)) = ¢~ (f (b)) #
@, ie., 3a’ € (f*)7 : (') = b.

Full surjective homomorphisms are quite central since they are ezactly the quotient homo-
morphisms. Also full injective homomorphism are central since they provide the concept of a
relative subalgebra: A' C A is a relative subalgebra of A if the inclusion is a full homomor-
phism. However, full homomorphisms without any additional (e.g., surjectivity) requirement
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are not compositional, as the following example from [8], 2.4.5, illustrates:

¢ ¥

A B C
as ba C2
ai by / c1
Tf
ba
bs

Both ¢ and v are full, but ¢;1 is not. 1 is, of course, weak, but it is neither OT nor even
0C, since £ (4~ (c1)) = {ba} 2 {b>,ba} = ¥~ (f (1))

One considers a stronger notion (implying fullness) of closed homomorphisms, which are
compositional. A mapping is a closed homomorphism iff it satisfies 1) and

3) #(a) € (f7)” = a € (f4)".

This notion appears rather strong, as it requires all ¢-preimages of a b € (f2)~ to be in the
domain of fA. Thus, for instance, ¢ in the left diagram is OT (and hence full) but not closed:

A——B A———= B

a] ——> Py a1 —— b

b I A
a o —=b a—>} b

On the other hand, closedness does not imply OT, as shown by 1) in the right diagram.

As the OT-condition is expressible in terms of the inverse images of operations (cf. figure
2.2), that is, in terms of their definition domains, it might be a possible candidate for con-
sideration in connection with partial algebras. Such considerations, however, fall outside the
scope of this report.

We are dealing exclusively with the OT-homomorphisms, and so we will not qualify the name
— saying “homomorphism” we will mean an OT-homomorphism unless qualified otherwise.

Remark 2.5 One relational structure can be, in general, represented by various multialge-
bras depending on the choice of the result argument for each relation. This is reflected in
the “essentially the same” mapping between structures qualifying or not qualifying as OT-
homomorphism.

The OT-homomorphism condition is, namely, sensitive to the chosen representation of a
relation, i.e., it is not invariant under permutation of relational arguments. For instance,
two relations R* = {{a1,a}), (a2, ab)} and R® = {(b,b}), (b,bs)}, can be represented as the
multifunctions, f*'(a1) = al, f*'(a2) = ab or f**(a}) = a1, f**(ab) = a2 and, respectively,
FPH(b) = {01, b5} or fP2(b1) = b= FP2(b)).

¢

ap ————= b

fBlT lfB2

[
dhy —2> b

fAlT lfA2

as—2 oy

a1

Now, the mapping ¢(a1) = ¢(as) = b and ¢(a}) = b; is OT homomorphism between f** and
B but not between fA2 and fB%. (The example concerns, of course, not just the converse
of a binary relation but the general situation, where the choice of the relational argument to
function as the result of the multioperation can determine whether a given mapping is or is not
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an OT homomorphism.) Thus, although in the trivial sense of the isomorphism (1.1), multi-
algebras are only representations of relational structures, so when homomorphisms are taken
into consideration, the algebraic character of this representation becomes quite significant, as
will become evident from the rest of this paper.

As a possible example of OT-homomorphism consider the following.

Example 2.6 Let the signature © have one sort and one unary operation x — T. By the
definition of multialgebra, we obtain that:

1) o=0
2) X =U,ex T, for each subset X C M, in particular, 2.b) XUY =X UY

Let us restrict the class of ©-multialgebras to those where the operation T satisfies two addi-
tional closure conditions, for every element x € M :

3) z €T (and hence, X C X, for all subsets X C M),

4) T=7 (and hence, X = X forall X C M).
In short, such a multialgebra is a topological space. The condition 2 is more general than that
required for a topological closure operator, namely, 2.b). Consequently, the ©-multialgebras
will make closed not only finite but also arbitrary unions of closed sets. If, for instance, T =z
for all x € M, then M is a T1 space (where, by 2., X = X for every subset X C M, i.e., the
topology with all subsets of M being clopen.)

The OT-homomorphism condition for ¢ : A — B becomes now: Yy € B : ¢—(y) = ¢~ (7)
which yields, for every Y C B :

M 2o (U =Ueoe @ E oW =)

yeY YyEeEY yeY

which implies, in particular, ¢~ (Y) D ¢=(Y), i.¢., continuity of . If, in addition, we restrict
¢ to be injective, the above equality amounts to the requirement of ¢ being a homeomorphism
between the spaces A and B.

The paranthetical “hence” phrase (in points 3-4 of Example 2.6) follows from the general fact:
Fact 2.7 For any terms t(z),s(z) € T(2,{z}) and Z-multialgebra M :

Ve e M: sM(z)=t"(z) = VX CM:s"(X)=t"X).

PROOF:=> follows directly from additivity of operations: s™(X) =, cx s () = U,cx t" (z)
tM(X), while < since £ € M is but a special case of X C M, for X = {z}. m]

Remark 2.8 Alternatively to the above ezample, we can endow any multialgebra M over
arbitray X with a topology by taking (for each sort s™ ) as the subbasis, all the sets of the form
fM(T), for f € T and T € M, together with s™ and &. (Opens will be the interpretations of all
ground terms, as well as, all “reachable” sets, i.e., of the form tM(E), for some term t and all
possible assignments to T. The latter follows by induction on the depth of the term t: f™ ()
is open and so is g™ (y) for each y € fM(x), hence also is Uyern () 9M(y) = g(f)M.)
Viewing opens as observations, [40], this amounts to viewing an operation f applied to an x
as an f-observation, and the topology classifies all possible finitely verifiable observations

The OT- homomorphism condition implies then continuity, since fA(qS_(a:)) (fB (2))
makes, for any open tZ(x), its d) -preimage open in A, as a union of opens Ua€¢ (w)t (a).
(Trivially, also, ¢~ (X NY) = o7 (X)N o™ (Y) and ¢~ (U, Xs) = U, o7 (Xs), so that, e.g.,
¢~ (fP(2) Ng®W) = ¢~ (FP (@) N6~ (4" (®)) T fA (¢ (2)) Ng* (6™ (¥)).)

As in Ezample 2.6, the OT condition is stronger than continuity and falls between it and
homeomorphism since, as observed in the example above, it is equivalent to homeomorphism
provided that the mapping is injective. This topological aspect might merit closer study which,
however, will not be undertaken here.

The following illustrates another way of arriving at OT-homomorphisms, establishing a tight
connection between the category MAlg,-(X) and the category of coalgebras for the corre-
sponding X-functor.
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Remark 2.9 Consider, as an ezample, a functor ¥ : Set — Set, given by X(X) = X x X.
A X-coalgebra is then a function a : A — X(A), ie., « : A - Ax A. The converse
a :Ax A — A is not, however, a function in case a is not injective: in general, it is a
multifunction, i.e., o= : Ax A — P(A). Thus, a multialgebra can be seen as a converse of a
coalgebra for an arbitrary polynomial functor X. There are, of course, multialgebras which can
not be obtained in this way, namely, the ones whith f : S — P(S) such that for two elements
s1#£ 82 €8 : f(s1)Nf(s2) # D (i.e., when the converse f~ : P(S) — P(S) is not determined
by any function S — S.) Thus, coalgebras (over polynomial functors) can be represented by
multialgebras but not vice versa.

A X-coalgebra homomorphism ¢ : (A, a) — (B, B) is a function ¢ : A — B such that the
diagram to the left commutes:

A—2 Ax A A< AxA
¢l ¢>\%¢ =%(¢) ¢_T (¢’>,F¢)_
B—2>BxB B<"—BxB
i.e., such that
aX(¢) = ¢;B. (2.10)
By taking the converse of both sides of this equation, we obtain (o;X(4))” = (¢;8), i.e.,
(@) a7 = BT (2.11)

which is the OT condition on ¢ for the multialgebras as shown in the diagram to the right.
Thus, we not only obtain a pointwise representation of coalgebras, but also their morphisms
are represented as the OT-morphisms between the corresponding multialgebras.

Notice, however, that while the condition (2.10) involves only arrows in the category Set,
each of the arrows a~,87,¢~ in the equation resulting in (2.11) can be a multifunction
returning, for each argument, a subset of the target. The equality is thus not the equality of
arrows in Set but in Rel.

Remark 2.12 As a special variation of the above remark, we can view coalgebras for the
(direct 1mage) power-set functor as multialgebras for the signature f : S — S. (Recall the
equivalence of the two diagrams from (1.4).)

A—2>P(4) A< 4
T A
P
B—2~P(B) B<—B
o;P(¢) = ¢; 8 ¢ =p75¢
We represent any coalgebra o : A — P(A) by a multialgebra a~ : A — P(A) with o™ (z) =
{y € A |z € a(y)}. Since (a7)” = a we obtain the bijection between coalgebras and

multialgebras. This bijection on objects extends to the isomorphism of the respective categories,
since coalgebraic homomorphism condition is then equivalent to the OT-condition.

We can thus see multialgebras as both generalisation of algebras to handle partiality and
nondeterminism and, on the other hand, as a possible representation of a large class of coal-
gebras. This representation is nevertheless to be studied from the algebraic perspective. It
is mentioned primarily to emphasize again (in addition to the just mentioned topological as-
pect), that mutlialgebras capture also the notion of observability, which appears in a somehow
dual form to the coalgebraic one. This duality will become well visible in considerations of
bireachability, subsection 2.3 and later, as a converse of the coalgebraic bisimilarity: while
coalgebraic bisimulations amount to compatibility /preservation of the results, i.e., future, the
OT-congruences involve incompatibility /reflection of the arguments, i.e., history.

13



2.1 Some preliminaries

Proposition 2.13 An OT-homomorphism ¢ is
1) injective iff it is mono;
2) surjective iff it is epi; generally, a collection {¢; : A; — B | i € I} is jointly surjective
off it is epi-sink;
3) bijective iff it is iso.
PROOF: 1. =) Assume injectivity of ¢ and let (*) 11; ¢ = 1)2; ¢ for two given homomorphisms
1,12 + X — A. All arrows can be seen as morphisms in Set, where injectivity of ¢ is

equivalent to it being a monomorphism. But then (*) implies that 11 = 12 as Set-morphism,
which implies their equality as OT-homomorphisms.

<) In section 2.3 we show that if ¢ is an OT-homomorphism then its kernel, ker(¢) =
¢;¢~, is an OT-congruence (fact 2.40) which can be endowed with the algebraic structure
(definition 2.54) such that the projections are homomorphisms (fact 2.55). Then, in the

T
diagram ker(¢) —= A _?. B we obtain m1;¢ = m2;¢ and, assuming ¢ to be mono,
D]

m1 = m2. But this means that ker(¢$) = ida, i.e., that ¢ is injective. Below, we spell out this
proof in details without refering to the results to be introduced later on.

Assuming ¢ is not injective. Then there is at least one element b € B and a set of two
or more elements A; C A such that a € A; & ¢(a) = b. Let a; range over all elements
in A;. Since ¢ is OT: ¢~ (f2(b)) = Ua;ea, f*(a;). We define an algebra X on the set
X ={{z,y) | z,y € AN ¢(z) = ¢(y)} (in particular, Vo € A : (z,z) € X), by letting, for all
constants, functions and arguments (z1,y1)...{ZTn,yn) € X:

& = {(z,y) € * x | §(x) = H(v)} (.14
FX (@) (@, ya)) = (@) € FA@rma) x P v) | 6@) =0)) &

Let 91,92 : X — A be projections. By (2.14) and the fact that Vo € A : (z,z) € X, we have:

Pi(cX) =c

D1 (FX (@1, 1) (Tnyyn))) = (21 ... 2n)

and the corresponding equations hold for ;. To prove that 1; are OT we have to show:

Ui (fHar . an)) = X7 (a1) . 97 (an))
for arbitrary a; ...a, € A. We show it for ¢ = 1 as the proof for v, is entirely analogous. By

definition of ; we obtain:
Y1 (a) ={(a,y) |y € [als} (2.15)
where [a]y = {a’ € A| ¢(a’) = ¢(a)}. Furthermore, since ¢ is OT:
V(z,y) € X : ¢(z) = p(y) Az € fH(ar...an) >y € f([ars- . [ans)

which means
¥ (fH a1 an)) = {{&,9) € fH(a1...an) x fA([ar]s - .- [an]y) | B(z) = B(y)}
On the other hand

W1 (@) .. .9y (an))

CLD X (a1, 91) - @y ya) | i € lailg, 1 < i< nd)

{(z,y') € f(ar-..an) x fA([ar]s - - -[an]s) | H(z) = (y")}
Hence ¢, (f*(a1...as)) = fX (@ (a1)...9; (as)) and thus 91 is OT.
By assumption we have at least two a1,a2 € A1, i.e., #(a1) = ¢(a2)Aa1 # a2. This means that

(a1,a2) € X, and since ¥1({a1,a2)) = a1 while P2({a1, az)) = az, Y1 # 2. But ¢1;¢ = t2; ¢,
and thus ¢ is not mono.

(2.14)

2. We show the general statement for epi-sinks, from which the result for epis follows as a
special case.
=) Assume joint surjectivity of ¢; and (*) ¢s; 91 = ¢s;1)2 for all ¢ and some 11,12 : B — X.
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Then Vb € B Fi Ja € A; : b = i(a) and so 91(b) = ¥1(¢s(a)) = ¥ (di(a)) = s(b).

<) Assume that ¢; are not jointly surjective. Writing ¢[A] = |J, ¢i[A;], we then have that
B; = B\ ¢[A] is non-empty. Since every ¢; is OT so for any b, ...b, € B :

and, furthermore

{b1,...,0,}NB1 # &= fP(b1...b,) C B (2.16)
We let By ~ B be disjoint from B, and denote the bijections
121 (B2 @] ¢)[A]) — (B1 U ¢[A]) 112, (2.17)

which are identities on the elements in @¢[A].
We define an algebra structure on the set X = By U ¢[A] U B as follows:

K = B UL12(cBﬁB1)
fB(x1-. . zn) Utia(FB(z1. .. 2n)) iff 21...2, € ¢[A]
(@ .an) = fB(x1...2n) iff 21...20, € BIUG[A]=B (2.18)
L12(fB(L21(.’L‘1) e Lgl(xn))) iffxy...2, € B3 U ¢)[A]
(%} otherwise

The four disjuncts of the above definition are to be understood exclusively, i.e., the second
case applies only when the first does not, etc.

We define two mappings ¢1,%2 : B — X, as follows: 1(b) = b for all b € B, while 92(b) = b
for all b € ¢[A] and P2 (b) = t12(b) for all b € B;.

To prove that v, and 2 are OT we observe first that both are injective, and so:

z if z € ¢[A] x if x € ¢[A]
P (x) =<z ifze B Py () = ¢ 121(z) if x € By (2.19)
& otherwise; © € B» 2] otherwise; x € By

We consider four (disjoint) cases, corresponding to those in (2.18):
1) Ifz1...2n € P[A]:

(2.18)

P1 (FF (21 n) Uina(FP (21 20)))
YT (FB(@1...20))
FE@r (21) - 41 (20))

i (% (z1 ... 2n))

(2.19)

(2.19)

2) fz1...2n, € B:

(2.18)

UL ) P2 )
CL) B (Y1 (21) .. Y7 (2n))

3) Iif x1...xn € By U @[A], with at least one x; € Bo:

b (o) O g (P () ()
LD Y (a(fP (br b)), by b € Bobi € By
LY g (ua(BY), Bi={b€ f(bi...b)} C By
G2 yr(BY), Bh={be€u>(Bl)}CB>
(2.19)
= %)
(2.19)

FE@T (1) Y7 (wn))

4) Otherwise (there are at least two elements z; and x; such that z; € By and z; € Bs):

@, since for at least one z; € By : 97 (z;) = &

(2.18)

Yi (F¥ (21...20))
P (@1) . Y7 (@)

Y1 (9) =2

19 @, since for z; € Ba,x; € By : Y1 (z;) = @ = ¢, (z4)
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Thus, for all 1...z, € X : 1p1‘(fX(m1 caTp)) = fB(Qpl_(ml) <7 (zn)), e, 91 is OT. We
defined the algebraic structure on By ~ B; and the proof for 1> is entirely analogous.

Now, 11(b) # 12(b) for any b € By, while for all b € @[A] : ¥1(b) = 12(b). Hence for all
1: i1 = ¢i; )2, while ¥y # 1o, i.e., {¢; | i € I} is not en epi-sink.

3. If ¢ is not bijective, there can be no inverse. If it is, then ¢~ is easily verified to be OT. O

Remark 2.20 The general fact about dialgebras (e.g., proposition 18 in [41]) is that for a
function f : A — B which is a dialgebra morphism in Set&:

1) if F preserves weak pushouts, then f is epi iff it is surjective, and
2) if G preserves weak pullbacks, then f is mono iff it is injective.

In our case, both these conditions are satisfied, since F is the polynomial functor (coproduct of
products) while G = P which does preserve weak pullbacks. However, the proposition cannot
be applied since our OT-homomorphisms are not the same as the morphisms in Seth.

2.2 Subalgebras

We say that A’ is a subalgebra of A, A’ C A, if A’ is an algebra with A’ C A and such that
the inclusion is a homomorphism. (The following considerations would not be significantly
affected, if we adopted the categorical definition, according to which subobject is an equiva-
lence class of monomorphisms.) If A, A’ € MAlg,(X) and A’ C A, this does not mean that
the inclusion is an QT-homomorphism, i.e., it may still happen that A’ is not a subalgebra of
A /A Z A Eg,A: p isnotasubalgebraof 4. 3 .Ifbisin the carrier of a subalgebra,

A A

a1 ar a2

then so must be all its pre-images: all the elements of the argument-sorts, from which b is
reachable by some operations (cf. condition 2 in figure 2.1.) Hence, the only subalgebra of A
containing b is A itself. This closure condition is — by requiring the presence of all elements
from which a present element is reachable — converse of the classical one which requires clo-
sure under the results of the operations. Notice the equivalence of the two following closure
conditions, for a subset A C B, with A = B\ A:

1) re A= f(z) C A and

_ _ (2.21)
2) ye ANyef(z)=z€A
(The equivalence for the classical/deterministic algebras is obtained by taking f(z) € A
and y = f(z), respectively.) That is, closure of a subset A under images (of operations) is
equivalent to closure of its complement under pre-images. What happens in our case of OT-
homomorphisms, is that the latter is taken as the closure condition on the subset A and not
on its complement (cf. condition 2. in Figure 2.1). It reflects the similarly converse character
of the OT-congruences to be studied shortly.
Inclusion is not necessarily a homomorphism, but it is when restricted to subalgebras of
the same algebra.

Fact 2.22 Inclusions between subalgebras of the same algebra are OT homomorphisms. ILe.,
if A1 C A and Ao C A and Ay C Ay, then also As C A;.

ProOF: We have two inclusion homomorphisms ¢, : Ay — A, k = 1,2, and inclusion i :
A; = A; which we want to show is a homomorphism. We thus have: 1) iT7; R4t = R*;uT,
2) 15;R*? = R*u; and 3) i50 = 12, 2,3) = 1730 ;R = R4 ;i 4 1 ;i RA =
Lt RA1,i™ =y 113t RA2 =y, L RA1;i~. Since v is inclusion, we have that ¢1; Ly =ida,
and so we obtain i7; R42 = RA41;i™. O
Taking into account the equivalence (2.21), we also have the following characterisation of
subalgebras:
Fact 2.23 Given A, A’ € MAlg,(X) with A' C A, the following conditions are equivalent:
1) A'E A, i.e., inclusioni: A" — A is OT
2) A' is closed under pre-images of A-operations (i.e., a' € A'ANd' € f*(a) =>a € A')
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3) A\ A’ is closed under images of operations

Remark 2.24 Consider for the moment only classical, i.e., deterministic algebras. As ob-
served in remark 2.3, OT-homomorphism becomes then a special case of IT, i.e., the classi-
cal homomorphism. (Similarly, LT and RT will be special cases of IT, and the observation
below applies also to these alternatives.) One can then define a more specific concept of
an OT-subalgebra by requiring that the inclusion is not only a homomorphism but an OT-
homomorphism. In view of the above fact, such a subalgebra A’ T A would be closed under
pre-images (inclusion being OT) but also under images (OT being IT). Thus also the comple-
ment A" = A\ A’ would be closed under images and pre-images, i.e., would be a subalgebra
of A. In other words, an OT-subalgebra would amount to partioning the algebra A into two
disjoint subalgebras.

Given a collection of subalgebras, Ay C A, their intersection C is obtained as C = [, x Ak,
with f¢(a) = f*(a) N C for all a € C. The drawing below gives one example with two
subalgebras A1, A2 C A, and their intersection C :

b1 b2 b A Ay b C
N S AN e
a

A a a a

We do have the counterpart of the classical result that intersection of subalgebras yields a
subalgebra.

Fact 2.25 Given a collection {Ay | k € K, Ay C A}, then also [\,cx Ax = C C A.

PrOOF: For each k¥ € K we have the inclusion homomorphism i; : Ax < A and also the
inclusion ¢ : C C Ag. If at least for one such k, ¢ is a homomorphism, the claim follows.
We will show it for an arbitrary (and hence every) k.

Since we consider only inclusions, for every k,l we have that ck;ix = ¢i; % and hence also

ig;C, =1 5¢ - (2.26)
Moreover, just like for an X C A: 4 (X) = X N Ay, so for Y C Ay :

(V) =Y [)A. (2.27)
I#£k

Let k € K be arbitrary, and consider two cases for the expression R°(c; (a)), where a € Ay.

1) ¢; (a) = @ (for at least one argument a, which we simplify in notation by ignoring other
arguments), and thus also RY(cj (a)) = @ but, in particular,

a€A&agC = 3FAi:ag A, ie, i (a)=2 (2.27)
= RY(i(a) =2 R(©)=@
= i, (R*a)=92 i is OT
5 (i (RY@) =2 ¢ (0) = o
S o liy (RA(@) = @ (2.26)
= ¢ (R* (i (a) =2 since iy is OT
= ¢, (R*(a))=o since ig(a) = a

Thus, if ¢; (a) = @ then the condition R (c; (a)) = ¢ (R**(a)) is satisfied.
2) The second case assumes ¢;, (a) # @. Then ¢, (a) =a € C.
a) R°(ci (a)) = R%(a) “/2" “ RA(a) N Nyex Ar-

_ (2.27)
b) ¢ (RAIc (a)) "= R (@) N ﬂk#ex A
¢) R**(a) = R*(i; (a)) = 45 (R*(a)) = R*(a) N Ay and substituting this into b) gives
equality with a). m]
Hence, given an algebra A, the collection of its subalgebras, | (A), with the subalgebra relation,
(J (4),C) is a lower semilattice with the greatest element A, and so:

Fact 2.28 For an algebra A, (| (A),C) is a complete lattice with meets given by intersection.
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In view of the equivalences from fact 2.23, we obtain thus also a “complementary” lattice of
subsets of A closed under images, since every A’ C A determines such a closed subset A\ A’
and vice versa.

The above verifies also the following fact — according to which the diagram of subalgebras
is directed — which, however, we also prove separately providing the explicit construction.

Fact 2.29 For every set X C A, there is a smallest subalgebra Ax C A with X C Ax.

ProOF: The construction extends the given set X to obtain a subalgebra. X is sorted, and
the construction extends in each step each sort (if at all):

1) Xo=X
2) For all x € A, if f*(x) N X; # & then include into X;1 also all such z.
3) Xo = U, Xi

We define ¥ structure Ax on X, by letting, for all z € X, and every operation f from the
signature: fAX(z) = f*(z) N X,,. This makes Ax obviously closed under pre-images of all
operations.

The inclusion ¢ : X, — A is OT. We have : (Y) = Y N X,,, and have to check that
A% (17 (a)) = v (F4(a)) = fA(a) N X,,. Now if f4(a) N X, # & then, by 2., a € X,, and we
have f4¥ (1~ (a)) = f*(a) N X, i.e., the required equality holds.

If, on the other hand, f*(a) N X,, = @, then either a ¢ X,, and so f*X (17 (a)) = @, or else
a € X,, and then f4%(a) = f4(a) N X, = @. So the equality holds also in this case.

Ax is in fact smallest subalgebra of A containing X. For removing any element from its
carrier, would require removing it either from X or else from among elements added in step
2). In the former case, the result would not contain X, while in the latter would not be a
subalgebra of A (inclusion would not be an OT-homomorphism). |

Thus, if A1, A2 C A, then there is also (a smallest) A3 C A, with A1 U A» C As.

Example 2.30 Given an alphabet, all its symbols can be viewed as operations acting on the
single sort of states. A given set of states and definition of these functions determine then
a possibly nondeterministic automaton. For instance, the automaton (multialgebra) A has 8
elements in the sort of states and, e.g., a®*(1) = {2,3} while b*(1) = @, c*(2) = {5} and
d*(6) = {5,8}. The subalgebras generated by the state 3, resp. 7 are shown to the right:

tori DD D0

Agsy :

The subalgebra generated by X C A is thus, in this example, the mazimal set of states Ax all
reaching X (with the X-structure inherited from A), i.e., such that s € Ax iff there exists a
path (derived operator) p for which p®(s) N X # @. If we think of multialgebra as a (possibly
action-labeled) OR search (or game, like minimaz) graph, the subalgebra generated by X will
thus pick up the paths/strategies leading to the goals in X.

We also have a dual construction of a largest subalgebra AX C A with AX C X.
Fact 2.31 For every set X C A, there exists a largest subalgebra AX T A with AX C X.

PrOOF: The construction is, in a sense, dual to that from the previous fact and it removes
now, from the given set X, elements to obtain a subalgebra.

1) X°=Xx

2) If 3z € A\ X*: f4(z) N X* # @ then remove these result elements from Xt i.e.,
XH =X\ Upen AN X

3) X¥ =g, X'
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More explicitly, in point 2) we remove from X* the elements which are reachable from outside
of X%, ie., X't = X7\ Usea\xinfanxize fA(x) as f ranges over all operation symbols
in 3.

We define ¥ structure A% on X* by letting, for all € X* and every operation f from the
signature: fAX () = fA(z) N X“. This makes A obviously closed under pre-images of all
operations.

The inclusion ¢ : X < A is OT. We have ¢+ (Y) = Y N X*¥, and have to check that
(7 (@) = (f4(a)) = fA(a) N X¥. Now if f4(a) N X* # @ then, by 2., a € X* and we
have fAX (¢t~ (a)) = fA(a) N X¥, i.e., the required equality holds.

If, on the other hand, f*(a) N X* = @&, then either a ¢ X* and so fAX (¢ (a)) = @, or else
a € X* and then fAX (a) = f*(a) N X¥ = @. So the equality holds also in this case.

AX is in fact the largest subalgebra of A contained in X. For adding any element from A\ A%,
would require adding it either to X or else among elements removed in step 2). In the former
case, the result would not be contained in X, while in the latter would not be a subalgebra
of A (inclusion would not be an OT-homomorphism). |

For instance, for A from example 2.30, A"} = A3} = &, We can easily see that AX = & if
the set X has no downward closed subset, i.e., whenever Vz € X3y € A\ X : z € f*(y).
Utilising fact 2.23, we can reformulate the constructions of Ax and AX. Let CI(X) be

the supremum (in the respective lattice, mentioned after fact 2.28) of all subsets of A closed
under pre-images of A-operations and not intersecting X, i.e.,

CiX)=LLx;: xinX=oA(zeXiAye f(z) =y e Xi).
On the other hand, let cI(X) be the infimum of all X; C A which are closed under pre-images
of A-operations and whose complement is contained in X (A \ X; C X or, equivalently,
X;UX = A), ie.,

Cl(X) = |_|1X1 : A\Xl gX/\(CIZE Xi/\yEfA(w) =y EXi).
We then have alternative formulations of the two facts:
2.29. Ax = A\ CI(X).
2.31. AX = A\ d(X).

Finally, we have the expected relations between homomorphic images and subalgebras.
Lemma 2.32 Let ¢ : A — B be a homomorphism:

1) The image ¢[A] C B is a subalgebra of B.

2) For any B'C B: ¢~ [B'|C A.

3) For any A'C A: ¢[A'] C B.
Proor:

1) By fact 2.23, it is enough to show that ¢[A] is closed under pre-images of B-operations.
If b € ¢p[A] and b’ € f2(b) then, since ¢ is OT, & # ¢~ (V') C ¢ (f2(b)) = f4 (6 (b)).
But this implies that f*(¢~ (b)) # @, i.e., b € ¢[A].

2) By fact 2.23, it is enough to show that ¢~ [B'] is closed under pre-images of A-operations.
Ifa’ € ¢~ [B'] then ¢(a’) € B', and if a’ € f*(a) then also ¢(a’) € ¢(f*(a)) C fP(4(a)),
since OT are also weak. By assumption, B’ is closed under pre-images of B-operations,
so the last inclusion impilies ¢(a) € B', i.e., a € ¢~ [B’].

3) Follows directly from 1, since the restriction of ¢ to A’ (pre-composition with the inclu-
sion A" C A) is a homomorphism. 0

Point 1 gives immediately epi-mono factorisation of homomorphisms: any ¢ : A — B can be

factored as ¢ = e;m where e : A — ¢[A] is epi and m : $[A] — B is mono. We will address

this factorisation in the context of congruencess below (lemma 2.42).

As we will see, MAlg,-(X) may fail to have final objects and products. We will identify

a class of its subcategories which are complete and cocomplete, namely, the categories of

k-bounded multialgebras. We register their definition now, as it is based on the concept of

subalgebra, but it will become of relevance first in Section 5. (See, e.g., [38, 17|, for the
corresponding definitions for coalgebras.)
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Definition 2.33 For an infinite cardinal k, a multialgebra A is k-bounded if for everyx € A :
|Afzy] < k. MAlgs(X) is the subcategory of MAlg,(X) containing all k-bounded algebras.

One observes easily that in a k-bounded multialgebra, pre-image of every operation for an
arbitrary element must have cardinality less than &.

2.3 OT-congruences

In order for the quotient construction performed on a carrier of a (classical) X-algebra to yield
a (quotient) X-algebra, the equivalence must be a X-congruence. However, for any (classical)
algebra A and any equivalence ~ on its carrier, the quotient A/., with operations collecting the
possibly non-congruent results (i.e., defined by R4~ ([a]) = {[n] | n € R*(d’), d’ € [a]}), is a
multialgebra, and the construction works in the same way if we start with a multialgebra, and
not only classical algebra, A. Defining the mapping q : A — A/. by g(a) = [a], the operations
are obtained as R/~ = ¢7;R%;¢. In general, this mapping is only a weak homomorphism,
just like the kernel of a weak homomorphism is, in general, only an equivalence. (This
correspondence is perhaps the clearest expression of the weakness of this homomorphism
notion.) OT-homomorphisms come along with a much stronger notion of congruence.

Definition 2.34 An equivalence ~ on A is an OT-congruence iff: ~; R~ = ~; R4,
More explicitly, the inclusion C says that
va",a' bt :a" ~a'R* ~b=3a:ad" ~aR™, (2.35)
which, when ~ is equivalence, is equivalent to
Va',b,b' : d'R*Y ~b=3a:d ~aR". (2.36)

((2.36) is a special case of (2.35) whenever ~ is reflexive, while transitivity (and symmetry)
of ~ yields the opposite implication.) Any equivalence satisfying this last condition is OT,
since the opposite inclusion ~; R*; ~ D ~; R* holds trivially for any reflexive ~.

This characterisation of OT-congruence can be viewed as a converse (bi)simulation.?
(Bi)simulation requires propagation of ~ forward, while OT-congruence backward. Let us
call a relation satisfying two symmetric conditions (for each R € X):

Vb,b' Va' :b~b AdRAY = Ja:a~d A aR*

& Vb,b'Va :b~b A aR* = 3d':a~a Ad R

“bireachability” — OT-congruence is then an equivalence which is also bireachability or, simply,
equivalence satisfying (2.36) (since symmetry makes (2.36) imply (2.37)).

(2.37)

(bi)simulation bireachability
b b I

RT AR RT AR (2.38)
a ~ a/ Q- al

~ R C Ry~ R~ C~R

We can describe bireachability/OT-congruence in the following terms dual to the classical
congruence. Classical congruence requires propagation of the relation: if two elements are
related, a1 ~ aq, then also their results are, R(a1) ~ R(a2). Bireachability requires propaga-
tion of distinctions, albeit in a special way. Given a binary relation ~ on elements, define its
(Egli-Milner) extension to sets by

Pi~P, < Vpi €PiAps €Pr:p1~p2 A

2.39
Vp2 € P,3p1 € Py : pa ~ p1. ( )

2We are not addressing any details concerning bisimulations. For the sake of analogy, since OT-congruences are
equivalences, it is most convenient to think of bisimulation defined as a symmetric simulation, rather than merely
as a simulation with converse being also a simulation. Exact duality obtains between our bireachability and the
equivalences satisfying the condition that for every R : ~; R4;~ = RA;~. This characterizes the bisimulation
in (2.38) and is the same as the congruence induced by the coalgebraic model of binary relations, referred to in
remark 1.13. In [7] such equivalences were said to “preserve the arguments” (in contradistinction to congruences
which “preserve the values”). In [19], the relation dual to mere simulation, without the requirement of equivalence,

was called “opsimulation,” but the name “biopsimulation” does not seem very appealling.
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Propagation of distinctions amounts to the requirement on an OT-congruence ~ that whenever
R~ (b1) # R™ (b2) then also by 7 bs.

Fact 2.40 If¢: A — B is OT then so is its kernel ~g = ker(¢) = ¢; ¢~ .
PROOF: ¢ ;R4 RB;¢~ (¢ is OT)
¢;¢ ;R = ¢;R%; ¢
~¢; R* = ¢;RP;¢™.
On the other hand, we also have:

¢~ RY = RP¢ (¢ is OT)
$;¢7 R 9307 = g R 675007
~oiRY~g = ¢ RP 97 (since ¢™;¢;6™ = ¢7)
which gives the conclusion when combined with the above. o

The inverse does not hold generally; even if ker(¢) is OT, ¢ itself may be not, even if it

is surjective. (The mapping a2 b2 defined as ¢(a;) = b; has the kernel id 4,
a3 RT —¢> T bs
~ R
ai by

which is OT, but ¢ is not an OT-homomorphism.) We have a slightly weaker claim.

Fact 2.41 If ~ is an OT-congruence then the mapping q: A — Q = A/~, q(a) = [a], is an
OT-homomorphism.

PROOF: (The operations in @ are defined by R® = ¢~ ; R*;q.)
69 sRY 0 =g q’,RA assumption, since ~ = ~g = q;q

G R%q  =qq ;R* def of Q
aGR% e = ¢ ,R
idg; R®;q- = ¢ ;R* qis surjective O

This gives epi-mono factorisation of morphisms in MAlg,,(%).

Lemma 2.42 For every homomorphism h : A — B there is a (reqular) epie: A — Q and
mono m : Q — B such that h = e;m.

PROOF: We let ~ denote the kernel of h and choose Q = A/.. By Fact 2.41 and Proposition
2.13, e : A — Q defined by e(a) = [a], is an epi in MAlg,(X2). (It is regular by Fact 2.55.)
We verify that m, defined by m([a]) = h(a) is OT. (It is trivially injective, and hence mono by
2.13, and makes h = e;m by definition.) Let b € B and assume first that m™ (b) = {[a]} # @ :

fom=®) = £2(al) definition of m
= {[d]|c€ f*a): h(a) =b} definition of Q with a: h(a) =b
= {[d|ce A 0))}
= {ld]ceh (F5 ()} his OT
= e(h (f (b))) definition of e
= e(e”(m™(£7(v)))) since h™ (¢) = ™ (m™ (z))
= m (f7(b)) since e ;e = idg

The same argument applies also when m™ (b) = &, since this implies that A~ (b) = @. |

Corollary 2.43 1) For an epi ¢ : A — B with kernel ~, A/. ~ B.
2) Ife; : A — By, i € {1,2}, are epis with equal kernels, ~1 = ~3, then By ~ Bs.

PROOF:

1) By 2.42, we have an epi-mono factorisation of ¢ = e;m. But since ¢ is epi, so is m. As
m is also mono, it is bijective and thus iso by proposition 2.13.

2) By 1, we have A/, ~ By and A/a, ~ Bs. But A/fu, = A/n,. m]

Hence the epi-mono facorization from 2.42 coincides with the factorisation mentioned after
lemma 2.32, in the sense that A/. ~ @[A].
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Remark 2.44 Recall remark 2.8 in which topology on a multialgebra reflected the possible
observations of its elements by means of the results of the operations. In the present contet,
bireachability can be seen as topological indistinguishability — albeit, not as in the topological
tradition, of topological spaces or features invariant under homeomorphisms, but of actual
elements of a given topological space.

As an immediate corollary of the fact that the quotient morphism is OT and that such
homomorphisms are continuous, remark 2.8, we obtain that, for instance, pre-image of an
Q-open is A-open, i.e., that ¢~ (f9([z])) can be written as (possibly union of intersections,
and possibly of different symbols but, as it turns out, simply as) U, ¢, fA(x). (This can be

verified directly, for f2([z]) = {[y] | y € FA(a])}, i.e., its pre-image g~ (F2((a])) = {y' | Iy ~
y ye€ Ueera fA(x) which, by OT, is equal to Usegel fA(x).)

However, the topology obtained by our quotient construction according to remark 2.8, is not
ezactly the same as the standard quotient topology on the quotient space, i.e., one according
to which Y C Q 1is open iff ¢~ (Y) is A-open. For instance:

q

R ] fas]
]f Tf fT /
b1 ba — [b1, b2]

The pre-image ¢ ([a1]) = {a1} = F4(b1) and hence is open, but [a1] is not since the only open
set in Q (besides B) is the whole carrier of the a-sort {[a1], [a2]} = F2([b1, b2]).

2.3.1 The complete lattice of OT-congruences on an algebra

The condition (2.37) is trivially preserved by taking unions of bireachabilities and so, for
any algebra, there is the maximal (with respect to C) bireachability, namely, the union of
all bireachabilities. We address now the more specific question of the existence of maximal
OT-congruence.

Given a collection C = {~;| ¢ € I} of equivalences (on a set/algebra A), one obtains their
supremum ~ = \/,~; as the transitive closure of their union, i.e., \/;,~;= (|J,~:)*. Explicitly,
one lets a ~ a iff there exists a finite sequence a = aoa;...an, = a’ and a respective sequence
of the equivalences from C, ~i~3y ... ~,, such that a; ~;+1 a;+1 for all 0 < i < n. As all
members of C' are equivalences, then so is the transitive closure of their union by the standard
argument (e.g., [15], §5, th.2). The construction applies also to O'T-congruences.

Lemma 2.45 Given a collection C = {~;| ¢ € I} of OT-congruences on a multialgebra A,
then ~ = \/,c; ~i s an OT-congruence.

PROOF: Assume that for each i : ~;; R4 ~; = ~;; R“. We have to show that then ~; R4; ~
= ~; R*. The inclusion ~; R*;~ D ~; R? is trivial, so we show the opposite.

Assume (a,b) € ~; R, ~, ie., there are the respective sequences such that a ~aq1 a1 ~a2
A2... ~an anRAbg ~1 b1 ~g by... ~p b. By induction on m we show that then also 3a’ : a ~
a’ R*b which will establish the claim. The basis for m = 0 is trivial, so assume IH

IH Ya,a0,b0,...;bm : @~ aoR%bg ~1 by... ~m by = 3Ja’ :a ~ a' R,
and
a ~ agR*bg ~1 b1... ~m bm ~m+41 b1

From the latter we obtain, by IH, @ ~ o' R*bym, and by ~m+1 bmi1. Since ~pmp1 is OT, there
is an a”’ ~py1 a' such that a” R4b,, 1. But then we can just extend the chain a ~ @' ~pm11 a”
obtaining a ~ a” R4 b 11. O

In particular, performing this construction on the collection of all OT-congruences on a given
multialgebra A yields the maximal OT-congruence on A. Notice, however, that it need not
be the standard universal relation. For instance, for the algebra &; b, the elements b; and

R
ai

b2 cannot be related by any OT-congruence, since it would violate the condition (2.37).
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One verifies easily that the construction yields, in fact, the least upper bound — with
respect to subset relation — of the argument congruences. Thus, the collection of all OT-
congruences on a multialgebra is a complete upper semilattice — with respect to the subset
relation — with identity being the least element. By the standard result (e.g., [16], p.24), we
obtain the useful fact.

Fact 2.46 The collection of all OT-congruences on an algebra is a complete lattice.

Infima are not, however, obtained as mere intersections. In the following algebra:

Yoo y'
A A
ol "
both relations:
~ = WdU{{y,y), ¥, y), {(z1,z1),(x1, T1), (T2, T5), (T, x2)} marked with the dashed lines
~ = ddU{{y, ¥y, W, ), (x1, zh), (xh, x1), (T2, 1), (2}, 22)} marked with the dotted lines

are OT-congruences. Their intersection, however, idU{{(y, '), (¥, 4)}, is not an OT-congruence.
In fact, the infimum of the two will be identity.

Fact 2.47 Given two OT-congruences, ~q,~p, on an algebra A, their infimum ~ = ~g A ~y
can be constructed by “propagating the distinctions” (cf. the remark following (2.38)) as
follows:

1. ~o = ~g N ~p

2. o~ = o~ \ {{y,y2), (W2, 1) € ~i| 3F T (1) 2 £ (y2)}
3. ~x = [Vex~i, for limit ordinal

4_ ~ = NlA‘

PROOF: As ~yg is an equivalence relation, so each ~;, and hence also ~, is obviously reflexive
and symmetric. To see that it is transitive, we show that each ~; is transitive, which will
establish the claim as intersection of transitive relations is tramsitive. ~g is transitive, so
assume ~; be transitive and let y1 ~;+1 y2 ~it1 y3. (Hence also y1 ~; y2 ~; ys and, since
~; is transitive, so y1 ~; y3.) Then Vri € f~(y1) Jz2 € f~(y2) : 1 ~; 2, and likewise
V2 € f~(y2) Jxz3 € f~(ys) : &2 ~; x3. But since ~; is transitive, this implies that also
Vz1 € f (y1) Jz3 € f (y3) : ©1 ~; 3 (and vice versa), i.e., y1 ~it1 Ys.

The condition in step 2 amounts to removing all pairs which violate the bireachability require-
ment (2.37). That is, any O'T-congruence contained in ~g must not contain any of these pairs.
On the other hand, the resulting ~ is indeed an OT-congruence. By the above argument,
it is transitive and hence an equivalence. Moreover, whenever 4, ~ y2, then the negation of
condition 2 holds, i.e., Vo1 € f~(y1) Jz2 € f~(y2) : z1 ~ z2 (and vice versa). Thus, indeed,
~ = ~g A ~p. (Infimum of a set of congruences {~;| ¢ € I'} is constructed in the same way,
only starting with [,, ~i.) O

The construction is given by ordinal induction and the cardinal |A| appearing in the last
point shall be understood as: for some ordinal of cardinality |A|. It must stop for some
ordinal with cardinality |A|, since then all possible ways of reaching every element have been
checked for possible inequivalent pre-images. In many cases, the above construction will reach
a fixpoint after w steps but, in general, one may need to continue the process as illustrated
in the following example.

Example 2.48 Let M have a unary operation f, being the transitive closure of the following:

()

Co 2 3 w w1 w+2
That is, the operation is defined by
{yle <y} forz=0
fle)=<¢ {ylz<yyu{0} foraz=1
{yle <y} forz>1

Consider the following two OT-congruences
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~a = {003 14,7 > 11U {(0,0}

~b = {(0,4),(0,4), (i, 5} | 4,5 2 2} U{(0,0),(1,1)}
We obtain:

~o =idy U{(s,7) | 4,5 > 2}

~1 =tduy U {<Z1.7) | 0j = 3}

~2 =idy U{(i,j) | 1,5 > 4}
etc., where the distinction of a new element in each step, e.g., in 2 o1 3, results from the fact
that f~(2) = {0,1} 0 {0,1,2} = f7(3), since neither 0 ~g 2 nor 1 ~g 2. Then

~o =tdm U{(i,) | 4,5 > w}
and in the next step we still have to make w #wt1 w + 1 for the analogous reason that
fT(w) =w s wU{w} = f (w+1) while for alln € w: n %, w. In short, ~q A ~p = id,
but this relation is not obtained by our construction after w steps but first after w + w. In
general, we might have arbitrary sequence of such w sequences, so that number of iterations
needed is limited by the cardinality k of M (which in the ezample is w) not in the sense of
the least ordinal with cardinality k but of some ordinal with this cardinality (one might want
to say, by the largest possible ordinal of cardinality k).

Proposition 2.49 If M is k-bounded, the result of the construction from Fact 2.47 is obtained
after K steps, i.e., ~ = ~.

PROOF: If y1 # 42, they are split at some stage i+ 1 due to non-congruence f~ (y1) #; £ (y2).
Since M is k-bounded, |My,,}| < &, so y; is reachable from at most k elements. We reach a fix-
point, after which ~; = ~; for all j > 4, once (My,,} X M{y,3) N~ = (Myy,y X My,1) N ~ig1.
But the cardinality of these relations is bounded by M,y X My,,y < K-k = K, so that all
required splittings of pre-images (of pre-images of pre-images...) of y;’s will happen within &
steps. (Example 2.48 illustrates the worst case of chains for an arbitrary ordinal of cardinality
K.) m|

Let now =4 denote the maximal OT-congruence and ~,4 the maximal bireachability (i.e.,
union of all bireachabilities) on A.

Proposition 2.50 The mazimal bireachability on A is an equivalence, in fact: =4 = ~a4.

PrOOF: Since OT-congruence is bireachability, we obviously have 4 C ~4. The opposite
inclusion follows because every bireachability is included in some OT-congruence. Namely,
given a bireachability ~, its converse ~~ is also bireachability, which follows trivially by
inspecting the definition (2.37). Likewise, union of bireachabilities is a bireachability, in
particular, the reflexive, symmetric closure of ~, i.e., ¥ = ~ U ~~ U id4 is a bireachability.
One also verifies easily that transitive closure of a bireachability is a bireachability:
b~by ~by = VaRb 3Fai:a~ a1 AarRbi
= VaRb dHai:a~aiAaiRbi Adas:ai ~as AaxRbs
= VaRb Fai,az:a~ai ~axAaRbs
Consequently, the equivalence closure ~% of ~4 is OT-congruence, and so: ~4 C ~% C 4.
O
Fact 2.51 Let BC A, ~4 be an OT-congruence on A, and ~p C ~a be restriction of ~a
to the carrier of B, i.e., ~4 N B x B. Then
1) ~p is OT-congruence on B and
2) ~p U ida is OT-congruence on A.

PROOF: 1. Let a,a1,b1,b € B be such that a ~p a1 RPb; ~p b. Then also a ~4 a1 RAb1 ~4 b
and since ~ 4 is OT-congruence on A, so Jag € A :a ~a aoRAb. Since B C A, B is closed
under pre-images of A-operations, so b € B implies ap € B, and then a ~5 aoRZb.

2. Let us write ~p for the union ~p U ida. To show that ~p; RA; ~p C ~p; RA, consider
the cases of ag ~p a1 R* a2 ~p as:

— when all a; € B, there exists an a’ : ap ~5 a’ R*a3 since ~p is bireachability on B;

—if ag € B while a1 € B, then a¢o = a1 and the result follows when as,a3 € B;

—if as & B or a3 € B, then as = a3 and the result follows trivially;

—if a1 ¢ B then also as ¢ B since B C A (i.e., inclusion is OT), and so ap = a1 and a3 = as.
O
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As an example of quotienting an algebra by a (maximal) OT-congruence, we can consider a
kind of minimization of a nondeterministic automaton.

Example 2.52 The automaton (multialgebra) A from example 2.30, quotiented by the largest
OT-congruence yields the automaton (multialgebra) B = A/ :

We cannot have 5 ~ 8 because, although both can be reached by d from 6, i.e., 5,8 € dA(6),
505 € ¢*(2) while 8 ¢ ¢*(2) and 8 & ¢*(3) and there are no more states s ~ 2.

To model accepting states, we introduce additional constant ac. (Likewise, we can introduce
a constant st for identifying the initial state.) If we let only 7 in A be the accepting state, the
picture will be modified accordingly:

B:

! -
a b d
ORNGRNO NN QRN aN/y Fi e
Obuviously, with respect to the accepted language, the obtained automaton is not minimal (we

could, for instance, safely remove states 8 and 5). It remains to determine what — if any —
known or useful construction on automata is represented by the quotient by OT-congruence.

Example 2.53 A more refined notion of OT-congruence on automata can be obtained by an
alternative model in which an automaton is represented as one operation tr : S x Alph — S,
taking a state and an alphabet symbol and returning the set of possible resulting states. In this
case, we can, in addition, consider also various bireachabilities on the alphabet symbols. When
it is identity, we obtain the same result as in the previous example. On the other hand, if it is
the total relation (no operations returning Alph-elements leaves us full freedom in determining
OT-congruence on this sort), Alph® x Alph®, the mazimal OT-congruence identifies states
s,t iff for each number of steps in which s can be reached from some state s', t can be reached
in the same number of steps from a state t' which is bireachable with s', and vice versa.

Thus, for instance, if we represent the search space by a multialgebra A with the subset
X C A of goals, the subalgebra Ax represents, as at the end of example 2.30, the states
from which some goal in X is reachable, and then, quotient by the mazimal OT-congruence
(identifying all symbols), will yield, roughly, a collection of paths (possibly with loops and
common nodes) leading to X and having distinct lengths.

2.3.2 3XY-structure of OT-congruence

Just like classical 3-congruence has algebraic X-structure, so OT-congruence on a X-multialgebra
has itself a multialgebraic 3-structure. In fact, we define such a structure for an arbitrary
bireachability and all the results apply to OT-congruences as special cases.

Definition 2.54 For a bireachability ~ on A € MAlg,1(X), we define A~ € MAlg,(X):
o A~ = {{a1,a2) | a1,a2 € ANa1 ~ a2}, and

o f47 ((a1,b1).(an,bn)) = {(2,y) | © € fA(a1.an) Ay € fA(brbn) Az ~ g},
i.e., for constants ¢*” = {{x,y) | z,y € ¢* Az ~y}.

Fact 2.55 Given a bireachability ~ on A.
1) The projections 1,72 : A~ — A, m;({a1,a2)) = a; are OT.
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2) A/. with the quotient homomorphism q: A — A/~ is their coequalizer.

PROOF: 1. We verify that 71 is OT. 7y (a) = {(a,z) : ¢ ~ a}, and thus:

@) m (@) = {by)lbe fa),y~ b}, while

@ [ (@) = A {{az)[e~a})={by) | be fAa)y~by€ fi(z),x~a}
Obviously (i) C (i). The opposite inclusion holds because ~ is bireachability: if b € f4(a)
and y ~ b then, by (2.37), 3z ~ a : y € f*(x). But this is exactly the restriction in (ii).

1
AN —= A —> Al

N

c

2. For every {(ai1,a2) € A~, we have q(a1) = gq(a2), so m1;q = m2;q. Assume some other
h: A — C with m;h = m2; h. Define ¢ : A/~ — C by c([a]) = h(a). It is well defined, for
if a ~d,ie., {a,a’) € A™, then h(a) = h(a’) by assumption. Obviously g;c = h and this
equality forces also its uniqueness.

To see that ¢ is OT, consider:

(i) £ (¢ (er)-c™ (ea)) = F4~ (g(h™ (c1))--.q(h™ (ca))) since ¢ (ci) = g(h~ (ci)) and

(i) ¢ (f(c1...cn)) = q(h™ (F(c1-..¢n))) = q(fA (R~ (c1)...h~ (cn))) since h is OT.

To see that (i)=(ii), we observe that the h pre-image of any ¢; € C consists of one or more
~-equivalence classes: (*) h~ = h™;q;q , simply because h~ = c¢ ;¢ and ¢ = h™;q. So,
since g is OT, we have the first equality, and since ¢~ ;q = id4,, and h is OT, the last one:

“(a(h ()

I
~h
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¢ (£~ @k~ (e0)alh™ ()

-q

®) = (R ek cn>

a(a™ (£~ @™ (e0)a(h™ () = (fA(h (c1)-h™ (en)))
(@) = £ (ah™ (e)ah™ () = a(h™(Flernea))) = (i)

Corollary 2.56 All epis in MAIg,(X) are regular.

PROOF: Given an epi e : A — B with kernel ~, we have by corollary 2.43 an isomorphism
i: A/~ ~ B and such that ¢;¢ = e where g : A — A/~. But since q is coequalizing, so is e. O

Strictly speaking, congruence on A is a (special kind of morphism) i : R — A x A. But we
will not verify the existence of products in our category until section 5, and so we abbreviate
the respective i;m; as the span r1,r2 : R — A. In the standard way, given any relation
p1,p2 : P — A, its congruence closure is the equalizer of pi;q and p2;q : A — A/p, where
(A/p,q) is coequalizer of p; and p.. Assuming that all such equalizers and coequalizers exist
(which will be shown first in proposition 3.12), we also obtain the following standard result.

Fact 2.57 Given OT-congruences PR on A: P CR=3h: A/p — A/r with qp;h = qr.

PrROOF: We consider the diagram:

SP

p2 || P1
n [3:3

:>>A—>A/R

2 7
ap

Alp

As P, R are congruences on A, so (A/r,qr), resp. (A/p,qpr), coequalize 71,72, resp., p1,p2.
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Assume P C R, i.e., for k € {1,2} : pr = 4;7,, where ¢ is the inclusion. First, since ggr
coequalizes r1 and 72, we obtain that also ;71;q9r = %;72;qr, i.€., P1;qr = p2;qr. But as
(A/p,qp) is coequalizer of p1,p2, we obtain a unique h : A/p — A/r making gp;h =qr. O

2.3.3 Bireachabilities between algebras

The notion (2.37) of bireachability on an algebra is a special case of the following notion of
bireachability between algebras.

Definition 2.58 Bireachability between two algebras A and B is a subset ~ C A X B satis-
fying the following bireachability condition:

Va,ba1: a~bAa€ fAa)) > €B:be fP(bi)Aar ~ by
& Va,b,b; : aNbAbefB(bl):>3a1EA:aEfA(al)/\alfvbl

Relation ~ is a bireachability on A according to (2.37) iff it is a bireachability between A and
A according to the above definition.

A bireachability ~ between A and B can be given a natural X-structure, generalising
definition 2.54, as follows

(a1, b1)..{an, bn)) = fA(a1...an) X fE(Br1..ba) N ~. (2.59)

When addressing algebra structure of some bireachability we will always mean the above con-
dition unless explicitly stated otherwise. An equivalent formulation of ~ being a bireachability
is then as follows.

Lemma 2.60 ~ C Ay x Ay (with the X-structure given by (2.59)) is a bireachability iff the
projections m; i~ — A;, wi({a1,a2)) = ai, are homomorphisms.

PROOF: =) We verify that f~(7y (a1)) = ny (f* (a1)). If {(a,b) € 77 (f*'(a1)) then a €
f41(a1) and a ~ b so, by 2.58, Ib1 : a1 ~ by and b € f42(b1). But then (a1,b:) € 77 (a1) and
by (2.59) {a,b) € f~({a1,b1)).

Conversely, if (a,b) € f~(x7 (a1)) then, by (2.59), a € f*1(a1). But then obviously {(a,b) €
1 (f41(a)).

<) Assume both 7; are OT and let a € f*'(a1) and a ~ b. Since m is OT we have
77 (F41(ar)) = £~ (n7 (ar)) andsince (a,b) € 77 (a) C w7 (F*1(a1)) so also (a,) € £~(n7 (ar)),
ie., 3by € Ay : {(a,b) € f~({a1,b1)). But by (2.59) this last fact means that 3b; € Ay : b €
f2(b1) and a1 ~ b1. O

As a special case, and in analogy to the case of coalgebras whose homomorphisms are func-
tional bisimulations, the OT-homomorphisms are functional bireachabilities.

Fact 2.61 A function ¢ : A — B is OT-homomorphism iff its graph Gr(¢) = {{a,#(a)) : a €
A} is a bireachability between A and B.

PRrROOF: Denote the projections by wa, 7 : Gr(¢) — A, B, i.e., m({z1,z2)) = ;. We have
that ma;¢ = wp and 74 is a bijection.

<) If m;’s are OT then, 74 being iso, so is its converse 7. But since ¢ = 7 ; 7B, so ¢ is OT.
=) Assume ¢ to be OT, and define S-structure on Gr(¢) by letting " ((a,b)) = {{a’,V') €
Gr(¢) | @’ € f*(a)}. Since 7 = ma; ¢, it sufficies to verify that 74 is OT. fO (x(a)) =
£ ((a,0)) = {{a',¥') € Gr(¢) | a' € fH(a)} = 75 (f*(a)). o

Finally, we can also generalise lemma 2.60 as follows.

Lemma 2.62 An arbitrary span A; ?—1 B ‘B As, induces a bireachability between A; and As
given by ~ = {(¢1(8), 62(0)) | b € BY}.

PrRoOOF: We verify that the bireachability condition is satisfied. Assume a; ~ a2, i.e., for
some b : (¢1(b), $2(b)) = (a1,a2) and a1 € f*1(x1). Since ¢1 is OT, we then have z1 € ¢1[B],
i.e., for some y € B : ¢1(y) = 1 and b € f2(y). But then, since ¢» is OT (and hence

also weak), ¢2(f2(y)) C fA2(¢2(y)), i-e., az = ¢a(b) € f42($2(y)) and we have the required
witness 2 = ¢a2(y) with z1 ~ z2. O
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Thus, any bireachability is a span (according to lemma 2.60) and, conversely, any span induces
a bireachability according to the above lemma.

An unpleasant fact is that, given a bireachability ~ induced by a span as above in
lemma 2.62, with the algebra structure given by the equation (2.59), there need not be any
homomorphism B — ~. We will address this problem in section 4 considering products.

Example 2.63 Consider two isomorphic algebras over ¥ = ({s1, s2}, {f : s1 = s2}) :

!
Qg A’

A @
7N SN

bo ((10, a()) ~

7N b
B b b b (a1,a1)  (as,a1) (a2, a3)

and two homomorphisms:

e p: B— A, given by p(b;) = a; and p(b) = a2, and

o p': B— A, given by p'(b;) = a} and p'(b) = aj.
The induced bireachability ~, with its algebraic structure, is shown to the right. There is no
homomorphism ¢ : B — ~ since sending ¢(bo) = {(ao,ap) requires all the three arguments to
be in the image of ¢, in which case the O T-property of ¢ fails for x = ¢(b), i.e., f2 (¢~ (z)) =
FP(b) =2 # {bo} = ¢~ (f~ (2)).
It is easy to see that the following fact holds.
Fact 2.64 The condition from definition 2.58 is preserved by unions.

Consequently, for any two algebras, there is always the maximal (with respect to C) bireach-
ability between them, namely, the union of all bireachabilities. In case this maximal bireach-
ability is empty, we will say that the algebras are not bireachable.

The following examples illustrate further the duality of bireachability and bisimilarity.

Example 2.65 Assume three operations a,b,c : s — s and consider the following standard
example from process theory:

b
A: (ta Bj;\O/Z

A and B are not bisimilar but are both trace equivalent and bireachable. In fact, A is a quotient
of B by the bireachability 1 ~ 1'. As might be expected, we have a dual situation: bisimulation
distinguishes states with respect to differences which ‘come after’ while bireachability with
respect to what ‘comes before’. The following two algebras are trace equivalent and bisimilar
but not bireachable (as any bireachability on B containing (1,1") must also contain (2,3)):

RN
QV ‘\\03 bl ic

Example 2.66 The duality of ‘after’ and ‘before’ — and at least occasional naturality of the
latter — can be illustrated by the following. Let now 0,a,b,c,d :— s be constants, and let the
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arrow represent the only operation tr : s — s. (Subscripts serve only reference purposes.)

A: 0 b1 1 d c _d_ o (cd)®

bp ——cC1

A bisimilarity between A and B is given by the pairs (i1,11), for i € {a,b,c,d} and those
indicated by the dotted lines. One might feel a bit uneasy about this bisimilarity since A
satisfies the formula: “the first di occurs before the first c1” (or else: “the first c1 is reachable
from the first di”) while B does not.

Unlike bisimilarity reflecting the relation of ‘coming after’, bireachability is ezactly the
relation of ‘coming before’. The greatest bireachability ~ C A x B is simply the relation
{{0,0), (a1, a1), (b1,b1)}. We can not possibly get c1 ~ c1 as this would require dy ~ by (since
in A:ci € tr(b) Ntr?(di) while in B we only have c1 € tr2(b1)). But di ~ b1 is impossible
as it, in turn, would require a; ~ 0 which cannot obtain because while a1 € trA(O) there
isnob € B:0 € tr®(b). (Two states can be bireachable here if they have the same label
and are reachable in the same number of steps from states with the same labels — compare
Ezample 2.53.)

Example 2.67 The following two structures are modally indistinguishable but not bisimilar:

A: 1=—0 B: 1=—0
1 % 1/%\1
2‘/ b 2;/ ______ N

The natural attempt would be to relate all nodes reachable in the equal number of steps, i.e.,
~ = {(n*,nB) | n* = n®}. This does not work for the well-known reason that, attempting
to set any node n® on the infinite path of B bisimilar to some n? on a finite branch of A of
length m > n, leads to the impossibility of relating the last element m* to the m-th element
on the infinite path of B, since from the latter there is a further transition to (m +1)%.

The above relation yields, however, a bireachability since it involves only elements from
which any element on the infinite path is reachable and not what elements lie ahead of it.
Thus, even taking only the one infinite branch of B, yields the structure bireachable with A.

Example 2.68 The dual character of bismilarity and bireachability is well summarized by
looking at the following structures:

G: .
S: ° . .
R: >0 —— >
RS . .

G and S are bisimilar but not bireachable, G and R are bireachable but not bisimilar, and G
and RS are both bisimilar and bireachable.

Recall from remark 2.9 that a coalgebra a : A — X(A) over a polynomial functor ¥ can
be represented as a multialgebra a~ : (A) — P(A) with the special property that for all
a1 # a2 : a (a1) Na (a2) = &. Denote the coalgebras by A, B and the corresponding
multialgebras by A™,B™.
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Fact 2.69 ~ C A~ X B~ is a bireachability between A~ and B~ iff ~ is a bisimilarity between
A and B.

PRrOOF: Follows trivially since each operation in A~ is converse of the respective function in
A, while the bireachability condition from 2.58 is just the converse of the bisimilarity condition
(as illustrated already in (2.38)). O

The bireachability remains, however, a wider notion as it applies to all multialgebras, also
those which do not represent any coalgebra.

2.4 Final objects in MAlg, (%)

In general, final objects do not exist in MAlg,,(X) due to the usual cardinality reasons.
Consider a signature with one sort and operation f : s — s. In a multialgebra Z this requires
fZ : 8% — P(s%) (essentially a coalgebra for power-set functor) and, when Z is to be final,
moreover isomorphism s” ~ P(s7).

In this subsection we show one special case guaranteeing existence of final objects, mainly
to illustrate their interesting features. The required extension of the category ensuring com-
pleteness is given in the following section 3. Completeness of some subcategories of MAlg, (%)
is then shown in section 5.

Example 2.70 Let ¥ = ({s1, s2}, {c :— s1; f : s1 = s2}). The final object Z in MAIg,,(X)
can be described as follows. (Expressions like “@1” or “fc@” are simple names — mnemonic
devices — not any sets or function applications.)

sZ . fe fco fo Do
Slz : I/ 1

In words, each sort contains only elements needed to distinguish any combination of operations
returning the elements of this sort. In s? it is enough with one element to interpret the
constant, ¢Z = {c}. In addition, there is always an element not belonging to the result of any
operation, @1. 85 contains one such element, @2, one element characteristic for f%(c) 3 fe,
one for fZ(21) > f@ and one for fZ(c) N fZ(21) 3 feo.

If we had two constants of sort s1, we would obtain corresponding collection {c,d, cd, @1} in
s?, while s§ would now contain characteristic element for every possible f(x) when x € s7,
as well as for every intersection [\,c x fZ(x) for every possible X C s%.

Viewing results of an operation as possible (or nondeterministic) observations of its argu-
ments, the construction amounts to providing the minimum needed for every series and every
(possible intersection of a) set of observations to have its unique characteristic result. Recall-
ing the topology we defined on (an arbitrary) multialgebra in remark 2.8, in case of the final
multialgebra, it will amount to each set S of the basis (obtained as arbitrary intersections
of the subbasis sets, i.e., sets of the form f#(Z)) having a unique characteristic element zg.
Alternatively, we can say that the only bireachability on a final algebra is identity and just like
final morphisms of coalgebras identify bisimilar states, so here final morphisms will identify
bireachable elements.

One special case when this construction can be performed is when the signature does not
contain any “loops”. Call a signature “acyclic” if there is no derived operator ¢ with target
sort occurring also among the argument sorts. More precisely, we can define an ordering on
sort symbols by taking the transitive closure of the relation: s; < s2 iff 3f :...81... = 82. 2
is acyclic if there are no two (possibly the same) sort symbols such that s; < s2 and s2 < s1.
We then have a well-founded partial ordering of all sort symbols with the minimal elements
MIN for which there are at most some constants.

Proposition 2.71 If ¥ is acyclic then MAlg,(2) has final objects.
ProoF: Constructions and arguments will depend heavily on the ordering < of sort symbols.
We define the carriers of the final algebra Z in this way. 7(X) denotes all ground X-terms,

T(X)s all ground terms of sort s, and 7 (X, X), all ground terms of sort s relative to a set of
additional constants X.
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1) For each sort s € MIN : s? = P(T(X)s) — notice that 7(X)s will contain in this case
at most some constants.

2) For each sort s € MIN, let F be the set of all non-constant operations with s as the
target sort. For each such f € F, f: s1...s, — s, we have, by induction, constructed
sZ for all argument sorts. Let X be the (disjoint) union of all elements from all the
argument sorts for all operations from F. We then consider all terms relative to this
set, T(Z, X)s, and define sZ = P(T(Z, X)s).

Notice that for each sort s, we will obtain the element @&, — this will represent the element(s)
of the respective sort which are “absolute junk”, i.e., not in the image of any operation (for
any choice of arguments). An element (a set) p € sZ is intended to represent the unique point
which belongs to the intersection of all terms ¢ € p. The operations in Z are defined as:

3) pec? < cep
4) pe fP(pr...pn) <= f(pr...pn) €D

and the definition is extended pointwise to the sets of p’s. Notice that, in the last point, the
argument p;’s are all from lower levels, i.e., from sorts s; < s, where s is the target sort of f.

Given any X-algebra A, we define a homomorphism ¢4 : A — Z by induction on sort ordering:
5) s€ MIN :a € s* : pa(a) ={c|a € c*}
6) s¢ MIN:a€s":¢a(a)={claec}U{f(p)|3zp=ga(x)rac f*(z)}

It is an OT homomorphism:

for constants: ¢, (c”)

da({p|ce€p})
{a|c€ pa(a)}

96 = {oleech
and for operations: a € ¢;(f?(p)) <= ala) € fZ(p)
4) <= f(p) € pala)
6) <= 3Jz:p=da(z)Aac fi(z)
= a€fs3(0)

Finally, assume another ¥ : A — Z, where for some a € A : ¢a(a) # ¥(a). We show that
then 1 cannot be an OT-homomorphism, by induction on the sort ordering:

e s€ MIN,a € 5" and {c| a € ¢*} = ¢a(a) # 1(a) = 3¢ such that either
i) a€c®Acdp(a) - then a € 1 (c%), so ¢ wouldn’t be OT; or else
ii) a g c* Ac€y(a) — then a € ¥~ (c?) so, again, ¢ wouldn’t be OT
e s & MIN,a € s* and ¢a(a) # ¥(a). If the difference from definition 6) concerns some

constant ¢, the argument is the same as above. So assume that it concerns some f,p,
i.e.,, 3f € ¥ p € Z such that either

iii) f(p) € pa(a) A f(p) & ¥(a); or else

iv) f(p) & pa(a) A f(p) € ¢(a)

By IH, for any z : ¢a(z) = p we also have ¥ (z) = p since given such an f, the sort of =
must be < then the sort of a. Thus also ¢, (p) =¥~ (p). Then we have:

aey (F ) € ae W (p) €5 ae A 9ak) < f0) € alo)
so neither iii) nor iv) can be the case if ¥ is OT. m|

If ¥ is cyclic, we simply can not stop in point 2) but have to keep constructing new
power-sets ad infinitum. The construction can terminate for arbitrary X if we impose some
limitations on the power-set functor. Similarly to the case of coalgebras we need a restriction
on the size of one-generated subalgebras, namely, to k-bounded multialgebras. We will not
prove it at this point, but extend first the category MAlg,(X) to allow for the existence of
final objects without any cardinality limits nor restrictions on the signature. As in the case
of coalgebras, we have to leave the set-based categories and allow algebras with carriers being
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classes. The constructions of colimits and equalizers to be given in the following section,
can be applied also in MAIg,(X). All constructions can be applied (sometimes with minor
modifications) in MAlgg(2) and so, in section 5, we will obtain its (co)completeness as a
consequence of the constructions for MAIgy,-(X).

3 The category Outer-Tight with classes, MAlg/ (%)

Given a ¥ with sort symbols {si...sn}, we allow algebras where carrier of each sort is a
class. Constants can denote proper classes and so can operations applied to single elements
return proper classes, i.e., the power-set used in definition 1.2, denotes the collection of all
subcollections (also proper subclasses) of the argument collection.> But we have to require
here one restriction. We will need a form of representability of large algebras by small ones,
essentially, that any algebra can be obtained as a colimit of its small subalgebras. This,
however, may in general be impossible. Assume that X C A is a proper class and that,
for some operation f : f4(X) = {x}. Whenever ¢ : B — A is an OT-homomrphism, with
x € ¢(B), B can not be small since it has to be surjective (at least) on the whole class X
(this follows from outer-tightness; it is condition 2) from figure 2.1). We therefore limit our
category to only special kind of algebras with carriers being proper classes.

Definition 3.1 A X-multialgebra A is set-reflecting iff for every a € A and every (relevant)
f € X, there exists at most a set X C A such that a € (), x fA(x).

Put differently, for every f and a, a’s pre-image (f*) (a) = {z | a € f*(z)} is a set. (This
is not to be confused with the “set-based” functors from [2], even though both restrictions
serve the same purpose.) The definition implies — and derives the name from the fact — that
if f4(X) is a set, so is X, i.e., no function collapses a class to a set. (If Z = f4(X) is a
set then, for every z € Z, there is at most a set X, such that z € [ ¢, f*(x). Then also
Xz =U,ez X: isaset —but X C Xz.)

MAIg¢, (%) considered in the following is the category of all set-reflecting multialgebras
with OT-homomorphisms. Saying algebra we mean from now on a set-reflecting multialgebra.

3.1 Set-reflecting algebras are colimits of small subalgebras

The apparent “inversion” of the condition in definition 3.1 (one might expect it to require
fA(X) to be a set, whenever X is) reflects the inverted direction of bireachability with respect
to bisimulation, (2.38). It is crucial in the point 2) of the proof of the following result which
extends fact 2.29 to the present category.

Lemma 3.2 For every (set-reflecting) A € MAIgh(2) and every subset sX C A, there is a
small subalgebra sA C A with sX C sA.

Moreover, there exists a smallest such sA, namely, such that for every other subalgebra
B LC A with sX C B, we have sA C B.

PROOF: sX is sorted, and the construction extends in each step each sort (if at all):
1) Xo=sX
2) For all x € A, if f*(z) N X; # @ then include into X;+1 also all such z.
3) Xu = U, Xi

i€w ‘T
The argument showing that the construction indeed yields a smallest subalgebra containing
sX is exactly as in fact 2.29. The only additional observation to be made is that, since Xy
is a set then so is every X;. For, given in step 2) a set X;, f*4(z) N X; is a set, and so is
Uzea f*(z) N X;. Hence, since A is set-reflecting, the elements added to Xit1 will form at
most a set. Iterating this extension w times yields X, which is indeed a set. m|

3This might cause some foundational worries since functions returning classes, and hence also indexed families
of classes, are not legal objects in NBG. This signals that we must rather work with Grothendieck’s hierarchy of
universes, in which set-algebras reside at the first level, U1, while all our objects at the second one, Uz. (As will be
commented in the appendix 7, we actually end up in U3.) We will use the words “small” /“set” and “large” / “class”
in the sense of being a member of the lowest level U; versus of any higher level U; \ Uy (for i > 2), respectively.
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In particular, given an OT-homomorphism ¢ : A — B and a small subalgebra sA C A, there is
also a small subalgebra sB C B such that the restriction ¢|.4 of ¢ to sA is an OT-homorphism
Plaa 1 SA — $B.

By the above lemma, each set-reflecting algebra with carrier being a proper class has small
subalgebras, and it is used to show:

Lemma 3.3 Every (set-reflecting) algebra in MAlgh (X)) s a colimit of its small subalgebras.

PROOF: Given an A, take all its small subalgebras and form the diagram with all the in-
clusions ¢;; : A; < A; between these subalgebras. (By fact 2.22, these inclusions are OT-
monomorphisms.) A is colimit of this diagram with the inclusions ¢; : A; < A. Since all
morphisms are inclusions, the commutativity condition is trivially satisfied. Assume that
there is another algebra B with ; : A; — B such that 8; = ;;; 8; whenever this composition
is defined (i.e., whenever there exists ¢;;). We define the unique u : A — B using the fact that
Va € A JA; :a € A; (by lemma 3.2) — u(a) := Bi(a). It is well-defined because the collection
of all small subalgebras is directed. If a € A; for some other small A; C A, then there is
also a small Ay C A with A; U A; C Ay, and since B; = tix; Br and B; = tjx; Br we have, in
particular, that 8i(a) = Bk (vik(a)) = Bk(a) = Bk (1x(a)) = Bj(a).

e B; = 1;;u: for every a € A; we have, by definition of u and the above argument, that
u(a) = Bi(a), which verifies this claim.

e u is unique: for if some v’ : A — B makes t;;u’ = §; for all i then, for every a € A and A;
such that a € A;, we must have u'(a) = B8;(a) = u(a).

e u is OT: Assume not, i.e., for some f and b € B : fA(u~ (b)) # v~ (f(b)). There are
two cases. 1) a € fA(u (b)) \ uw (f2(b)): Let A; be small subalgebra containing a and
u” (b). Since B; is OT, we have that a € f*(8; (b)) = B; (f2(b)) and substituting ¢;;u for
Bi:a € f4 (7 (u™ (b)) =i (u” (F2(1))). But then also a € +(+™ (u™ (b)) C u™ (b).

2) a € u (fB(b)) \ f*(u~(b)). Let A; be as above. Since 3; = u;;u is OT, we have a €
o7 (w” (FB () = fA (7 (w™ (b)), and since ¢; is OT, f4 (7 (u™ () = ¢ (f*(u~ (b))). But
then a € o7 (f*(u (b)) implies that also a € f*(u™ (b)). m|
Notice, however, that the diagram can be large, as MAIgy,(2) is not well-powered. (An A
with s being a class and f# : s* — s* an identity, has a proper class of subobjects — one

for each subset, and subclass, of s*.)
We also have the opposite fact.

Fact 3.4 If A is colimit of small algebras then A is set-reflecting.

PROOF: Let the components of the colimit be ¢; : A; — A, with all A; small, and consider an
arbitrary a € A and operation f from the signature. We have to show that (f*) (a) is a set.
As the collection of ¢;’s is jointly epi, i.e., surjective (fact 2.13.2), there is some small A; with

a € 1i[A;]. Let a= =1 (a). Since 1; : A; — Ais OT, so Vb € (f*) (a) 3b; € (f*) (a™). But
as A; is small so a” as well as (f4) (a”) is a set, and hence also (f4) (a) must be a set. O

3.1.1 Congruences and quotients
Concerning the OT-congruences, we make first the following observation.

Fact 3.5 Given a bireachability ~ on a set-reflecting A € MAIgy, (), the corresponding
congruence-algebra A~ , as defined in 2.54, is also set-reflecting.

PROOF: Let double-letters symbols, like XY, denote sets of (some) pairs (z,y) where €
X,y€Y,ie, XY CX xY.

Let XY be the pre-image under f of some element (z,u), i.e., XY = (f47) ((z,u)). By
definition 2.54 of A~, fA7 (XY) = {(zr,ur) | (z,y) € XY Az € f*(@) Aug € F2(y) A zp, ~
xx}, so that XY C (f*) (2) x (f*) (u). But both these pre-images are sets since A is
set-reflecting, and so XY is a set, too. |

Lemma 2.45 applies unchanged when the collection is a proper class of small OT-congruences.
Performing the same standard construction on the collection of all small OT-congruences on
a given multialgebra yields the following lemma.
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Lemma 3.6 On every A € MAIgy, (X) there exists a (unique) mazimal OT-congruence ~4.

PrOOF: Let C' = {~;| i € I} be the class of all small OT-congruences on A, then ~4 = \/,~;
is an OT-congurence, by lemma 2.45. It is, in fact, the maximal such.

Suppose that & is an OT-congruence, i.e., =; R*;~ = ~;RA. For any a; = a3, there is,
by Lemma 3.2, a small subalgebra sA C A, with a1,a2 € sA. Consider the restriction of =~
to sA, i.e., let ~; = & N (s4 x sd). By Fact 2.51, ~; is an OT-congruence and thus, any
two elements related by =, are related already by some small OT-congruence in C. Hence
~ C ~y4y. O

The following easy technicality will be needed it in the proof of the next lemma.

Fact 3.7 Let {A; | i € I} be the class of small subalgebras of A (A being their colimit), R
be the mazimal OT-congruence on A and R; the respective resitriction of R to A;. Then
{ri : Ri = R | i € I} is jointly epi and, for every c: A — C, if Vi € I : mi15ti;¢ = mi2;ls; €
then m1;c = m2;c.

PROOF: We have the following diagram

.
N =

A, with inclusions ¢;, is colimit of the diagram containing all A;’s which is indicated by
the dotted arrow. Also various R;’s are related by inclusions, which is indicated by the
corresponding dotted arrow. All ¢; and r; are inclusions.

::;2:::3

That all r;’s are jointly epi follows from the proof of the previous lemma. If (a1,a2) € R then
there is a small subalgebra A; C A containing a1, a2, and so {(a1,a2) € R; = RN A; x A;.

Assume that m1;¢ # m2;¢, ie., for some (a1,a2) € R : c(m1({a1,az))) = c(a1) # claz) =
¢(m2({a1,a2))). Let R; be one such that (a1,a2) € R;. By definition of R;, for each ¢ € I :
Tiy T = Tik; ti, for k € {1,2}. Thus we would obtain c¢(¢;(mi1({a1,a2)))) = c(a1) # c(a2) =
C(Li(ﬂ'n(((h, az)))), i.e., miLi;cC 7& 2L C. O

Lemma 3.8 Given an A € MAlgh (X)) and an OT-congruence R on A, the quotient A/r is
a colimit of small algebras, and hence Afr € MAlgy,+(X).

PROOF: We consider the following (schema of the) diagram:

R R;C GolsRp—" o p
J
A AC A Y S A
-
Aln Ajfry o P Ay fp, s Aln am

A, resp. R, stand for the whole diagrams consisting of the respective small subalgebras A; of
A and R; = RN A; x A; (by fact 3.5, R and all R; € MAIgy,(X), while by fact 2.51, R; C R)
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with the inclusion arrows aj;, resp. rj;. A with inclusions a; is colimit of A. The collection
of all r;’s, resp., all a;’s is jointly epi. All ¢;’s are epi.

The diagram A /r contains all quotient algebras A;/r; and monos (inclusion arrows) between
them. Since each A; is small, so is each A;/r,, by Fact 2.55. Since for each i : R; = RNA; x A4;,
we have an inclusion aj; : A; — A; iff r;; : R; < R;. But then, this implies the existence
of a mono arj; : Aj/r; < Ai/r;. For each A;/r;, we can obtain an isomorphic algebra by
replacing every element [a]%¢ by [a]®.

We want to show that A/r with all ar; is colimit of A /r. Obviosuly, for each (existing) ar;;
we have that ar; = arj;; ars, since each (A;/r,, gi) is coequalizer of the respective 71, mi2, Fact
2.55. So assume an X with arrows z; : A;/r; — X such that z; = arj;; z; for all (relevant)
1,5

1. Since g;;arj; = aji;q;, we obtain that for all (relevant) j,i : z; = arji;z; = ¢j;2; =
gj;arji; i = aji;¢i; ;. That is, X with ¢;;2; is a commutative cocone over A. Since A is
colimit of A, we obtain a unique arrow ax : A — X such that for all ¢ : g;; z; = as;azx.

2. For every i, since m;1;q; = mi2;qi, SO also m1;qi;x; = mi2;qi;x; and by 1, w1500z =
mi2; a;;ax. By Fact 3.7, we thus have 71;ax = m2; ax.

3. By Fact 2.55, (A/r,q) is coequalizer of 71,72, and thus we obtain a unique arrow z :
A/r — X making g; x = az. This is the arrow we are looking for:

4. Commutativity: ¢;;ari; ¢ = ai;q;x S ai;ax = qi; xi. But ¢; is epi and so ari;x = ;.

5. Uniqueness: assume another arrow y : A/r — X with ar;;y = x; for all ¢. Then also,

Q;Ti = qi;ar;;y = aq;q;y and thus, for every ¢ : a;;q;y = ai;q;x. Since a; are jointly epi,

this means that ¢; ¥y = ¢; * and now, since q is epi, T = y.

Since A/r is a colimit of small algebras, it is set-reflecting, i.e., A/r € MAIg{,(X), by fact 3.4.
O

3.2 Cocompleteness

Given two functors, F, G : Set — Set, one forms dialgebras § : F(X) — G(X) as suggested
in section 1, p.3, obtaining the category Set&. Theorem 13 in [41] states that the forgetful
functor Set& — Set creates and preserves all kinds of colimits that are preserved by F. (In
case of coalgebras, F' = idse, and so creation of colimits (e.g., theorem 4.5 in [38]) follows
immediately.) Although we have moved from Set to CLASS, we might be tempted to retain
this theorem and apply it to our case, where F' is the (polynomial) signature functor. But, of
course, this is not possible because we are working with different homomorphisms than those
induced by the definition of dialgebras. Nevertheless, although the theorem does not apply
to our case, its conclusion does: colimits in MAIgy,-(X) are indeed created by the forgetful
functor. The following results apply also to MAlg,-(2) and these are given in square brackets.

Proposition 3.9 MAlgh,(X) [and MAlg,(X)] has initial objects and all coproducts [of
small diagrams].

ProOOF: Empty algebra is trivially an initial object.

Consider first a class {A; | 4 € I} of small algebras. We define their coproduct [[;.; A; to
be the algebra C'P whose carrier is the disjoint union of the carriers of all A;, i.e., the class
lH; A: = {{a,4) | i € I, a € A;}, with the operations defined as follows:

FOP (ar, in)e{m, in)) = { £ (al'“g") iy i = =iy =i (3.10)

otherwise

and constants as: ¢ = ¥, cti.
The injections ¢; : A; < CP are obviously OT-homomorphisms.
Assume an object X with arrows v; : A; — X, for every i € I, with the OT-arrows, i.e.,

satisfying for every f:

AW (@) = i~ (f (2) (3.11)
The mediating arrow u : CP — X defined by u({a, %)) = v:(a) trivially satisfies ¢;; u = 1; for
every i. We show that u is an OT-homomorphism: fF(u™(z)) = u™ (% (z)).
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P (z) = fCP(t"Ji ¥ (z)) def. of u
W, £ (i~ (2)) by (3.10)

= Wi~ (f* (=) by @3.11)

= u (f*(2)) def. of u

u is unique: Assume u # w2 : CP — X, which also satisfies: ¢;; us = 1); for all i. Then there
is a {c, i) € CP such that u({c,)) # u2({c,7)). But then t;; u2({c, 7)) # ¥i(c).

CP is trivially set-reflecting by the definition of operations in (3.10), as all A; are small.

If now class {A; | ¢« € I} contains arbitrary set-reflecting algebras, the construction and
verification of universality proceed in the same way as above, and we only check that the
resulting CP is still set-reflecting. It is, in fact, colimit of small subalgebras. (Just replace
each large A; (in the discrete coproduct diagram) by the diagram of its small subalgebras (or
isomorphic ones, with the elements of CP). CP, with the arrows a; : A;r — A; (for each
large A; and all small A;, C A;) replaced by the respective compositions a;; ¢, is colimit of
this expanded diagram.) Hence CP is set-reflecting by fact 3.4.

(It is clear that the construction works for small diagrams in the category MAlg,(2), as well
as in MAIg5,(X).] m|

Proposition 3.12 MAIg,1(X2) [and MAIg,r(X)] has all coequalizers.

PROOF: Given two arrows ¢1,¢2 : A — B, we start as usual by considering the equivalence
closure ~ on B of the relation E = {{¢1(a), $2(a)) | a € A}.* Equivalence classes induced by
this relation are denoted Bi, Bs.... Assuming the global axiom of choice, we can choose the
representatives b; € B;, and the carrier of the coequalizer object CE is the collection of such
representatives. We may occasionally write [b;] for B;.> Operations are defined by:

by € fOE (b)) < B: C f5(B1) (3.13)

which for constants specializes to: b; € c°? <= B; C ¢®. The arrow ce : B — CE is the
usual Vz € B; : ce(r) = b;. By the definition of ~, it makes ¢1;ce = ¢2; ce. It is also OT. Let
5 ~ by
2o By €ce (FOE (b)) = o€ FOE(b)
(3.13) <= B> C fB(B)
ce” (b)) = B = b€ fB(ce (b1))
and other way:
by € fP(ce™(b1)) =  bhe fB(B) (3.14)
(3.15) = Bs (_Z fB(Bl)
(3.13) < b€ f9F ()
ce (bz) = B> = By Cce™ (fCE (bl))
byeBy =  bhece (b))
The transition marked (3.15) needs a more involved justification. The claim we are making is
even stronger, namely, (we write now by instead of b} since this choice does not matter here):®

b € f¥(b1) = B2 C f7(B1) (3.15)
So assume that (3.15) does not hold, i.e.,

a. b € fB(b1) but
b. 3b, € By : VO, € By : by & F5(B)).

4If this relation is a class, we can perform the needded closure even if we worked in NBG, as their definitions
do not require any quantification over classes. E.g., ref(E) = EU{(a,a) | a € A}, sym(E) = EU {(a,b) | {(b,a) €
E}, X;E = {{(a,b) | 3¢ : aXc A cEb}, and the last operation can be iterated w times startig with X = id.

5In case some of B;’s are proper classes, we have to follow the trick of Dana Scott (quoted in [1], Appendix B)
in order to obtain the quotient, i.e., to consider as B; only its subset of the elements having the least possible rank
in the cumulative hierarchy.

6This, as a matter of fact, is a general property implied by outer-tightness.
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Then, certainly, b5 # b2 and since these two elements end up in the same equivalence class,
they both must be in the image of either ¢: or ¢2. Moreover, a. and b. mean that we can
divide B> into two non-empty subclasses: Y = Ba N f2(B1) and N = B> \ 'Y (with b2 € Y
and b5 € N). Since B, = N UY so0, by definition of ~, there must exist an a € A : ¢1(a) €
N A ¢2(a) € Y. Let us, without loss of generality, call these elements ¢1(a) = b5, € N and
¢2(a) = by € Y (ambiguously, since these need not be the same as bs, by used so far). We now
have:

> & QB(BI) and bs € ]LB(B1)
$1(a) ifB(Bl) ¢2(a) EllfB(Bl)
a & ¢y (7 (B1)) a € ¢, (f7(B1))
() since ¢; are OT (3
a ¢ (41 (B1)) a € f4(¢; (B1))
¢1 (B1) = X = ¢, (B1) 4
a & fA(X) and a € fA4(X)

The equality ¢7 (B;) = ¢ (B;) holds for all equivalence classes B; by definition of ~. This
contradiction establishes (3.15) and hence the equality (3.14), so ce is OT-homomorphism.

To show universality, assume a 9 : B — X with ¢1;¢ = ¢2;19. We define the mediating
arrow u : CE — X in the standard way: u([b]) = 1(b). By the standard argument (since v
coequalizes ¢1, ¢2), we have that [b] C [b]¥ (where [b]Y = {b' € B | (V') = ¢(b)} = v~ (¥(b)))
which, in turn, implies that u is well defined and unique making ¢ = ce;u. (We use the
notation [b] ambiguously: whenever followed by [b] € ... it stands for the chosen representative,
while in [b] C ... it stands for the whole class.)

We show that u is OT-homomorphism. First the inclusion f¢Z(u™(z)) D u™ (f X ()) :

Bl €u (FX(z) = wu(b]) € f*(z)
def.of u = (b) € fX(x)
= YT (¥(Ob) Sy (fF(x)
Yis OT = [b]Y C fP(y (z))
Bl Cp? = [?b] C P (z)
= 7

What we want now is that [b] € f“(u™(x)) but this requires a more involved argument. We
have that 30’ : ¢~ (z) = [b']¥ and also that [b']¥ = Upijewu— () [bi] by definition of u (i.e., [b]¥
may comprise several distinct [b;].) Rewriting the conclusion of the above implications, we

thus have
pcrfc U mh= U (3.16)
[bileu—(z) [bilew=(z)
We want to show that [b] is actually included in £ ([b;]) for some particular [6;] € u~ (). Now,
from (3.16) we certainly have then that 3[b;] € ™ (z) : b € fZ([b;]). The desired fact, namely,
J[b:] € w (z) : [6] € FE([b:]), follows now by outer-tightness of ce or, more specifically, by
(3.15). The overall conclusion, that [b] € f¢F(u™(z)), follows now by (3.13).

We show the other inclusion fF(u™(z)) C v~ (f¥(x)) :

[b] € fO" (u™ () = [b0] Cce” (fOF(u (2)))
ceis OT = [b] C fB(ce” (u™(2)))
P =uTseem = )] C P ()
$is OT = [b] C4~(f*(2))
$ =umice = [b] Ceem(u(f* (@)
= [b] € u (f*(2))

So, CE is a coequalizer object with the OT-homomorphism ce.

The equivalence ~ we have started with is the kernel of ce and so, since ce is OT, ~ is OT-
congruence by fact 2.40. Thus CE, being a quotient of B € MAIgy,~(X) by this congruence,
is set-reflecting, i.e., CE € MAlgf(X), by lemma 3.8.

[It is clear that the construction for small algebras can be applied to obtain coequalizers in
MAlgor(X), as well as in MAlgg(2).] m|
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This fact shows why we must admit operations in multialgebras returning proper classes, and
not only sets. Let A have sorts s and ¢4, both proper classes, and a function fA csh ot
which is bijective. The relation ~ given by s x s* and id;a is OT-congruence on A, and
a coequalizer of the (projection) arrows from the congruence algebra A™ to A, is C with
t¢ =t* and s = {e}, and with f(e) =t.

As existence of all colimits is equivalent to the existence of initial objects, coequalizers
and coproducts, we obtain

Theorem 3.17 MAlg{,(X) [and MAlg,(3)] is cocomplete.

This strengthens the initial lemmata 3.3-3.4 which only showed equivalence of being set-
reflecting and being colimit of small subalgebras without either claiming nor demonstrating
the actual existence of all such colimits.

3.3 Completeness

Theorem 9 from [41], corresponding to the one quoted at the beginning of the previous
subsection, states that the forgetful functor Sets — Set creates and preserves all kinds of
limits that are preserved by G. (In case of algebras, G = idset, and so completeness follows
from this general statement.) In our case, G is the power-set functor which preserves weak
pullbacks (and hence intersections) or pullbacks with at least one arrow being injective but,
unfortunately, neither products nor equalizers. Thus, even if applicable, the theorem would
not yield any positive result. As we will show, constructions of limits are challenging and novel
and offer new insights into the structure of our category. In particular, in case of final objects
and products, we will see close and intricate relationships to the notion of bireachability.

Proposition 3.18 MAlg;, () [and MAlg,(X)] has all equalizers.

ProOOF: We show first the claim only for small algebras, namely, the existence of an equalizer
object E and arrow e : E — A for a pair of arrows ¢1,¢2 : A — B, where A is small. It is
constructed in the more or less standard way.

We let Eo = {a € A | ¢1(a) = ¢2(a)} and let E be the largest subalgebra of A contained
in Ey. Le., following the construction from fact 2.31, given E;, we obtain E;;, by removing
all elements e € E; such that for some ap € A\ E; : e € fA(a’,ao,a). E = ﬂiEw E;. The
operations are defined by fZ(x) = f4(x) N E for all z € E, and the arrow e : E — A is
inclusion (which is OT, by fact 2.31).

We verify the universal property. Assume ¢ : X — A with ¢;¢1 = 9;¢2. We define the
arrow u : X = E by u(z) = ¥(x). This will do the job (yielding unique u such that u;e = )
whenever ¥ (z) € E, so we have to show that this will be the case for all x € X, i.e., that
[X] C E. Since 1) equalizes ¢1, ¢2, we certainly have ¢[X] C Ey. So assume, as the induction
hypothesis, ¢[X] C E;. For any = € X we obtain f*~ (¢(x)) = ¢(f* (z)) C ¥[X] C Ei,
where the equality holds since 9 is OT. By definition of F;1; this means that ¢(z) € E;11
and so Y[X] C E; = ¢[X] C E;t+1. Hence, eventually, ¥[X] C E.

In the general case, when A is set-reflecting, it is colimit of its small subalgebras, {Ax | k£ € I},
over some diagram D. Take equalizer (Eg,er) of each pair tx;¢1 and tx;¢2 and then the
colimit E of the diagram D with each Ay replaced by Ej (Colimit exists since MAlgy, (%)
is cocomplete, and the shape of D remains the same since, if for some k,! : A; C Ag, then
both E;, E), C Aj and thus, by fact 2.22, also E; C Ej%.) Denote the arrows from Ej to E
by ir (since, for each k : ix;e = eg;tr and both latter arrows are inclusions, each i, must
be injective.) The arrows eg;tr : Er — A imply the existence of unique universal arrow
e: E — A, and we show that (E,e) is equalizer of ¢1,¢2.

El(;) A

: K
: b1

C—>A— < B

/ / $2
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Since eg; 1y, = ix; e for every k, and each ey ; ¢, equalizes @1, ¢2, we also have iy; e; p1 = ix;e€; Pa.
Let z € E be arbitrary. If for some k and ' € Ej, : ¢ = ix(z’), we obtain that ¢1(e(z)) =
¢2(e(x)). But since E is colimit of all Ey, all x € E must satisfy this condition (i.e., by
the construction of coproducts and coequalizers, Vo € E 3Ey,z’ € E : £ = ix(z')), and so
e;p1 = e; Po.

We verify the universal property. Given an X with an arrow ¢ : X — A such that ;¢ =
;2. If X is small, the arrow 1) can be factored through some small subalgebra i : X b
Ap 5 A, and since Ej is an equalizer with respect to ¢x; 1 and ¢x; 2, we obtain a unique
arrow ug, : X — Ejp, with ug;er = g, yielding also ug;ex;tr = ¢ and hence also (since i is
mono) a unique ug;ir = u: X — E with u;e = . If X is not small (but set-reflecting) it is a
colimit of its small subalgebras and the above construction follows for each such X C X. We
obtain the collection of (unique) arrows ug;ix : Xr — E which, by the colimit property of X,
give a unique arrow u : X — E. Chasing the diagram yields the required fact that u;e = 1.
Since E is colimit of its small subalgebras, it is set-reflecting, i.e., E € MAlgf,(2), by fact 3.4.
[It is clear that the construction for small algebras will yield equalizers also in MAlg,, (%),
as well as in MAIgg,(2).] m|

To show the existence of final objects, reported in [42], we first state a simple lemma.

Lemma 3.19 For a multialgebra A, let ~4 be the mazimal OT-congruence on A (existing
by Lemma 8.6). For any algebra B there is at most one OT-homomorphism B — A/~ , .

PROOF: By the construction of coequalizers in MAIlgy,(X), Fact 3.12. If there were two
distinct @1, ¢2 : B — A/~ ,, there would be a non-trivial coequalizing arrow ce : Ajn, — CE,
making ¢1;ce = ¢2;ce. Its non-triviality means that its kernel ~ce # ida,, , and, since ce
is OT so, by Fact 2.40, ~g;ce is an OT-congruence, where ¢ is the quotient homomorphism
qg: A— A/.,. But then we can use ~g;c. to obtain a larger OT-congruence on A than ~4,
contradicting the assumption that ~4 was the largest such. |

Theorem 3.20 MAIg{,-(X) has final objects.

PROOF: Let CP be a coproduct of all (non-isomorphic) small algebras in MAlgf,,-(X) (which
exists and is set-reflecting by Fact 3.9). Let ~cp be the maximal OT-congruence on CP
(existing by Lemma 3.6), and let Z = CP/v.p. (By Lemma 3.8, Z is set-reflecting and so
Z € MAlg,,r(%).)

For every small algebra A € MAIgy, (X)), there is (at least one) morphism A — CP and then,
composing it with the quotient morphism CP — Z, exactly one (by lemma 3.19) morphism
a:A—Z.

Any other (large) A € MAIg5(2) is colimit of its small subalgebras, with the inclusions
ti + A; — A. Since there is also (exactly) one morphism a; : A; — Z for each small subalgebra
A; C A, the colimit property yields a (unique) morphism u : A — Z (making ¢;;u = a;). But
then, since there is such a morphism A — Z so, by lemma 3.19, it is unique. O

Construction of products is a more complicated task and we devote to it the next Section.

4 Construction of products

We comment first on the relationship between product and (maximal) bireachability between
algebras in order to signal potential complications. The actual construction and proofs are
given in the three subsections. The following section 5 shows that this construction can be
utilized also in the categories MAlgg-(X) of k-bounded multialgebras.

In the case of coalgebras, preservation of mono-sources (by the signature functor) is equiv-
alent with the coincidence of product and maximal bisimulation (theorem 8.6 in [17]). Thus,
by the duality from remark 2.9 and that between bisimilarity and bireachability, if we consid-
ered only the subcategory of multialgebras obtained from coalgebras (over a given polynomial
functor), we could conclude the existence of products, namely, of maximal bireachabilities
between the arguments (with the algebraic structure defined in (2.59)). However, our case is
more general and also more complicated since, in a given MAlg,(X)/MAIlgy,(X), there are
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multialgebras which are not converses of coalgebras over (the respective) polynomial functor
3. The problems and counterexamples will be provided exactly by such multialgebras. (The
category of coalgebras for power-set functor is isomorphic to MAlg, (%) for a ¥ with a single
operation S — P(S). But power-set functor does not preserve mono-sources, and so, by the
just quoted theorem, products do not coincide with maximal bisimulations. Our results will
yield also a construction of products for coalgebras over power-set functor.)

Recall the definition 2.58 of bireachability between two algebras as a subset C C A; x A3
satisfying the bireachbility condition:

Va,b,a1: C(a,b)Aa € fA4%(a1) = 3b1 € Ay : b € f42(b1) A C(as,br)

& Va,b,br: Ca,b) AbE f2(b1) = Jar € A1 : a € F4(ar) A Cla, br) (2.58)

As noted earlier, this condition is preserved under arbitrary unions and thus, collecting all
small bireachabilities between two algebras A and B, we obtain the counterpart of lemma 3.6.
We also register the counterpart of fact 3.5 (with essentially the same proof.)

Fact 4.1 For every A,B € MAIg,,(X) there exists a (unique) mazimal bireachability be-
tween A and B. Moreover, any bireachability between A, B (with operations defined according
to (2.59)) is set-reflecting.

This maximal bireachability need not, however, be the product of A, B.

Example 4.2 Consider two algebras over 3 = ({s1, s2}, {f : s1 = s2}) (as in ezample 2.63):
B

A a b
/N /TN
a1 as b1 by

Following are examples of bireachabilities between A and B:

Ry : (a,b) Ry : (a, b)
7 AN 7 AN
Ry : (a1, b1) {a1,b1) (a2, b2) {a1,b2) {az,b1)
R3: {a,b) Ry=R; U Rz/, {a,b)
A N et ~
(a1,b1)  (a1,b2)  (a2,b2) (a1,b1) (a1,b2) (az,b1)  (a2,b2)

Ry is the mazimal bireachability between A and B — every other bireachability is a subset of
it. However, only Ry C R4, while niether R1, Ry nor R3 is a subalgebra of R4: the inclusions
are not OT-homomorphisms. Consequently, R4 can not possibly be the product of A, B, as
the projections from, say, Ra would not factor through it.

We will conduct the proof for the binary products only, but it will be easy to see that all
the constructions and results generalize to products of arbitrary sets of objects.
Our category MAIlgy,-(X) has all colimits and, given A, A, we proceed as follows:

4.1 show that it has epi-monosource factorisation, namely, proposition 4.7; moreover, that
the monosource is a quotient of the domain of the span by a unique congruence

4.2 take colimit P of the diagram D of all non-isomorphic monosources for A;, A» with
arrows commuting with the span arrows (unige monos)

4.3 show that P is a monosource and hence (since it is colimit of monosources) any span
has a uniqge factorisation through P.

For the rest of this section, we fix some A, A>. All considerations are relative to these two
objects, in particular, all spans and monosources have them as their codomain.

Definition 4.3 1. A (binary) monosource is a span A 2z Ay such that for any
¢, : X — M we have: (Vi : ¢;m; = Y;m;) = ¢ = ¢ (we also say, mi,ma are jointly
mono.)

2. A morphism between monosources (M, m;) and (N, n;) with the same codomain is a mor-
phism h: M — N such that m; = h;n;.

3. Monosources (M, m;) and (N, n;) are isomorphic iff there ezists an isomorphism h: M ~
N which is monosource morphism.
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Non-isomorphic monosources can still have isomorphic domains. Obviously, if (M, m;) is a
monosource and N C M (with mono ¢ : N — M), then also (IV,¢;m;) is a monosource.
(We will often skip ¢ in the notation for monosources/spans from subobjects, i.e., we will
usually write simply (N, m;).) Given two objects A;, A» € MAIg} (), we obtain the cate-
gory MS(A;1, A2) with all monosources with the codomain A;, A» as objects and monosource
morphisms as morphisms.

Fact 4.4 1. Given a span A, 2 NZE A anda morphism h: M — N, if (M, h;n;) is a
momnosource, then h is mono.
2. For any monosource morphism h : (M, m;) = (N,n;), h: M — N is mono.

Proor: 1. If for two morphisms f, g : X — M we have f; h = g; h then also f; h;n; = g; h;n;,
and so f = g since (M, h;n;) is a monosource.
2. follows from 1. since (M, m;) = (N, h; n;). O

The following fact helps in establishing some uniqueness results.

Fact 4.5 Given a span (M, m;), let ~; be the kernel of m;. (M, m;) is a monosource iff the
greatest lower bound ~1 N\ ~o = idys.

PROOF: =) Let ~ = ~; A ~3 denote the greatest lower bound of m;s’ kernels and M™ be as
™1

in definition 2.54. By fact 2.55, there is a coequalizer diagram: M~ —=% M —> M/.. .
T2

Now ~ C ~; ensures the existence of a unique n; : M/~ — A; such that n;n; = m;.

1
M~ - < —n—> M/N
T
This entails m1;m; = wi;n;n; = m;n;n; = w;m; and so m1 = w2 since (M, m;) is a

monosource. Hence ~ C 4dy with the opposite inclusion following trivially since ~ is a
congruence.

<) Conversely, assume ~1 A ~2 = idn, and let (¥) w1;m; = m2;m; for some m; : M~ — M
as in the diagram above. Let n : M — M/, be their coequalizer. By assumption (*), the
coequalizer property gives then unique n; : M /. — A; such that n;n; = m;. This means that
ker(m;n;) = ~; which, in particular, implies that idys C ~ C ker(n) C ~1 A ~2 = id, since
~ is an equivalence. ker(n) = idn, however, means that m1 = w2 due to the construction of
coequalizers. O

Example 4.6 Note that monosource need not have domain which is a subset of the cartesian
product of the codomains. E.g.:

1 2
| f
Ay ao bo Ay T1Z2 B
/N N T
ai a2 b1 bs aobo
SR
T1T2 a1b1 a2b2 (I1b2 (12b1
aobo/ M \aobo
7N /N
a1y asbs a1bs asby

The names of M elements identify the images under m; : M — A;. B is the bireachability
induced between A; and Az by this span. (It is also the mazimal bireachability between them.)
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Using the criterion from the above fact, it is easy to convince oneself that M is a monosource.
In particular, the obvious mapping M — B is not a homomorphism (i.e., the relation relating
(only) the two copies of aobo is not a congruence on M.) B, with the indicatedd projections,
is also a monosource.

4.1 Epi-monosource factorisation

The first main partial result is:

Lemma 4.7 For any span A; il C i2> Ay there is a monosource A; s M g Ay and
an epi em : C — M = C/~ such that ¢; = em;m; and ker(em) = ker(pr) A ker(d2).

PROOF: Let ~; denote the kernel of ¢; and ~ = ~; A ~; their greatest lower bound (which
exists by fact 2.46). We show first that we have m; making M ~ C/. a monosource.

Since ~ C ~;, we obtain by the coequalizer property of ers : C — C/~, unique m; : C/o — A;
such that ¢; = enr;m;:

A

N

BS

To show that (M, m;) is a monosource, assume given gi,g2 : X — M with gi;m; = g2;m;.
Let n : C/~ — N be their coequalizer. As coequalizer arrow (*) n is epi and, moreover,
~ = ker(em) C ker(ear; n).

By coequalizer property, there exist unique n; : N — A; making n;n; = m,. Then, since
eM;n;N; = em;m; = ¢;, so ker(em;n) C ker(em;n;n;) = ~; and thus ker(em;n) C ~.
Together with (*) we obtain ~ = ker(enr; n) which implies that n is injective. Since n is also
epi, it is iso by proposition 2.13. But then g1 = g1;n;n" = g2;n;n~ = go. O
We strengthen the above lemma showing that C/. is the unique monosource satisfying the
conditions. To do this, we first verify that our category has the diagonal fill-in property.
Lemma 4.8 Given a span g; : G — A;, an epi e : C — G, a monosource (N,n;) and an
f : C — N such that e;g; = f;n;, there exists a unique k : G — N such that e;k = f and
kim; = g;.

PrOOF: By corollary 2.56, e is reqular, so let m; : X — C be coequalized by e.

1
X—/—=C———¢

Ty
fl e lg,-
&

N——]— 4

By assumption, m1; f;ni = mi;e;9; = w25 e;9; = w2; f;ns and thus 71; f = m2; f since N is
a monosource. Since e : C — G is a coqualizer of 7;s, we obtain a unique k : G — N with
e;k = f. Now, e; k;n; = f;n; = e; g; and so k;n; = g; since e is epi. O

Corollary 4.9 (C/~,m;) in lemma 4.7 is unique (up to monosource isomorphism,).

ProoF: Consider a span A; 2N C 22 Ay , and let (M, m;), (N, n;) be two monosource fac-
torisations of this span.

By lemma 4.8 there exists a unique k¥ : M — N such that exm;k = exv and m; = k;n;
and, dually, a unige g : N — M with the respective ex;9g = enm and n; = g;m;. Then
k; g;mi = k;ni = m; = idap;m; and, since (M, m;) is a monosource, k; g = idy. Analogously,
we get g;k = idn. O

42



4.2 Colimit of monosources...

Given a pair A;, A, € MAIgy(2), we obtain the category MS(A1, Az) of monosources
with the codomain A;, A> and with monosource morphisms. We let D be its skeleton. As
MAlg5(X) has all colimits, consider the colimit P of the “base” of the diagram D, namely
P, {e(myms) : M — P | (M, m;) € D}). (We will skip the morphisms in the notation, i.e.,
will write ¢)s rather than L(M’mi).) According to fact 4.4.1, each tps is a mono. For any
g: (M,m;) = (N, n;) in D, we have m; = g;n; and so the colimit property provides a unique
“mediating” span m; : P — A; such that m; = var; m; for every (M, m;) € D.

(Typically, given a subobject S C P, we will identify in the notation the arrows m; : P —
A;and m; : S — A;l)

4.3 ... is a product
To show that (P, ;) is a product, we show first some auxiliary results.

Fact 4.10 1. For every monosource (M, m;) € D, the restriction tamr : M — tm[M] gives a
(monosource) isomorphism (M, m;) ~ (¢pm[M], 7).

2. For every monosource (N,n;) € MS(A1, Ay) there is a subalgebra Py C P such that
v (N, n;) = (Pn, i) is a monosource isomorphism.

PROOF: 1. 1y [M] C P so tu is actually a span morphism tar : (M, m;) — (em[M], ). It is
surjective and, by fact 4.4.1, mono so, by 2.13 it is iso. Hence (¢ap[M], 7;) is a monosource,
and so t)s is a monosource iso.

2. By definition, for every monosource (N, n;) € MS(A;1, Az) there is a unique (M, m;) € D
with a monosource iso jn : (IV,n;) = (M, m;). By 1, we can choose Py = tp[M] and let
LN = jN; LM . O

Lemma 4.11 Let (M, m;) € D and assume given f : N — M and g : N — P such that
(N, g; i) is a monosource and f is a monosource morphism (N,g;m) — (M, m;). Then
g=fiem.

ProOOF: We consider the following diagram

sl = :S Sy ——
| .
iS4393t N, | g (4.12)
Voo
Ny — v, [Va] g

c
INg

Since colimit arrows are jointly epi, for any x € N there exists a monosource (N, n;) € D
such that g(z) € ¢n,[Nz] C P. By lemma 2.32.2, S, = g™ [tnv,[Nz]] E N. By assumption,
(N, g; m;) is a monosource and so is (Sz, C; g; ;) since C: S, — N is mono.

P

By definition of D there exists a monosource (S5, s;) € D with a monosource isomorphism
is, @ (S5, 8:) = (Sz,C;g;m;). Since the restriction ¢y, is a monosource isomorphism by fact
4.10.1, so we have a monosource morphism is,; g;ty, : (Sg, i) = (Nz,n:) in D (marked with
the dashed arrow). On the other hand, we also have in D a monosource morphism ig_;C; f :
(83,8i) = (M,m;). The colimit property entails then is,; g;ty_;tn, = ts,;C; f; e which,
according to the definition of S, implies is,;9;C = is,;C; f;tmr. We have g;C = LC; g, so
we obtain ig,;C; g = is,; C; f; tm from which it follows that C; g = C; f; tar since ¢g, is iso.
Since = € S;, this proves g(z) = tm (f(2)).

O
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Corollary 4.13 1. Givenk: N - K, g: N - P, h: K — P such that (N; g;m), (K, h;m;)
are monosources and k is monosource morphism between them — then k;h = g.

2. For every monosource (M, m;) there is ezactly one monosource M' T P such that
(M, m;) and (M',m;) are isomorphic (as monosources).

PROOF: 1. By definition of D there is an isomorphism i : (K, h;m;) — (M, m;), for some
(M, m;) € D.

N— s gty

PN

P

By 4.11, we obtain k;i;tm = g and ¢;ems = h so k;h = g.

2. The existence of such an M’ is given in fact 4.10.1. As to uniqueness, assume two isomorphic
subobjects NV, K C P with an isomorphism k£ : N — K. In the diagram above, h,g are then
inclusions. By 1. k;C = C, which means that k itself is an inclusion, and likewise is k~. O

The proof of the following lemma follows the same argument as the proof of lemma 4.11.

Lemma 4.14 Given some g : C — P, let (e : C — g[C];C: g[C] — P) be epi-mono
factorisation of g (existing by lemma 2.42). Furthermore, let (M, m;) and e : C — M be
epi-monosource factorisation of the span (C,g; ;) (existing by lemma 4.7). Then e;im = g
is also epi-mono factorisation of g.

ProOOF: By assumption g;m; = eg; C;m = e;my;

c—2 s g[C]

Thus, by lemma 4.8, there exists a (unique) k : g[C] — M such that (*) eg;k = e and
k;m; = C;m. That is, k is a span morphism k& : (g9[C],C;m) — (M, m;) = (M, enm; 7).
Showing that k;¢ar = C will yield the claim.

We refer to the diagram (4.12) where we substitute g[C] for N and k for f. We annotate
some inclusions to ease the references.

S == S,

| *Sa
iSg395t Ny | lE'

Voo,
Ny — i, [NVe]

c’

=z

LNy

As in the proof of 4.11, for any z € g[C] there is a monosource (N, n;) € D with z € 1y, [Ng].
Then, by fact 2.25, also g[C] N tn,[Nz] = Sz is a subalgebra of g[C] and of ¢n,[Nz]. By
fact 4.10.1, (¢env, [Ng], Ez;mi) is a monosource, and hence (Sz, C'; Cyp; i) = (Sg, Ch; E; i) is
a monosource, since T’ is mono.
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By definition of D, there is a monosource (S, s;) € D with the isomorphism is, : (S%,s;) —
(Sz,CE.; C; ;). As in the proof of 4.11, we can conclude is,; C; Ly, itNg = is.; s kyou, e,
is,;C' Cy = 4s,;C0 C =4s,;C'; k;eam. Since is, is iso, this implies Co; C = C’; k; e, and
as « € Sz, this shows that = = tp(k(x)) and thus (**) C = k; ta since = was arbitrary.

We now obtain g = eg; C () eg; ks (*Z)B;LM. O

Corollary 4.15 1. (P,m;) is a monosource and 2. every subobject C C P is a monosource
(C,5;mi).

PROOF: 2. follows from 1. since composition of a mono with a monosource is a monosource.
To show 1, assume f,g : C — P with f;m; = g;m. Let (F,f;) with ef : C — F be
epi-monosource factorisation of f, and similarly (G, g;) with eg : C — G for g.

By lemma 4.8, there is a unique k : F' — G such that (*) ef; k = ey and k; g; = f;. This latter
equality means that k : (F, fi) — (G, ¢;) is a monosource morphism. By fact 4.10.2, we also
have a monosource morphism ¢z : (F, f;) — (P, m;), hence (F, f;) = (F,¢r;m;) and likewise
for (G,9:) = (G,ie;m). So k is a monosource morphism &k : (F,ip;m) — (G,te;m). By
corollary 4.13.1, we then have tr = k;tg, which gives the second of the following equalities,
with the first and the last one following from lemma 4.14: f =ef;ir = ey; kjia (*:) eg;lg = ¢.

O

Theorem 4.16 Colimit P of the diagram D — a skeleton of MS(A1, A2) — with the projections
m; as defined in Subsection 4.2, is a product A1 x As.

PROOF: Let ¢; : C — A; be a span. By lemma 4.7, there is a morphism e : C — M into a
monosource (M, m;) such that ¢; = e;m;. Composed with ¢ar : M — P (which commutes
with the projections, i.e., m; = tar; m;), this gives an u = e; ¢ such that ¢; = u;m;. We thus
obtain an arrow u: C' — P which, by corollary 4.15, is unique.

Since P is colimit object of a diagram over MAlgg,(X), it is set-reflecting by cocompleteness
of the category, i.e., P € MAlg} . (X). m|

Extension to products of arbitrary sets of objects, [],.; 4i, is straightforward. (The only
changes of some significance are to consider I-indexed monosources and taking greatest lower
bound of I kernels, in 4.1, which is possible since collection of congruences on a given algebra
is a complete lattice.)

Theorem 4.17 For any set I and collection of objects {A; € MAlgh, (%) | ¢ € I}, the colimit
of the diagram of all non-isomorphic monosources (M, m; : M — A;) is the product [],., Ai.

Notice that we do not obtain products for all class-indexed families. Extending the proof
might, for instance, require showing that not only any set but also any class of congruences
on an algebra has an infimum. This limitation follows directly from the fact that a category
that has all, also class-indexed, products is thin (e.g., theorem 10.32 in [3]), while our category
obviously is not thin.

5 The categories MAlg)H(X)

Thus, category MAlgy,-(X) is complete and cocomplete, but MAlg,(X), although cocomplete
and possessing equalizers, can fail to have final objects as well as products. The former failure
was discussed in 2.4 and the latter is illustrated by the following example, adapted (and
corrected) from [17].
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Example 5.1 Consider the signature with one unary operation f : S — S and the following

two algebras A and B: N
4: C 01 3

In B, f is the transitive closure of the following graph:

()
N
B: C 0.1 2 3

Looking for the product A x A, consider two homomorphisms B — A given by:

$a(0) =0 and ¢o(z) =1 for z >0,

#u(1) =1 and ¢u(y) =0 fory # 1.
Their respective kernels are ~, and ~yp as shown in Example 2.48, with ~o A ~py=1idp. Le.,
(B, ¢a, ) is a monosource and hence its mediating morphism into A x A must be injective.
The same applies to B extended with any further chain of elements for an arbitrary ordinal.
Hence, there is no cardinality limit on the product A x A in MAlg, (%), and one concludes
that this product does not ezists in MAlg,(X).

We therefore consider now the category MAIgg, (%), for some infinite cardinal k. Inspecting
the constructions of coproducts and coequalizers, one concludes easily that

Fact 5.2 MAIgg(X2) is cocomplete.

Equalizers exists by essentially the same construction as in Proposition 3.18. The proof of the
existence of final objects, Theorem 3.20, does not extend directly to the category MAIgg (%),
since the collection of all non-isomorphic k-bounded algebras can be a proper class. But it
can be adapted in the standard way (e.g., [5], I:4.5, [38], 10). x-boundedness implies that the
category MAIgs-(X) has a set of generators, namely, the collection of all (non-isomorphic)
algebras generated by a single element. (It is a set due to the cardinality limit s on every such
algebra.) Due to cocompleteness, one can take a coproduct of all generators, and its quotient
by the maximal OT-congruence yields a final object.

Finally, the construction and proofs for products apply without any changes to the category
MAlgd(X), provided that, given a pair/set of such algebras, the diagram D is small. This is
ensured by the following lemma. MS”(A;, A>) denotes the category of k-bounded monosources
with k-bounded codomain A;, As.

Lemma 5.3 Given an infinite cardinal K, there is o function f : Card x Card — Card such
that for any A1, As € MAlIgg(2) and any (M, m;) € MS® (A1, A2), |M| < f(|A1l,|Az2]).

PROOF: Let a; = |A;| be the cardinalities of A;’s and @ = a1 * a2 = |A1 X As|. Assume
(M, m;) € MS®(A1, A2) and let ~; = ker(m;). We show that there is a cardinal number
limiting from above the possible size of M. We use fact 4.5 and show that if cardinality of
M is too large then ~; A ~2 # idy. To do this, we apply the construction of infimum of two
congruences as given in Fact 2.47, adapting it so that in each step we determine a limit on
the possible number of obtained equivalence classes.

1. The first step gives £ ~o ' <= = ~1 ' Ax ~» ', i.e., each equivalence class is associated
with a unique pair (a1, a2) € A; X Az, namely such that m,([z]™°) = a1 and m2([z]™°) = as.
Hence, the number of these classes v < a.

2. The inductive step amounts to propagation of the existing distinctions, i.e., splitting of the
equivalence classes obtained so far. A class [y1]™* is split by removing the pairs (y1, y2) € ~;
for which there exist noncongruent pre-images, i.e., such pairs that (*) 3z1 € f~(y1) Vz2 €
f(y2) : {x1,x2) @ ~; for some f € .7 Now, for any y; and f, the pre-image f~ (y1)
determines a subset of ~;-equivalence classes, namely [f~ (y1)]™* = {[=]™ | [£]™* N f~(y:) #
@}. If y1,y2 satisfy (*), i.e., are split in the step ¢ + 1, then also [f~ (y1)]™* # [f~ (y2)]™*.
There are 2" such subsets, i.e., there are no more than 27 possible splittings of every one of
~; equivalence classes at step 7+ 1. So we obtain ;41 < ;%27 . (We have ignored some finite
constants which do not increase this estimate when ~;’s are infinite, namely, the number of
operations in the signature (which is finite), as well as the arity of the operations (which is
finite).)

"We write f~(y) for (fM)~(y).
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3. Due to k-boundedness, the construction terminates in at most k steps by Proposition 2.49.
Hence we obtain f(a1,a2) = v < U,¢, 7> which gives the upper bound on the number of
equivalence classes for the congruence ~ = ~; A ~».

So if |[M| > ~, the congruence ~ will yield some equivalence class with more than 1 element,
i.e., ~ #idy. But then, by fact 4.5, (M, m;) will not be a monosource. O

Proposition 5.4 For any set I and collection of objects {A; € MAlgg,(X) | ¢ € I}, the
diagram D of all non-isomorphic monosources (M, m; : M — A;) is small and its colimit is
a product [[;c; As.

PROOF: By the above lemma 5.3, the size of monosources is limited by (a function of) the size
of the codomain objects, and so there is at most a set of non-isomorphic monosources with
codomain {A4; | ¢ € I}. Since MAIg 1 (X) is cocomplete, a colimit of D exists in MAIg - (X).
The rest of the proof is exactly the same as the proof of theorem 4.16. O

The expansion given in Table 5.5, of the respective row from Table 1.12, summarizes our
results on the variants of the OT-categories.

initial | co-prod. | co-equal. || final | prod. | equal.
MAlgdH (%) + + + + + +
MAlgor () || + + + +/- | - +
MAlgs, (%) + + + + + +

Table 5.5: Limits and colimits in the OT-categories of multialgebras

Recalling the remark 2.12, the category of coalgebras for the (direct image) power-set
functor is isomorphic to MAlg,,(2) for X containing one sort and operation symbol f : S — S.
This isomorphism obtains also between MAlgg(2) and the category of coalgebras for s-
bounded power-set functor. Hence, all our constructions give the respective constructions for
this particular category of colagebras.

Corollary 5.6 The construction from section 4 yields products of coalgebras for k-boundend
power-set functor.

6 Conclusions

Multialgebras lie at the intersection of several research topics. They
e represent relational structures and, generally, Boolean algebras with operators, [25, 26];
e generalise traditional — both total and partial — algebras;
e provide a fundamental instance of power structures;

e provide an example of dialgebras, [18], by combining the general algebraic and specific
coalgebraic aspect in the signature (arbitrary products in arguments, only power-set in
the result);

e can represent categories of coalgebras for polynomial functors, as well as for power-set
functor;

e can represent (nondeterministic) automata, Kripke-frames, topological spaces...

The fact that multialgebras have attracted only limited attention might be the result of the
poor algebraic structure obtained with the apparently most natural choice of weak homo-
morphisms. Although the category MAlgy, (X) is complete and cocomplete, the congruence
associated with weak homomorphism is simply equivalence. On the other hand, the multi-
plicity of choices in defining most of the standard notions, including that of homomorphism,
leaves too much freedom for a systematic study of multialgebras.

We have shown that, as far as the notion of homomorphism is concerned, the number of
choices is limited to 9, and that most of these do not appear very attractive. (Of course, we do
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not mean that they can not possibly find applications which depend on the specific context.
Also, limiting the objects of the category, e.g., to only deterministic or partial algebras, may
yield several alternatives which do not obtain in the general situation investigated here.) The
structural properties as well as most other choices are heavily conditioned by this notion.
We have shown that choosing outer-tight homomorphisms (which imply weakness and, in the
case of standard deterministic algebras, the classical notion), multialgebras and their category
obtain strong algebraic structure: the associated notion of congruence — bireachability — can be
seen as dual of the traditional notion of congruence (and of bisimilarity), requiring propagation
of the congruence to the pre-images (e.g., subalgebras are closed under pre-images and not,
as in the classical case, under images of the operations) or, equivalently, propagation of the
distinctions to the images. The category MAIg,,(X) of all ¥-multialgebras is cocomplete and
has interesting final objects reflecting the maximal bireachability relation in the way analogous
to final coalgebras reflecting maximal bimsimilarity. However, to ensure the existence of final
objects and products in general, we have to extend the category to MAIg(,,-(X) by allowing
algebras with carriers being proper classes. We have characterized its objects as set-reflecting
algebras which condition is equivalent to every algebra being colimit of small algebras. The
category is complete and cocomplete. We have then shown that (minor modifications of)
the constructions in MAIg,(X) can be also applied to k-bounded multialgebras and that
MAIlg% (%) is complete and cocomplete.

We have not addressed here the issue of logic and reasoning. However, sound and strongly
complete logics for various variants of multialgebras have been designed [27, 21, 44, 45], the
most recent one in [29]. Its primitives contain set-inclusion and deterministic equality which
holds when both sides are not merely equal but equal one-element sets. (A different approach,
based on membership relation, is developed and studied in [9, 10].) Its main specificity is
the lack of substitutitivity property (as variables range only over individuals while terms
denote arbitrary sets). This can be seen as a serious drawback (precluding the possibility of
algebraization of the logic) or as a feature interesting in itself — representing not so unusual
situations when, for some reason, variables range only over a subset of semantic objects (as is
also the case, for instance, with partial algebras) or when allowed substitutions are restricted
for other reasons (as in first-order logic where one has to avoid variable capture).

The natural next step will be to study the preservation properties of the OT-homomorphisms
which may lead to adjustments in the primitive predicates of the logics used so far. Then
one would like to investigate the possibilities of lifting the current results on the existence of
(co)limits to the axiomatic classes.
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7 Appendix: assumptions in the treatment of classes

We use Grothendieck universes (after [34], 12.1) each satisfying the following axioms (for
Zermelo universe):

axl) z € U = = CU - U is transitive;

ax2) z,y € U = {x,y},{(x,y) € U — finite sets and pairs of members of U belong to U;

ax3) z € U = P(z) € UANJz € U — collection of all subcollections and unions of members
of U belong to U,

ax4) w € U natural numbers/finite ordinals belong to U;

axb) t €U,y CU, f:x —» y =y € U — image of a member of &/ under surjection belongs
to U.

In addition, one postulates Grothendieck axiom:

ax6) every set/class belongs to some universe,
and obtains thus the hierarchy Ui € Uz € Us € ... which, by transitivity, ax1), is cumulative
(i.e., € can be repalced by C). U;+1 can be thought of as P(U;) where P(_) forms not only
subsets (not only U;-objects), but all subcollections (also subclasses, i.e., U;+1-objects) of the

argument ;.
For instance, the following facts used at some places, are implied:

o K €U, sk € Ui = Uik Sk € Ui — in particular, set-indexed union of sets is a set,
e celUiy1,8 € Ui = cNs €U; — in particular, intersection with a set is a set,
which are among the axioms of NBG. But we are not working in NBG, for the reasons
expressed after fact 3.12 — we need allow in multialgebras operations retuning proper classes.
We thus have the following picture:
1) Usual algebras, A = ({s1...8n); & C Sik X ... X Spk;...) belong all to U;.
2) When the collections are proper classes, i.e, s; € Uz, then:
e (s1...8,) € U and si, X ... X S, € Us by ax2)
® fr:Sik X ... X Sj5 = P(Srk), from definition 1.2 is thus generalised to an operation
with the result P(s,x) € Uz —and fr C Sik X ... X S, € U by ax3) and ax1)
and so class-algebras, with carriers being proper classes and operations returning proper
classes, are also in Us.

3) Our constructions from section 3 apply thus to U2-objects; in particular, the diagrams
(of limits, colimits) referred to by the word “all” are all U diagrams, but they work in
the same way if we were to move higher up in the hierarchy.

4) This, in fact, we have to do. Consider an operation s — P(s) and the isomorphism
s ~ P(s) required by finality. The proof from [2] obtains this bijection by letting s
range over classes — objects of > — while P(_) constructing only subsets, i.e., objects
of Uy. Let us write (confusedly) U; also for the cardinality of {; (or the i-th (strongly)
inaccessible cardinal, if one prefers), and denote by Uy — No, by U1 — the (cardinality
of the) class of all sets, by U2 — the collection of all classes, etc. Just like we have the
bijection N =~ [J, ;. PM(N), where P*(X) denotes the collection of subclasses of X of
cardinality A, so in [2] we obtain:

Sg ~ U P*(s2) for some sy € Us with s2 > Uy (7.1)
A<Uq

which is but another instance of the general fact (e.g., [13], 10.2, p.119), according to
which for a (strongly) inaccessible cardinal v:

v= Zv’\ =| U P (w)|.
A<y A<y

Accidentaly, it seems that the bijection (7.1) could be obtained working in NBG with
the limitation of size, as choosing s2 to be a class, i.e., V, the collection of its subsets
(with or without subclasses) has the same cardinality being, too, a class.
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In our case, we start with s C U, i.e., s € U, and then also P(s) € Us, which might
suggest that everything happens at the same level as in (7.1). However, P(s) forms now
not only Ui-objects but, as pointed out at the beginning of section 3 and after fact 3.12,
also proper subclasses of s, i.e., Uz-objects, and so, for every s € Uz : |s| < |P(s)|. The
desired isomorphism is possible first at the next level, i.e., we must allow carriers at the
level Us:
83 ~ U P*(s3) for some s3 € Us with s3 > Us.
A<LUo

According to theorem 3.20, a final object (which satisfies this isomorphism, for a signa-
ture with an f : s — s) is set-reflecting and hence is a colimit of small subalgebras — a
colimit, as mentioned above in 3, possibly over a diagram of size Us € Us.

In addition to the above axioms, we have also used (in the proof of fact 3.12) the global axiom
of choice 3C : U - U Vz : ¢ # @ = C(z) € z, or rather its equivalent:

ax7) Every equivalence relation on a class has a system of representatives.
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