Argumentation, paradox and kernels in directed
graphs

Sjur Dyrkolbotn

Acknowledgements

I would like to thank my first supervisor, Michat Walicki, for great support and
encouragement, as well as collaboration. Without him, this thesis could not
have been made. T would also like to thank my second supervisor, Marc Bezem,
for being supportive, understanding, and always at hand with a thoughtful
comment. A great thanks is also due to the administration at the department.
The people working there are so good at their job that I never really had to talk
to them. Excellent! Except for the fact that they seem like really nice people
too; people that I now wish I had gotten to know a little better. I know enough
to give a special thanks to Ida Holen, however. Genius leader of geeks! Sadly, no
longer at the department, but tales of wonder will be told about her for a long
time to come, I am sure. Finally, I must thank the logic gang, including, but
not necessarily limited to, the following brilliant people: Truls André Pedersen,
Erik Parmann, Pal Grgnas Drange, Piotr Kazmierczak, Paul Simon Svanberg
and Ragnhild Hogstad Jordahl. Come to think of it, I must also thank Soda
Fountain Rag, for providing an awesome soundtrack!

Contents

I Overview 7
1 Introduction 9
1.1 Motivation and background 10
1.1.1 Kernels in digraphs 10

1.1.2 Paradox 14

1.1.3 Argumentation oL 17

2 Presentation of main results 23
2.1 Connections between different areas of research 23
2.2 Algorithmicresults 25
2.3 Structural results Lo 27
2.3.1 Sufficient conditions for existence of kernels 27

2.3.2 Relations that preserve structural properties 30

2.4 Reasoning about paradox and admissibility 32
2.5 Conclusion and future work 0. 33

II Papers 39
3 Paper A: Finding kernels or solving SAT 41
4 Paper B: Kernels in digraphs that are not kernel perfect 67
5 Paper C: Propositional Discourse Logic 85

6 Paper D: Equivalence Relations for Abstract Argumentation 129

CONTENTS

Part 1

Overview

Chapter 1

Introduction

In this thesis, we investigate propositional theories in graph normal form, as
introduced in [3]. They are theories consisting of equivalences = <> /\ye x —y for
{z}UX a set of propositions, such that each x appears at most once to the left of
an equivalence. Intuitively, we think of the variable on the left as the name of the
formula on the right, and we think of theories in graph normal form as giving a
simple formalization of the propositional discourse, collections of statements that
are allowed to refer to each other in an arbitrary — possibly circular, sometimes
even paradoxical — manner. We tend not to think of them as theories in classical
logic, however, but consider them instead from a combinatorial point of view,
as directed graphs.

It was observed in [3], that the notion of a kernel, studied in digraph theory
[6], provides means to give an equivalent definition of classical satisfiability
of such theories, and this observation forms the basis for our work. We will
also consider theories in graph normal form from the point of view of artificial
intelligence, however, looking at them as argumentation frameworks in the sense
of Dung [21]. This is natural since in fact, the notion of a kernel is essentially the
same as the notion of a stable set from argumentation. Both of these notions,
in particular, are equivalent to classical consistency. Our overreaching goal has
been to investigate the following questions:

(1) When are theories in graph normal form consistent?
(2) How can we extract information from them when they are not?
(3) What kind of information can be extracted?

Question (1) asks for structural conditions that ensure consistency, and for
algorithmic techniques that allow us to decide consistency as efficiently as pos-
sible. Question (2) asks for alternative, non-classical, semantic notions that we
can apply when classical consistency fails. Question (3) asks us how we should
think of the information that we extract using such notions.

The thesis should be seen as a mainly theoretical contribution; we have
studied mathematical problems that arise in the context of the three questions

10 CHAPTER 1. INTRODUCTION

presented above. The focus has not been on applications, and we have not de-
voted much time to discussing the exact nature of the phenomena we study. We
think, however, that all of Questions (1)—(3), and Question (3) in particular,
can also be addressed from the point of view of applications, and from a philo-
sophical angle, as asking us to develop an understanding of what inconsistency
means when it arises in theories in graph normal form. With regards to possible
applications, we believe that the large body of work devoted to argumentation
theory is sufficient to motivate theoretical investigations such as our own; it
warrants the assertion that studying consistency of theories in graph normal is
useful. With respect to the philosophical issues that arise, we believe that our
own work, although it does not focus on this, suggests some novel perspectives.
Actually, despite the fact that we maintain a focus on technical problems, some
might consider our work more interesting in a conceptual regard. As we will see,
it serves to connect different areas of research, and to offer a fresh point of view
on established notions, both technical, philosophical and related to applications
in AL

In the remainder of this chapter we provide some further motivation, as well
as a short background on the research areas we address. Then in Chapter 2 we
present our main results, beginning with a brief discussion on the connection
between the areas addressed in this introduction. Part II contains our papers.

1.1 Motivation and background

1.1.1 Kernels in digraphs

The notion of a kernel in a directed graph (digraph) was first introduced by
Von Neumann and Morgenstern to provide an abstract solution concept in co-
operative game theory [48]. It has since been studied quite extensively by graph
theorists, however, from a purely theoretical point of view. We point to [6] for
a recent overview of the field. In this section, we only present the basic defi-
nitions, and enough background to suggest how our own research represents a
novel approach compared to earlier work in kernel theory.

We recall that a directed graph is a pair G = (G, N) such that N C G x G.
When (z,y) € N, we write y € N(z) and x € N~ (y). The notation extends
pointwise to sets, e.g., such that if X C G, then N(X) = U,cx N(z). A digraph
G = (G, N') is said to be a subdigraph of G if G C G and N’ C N, while it is
the subdigraph induced by G' if G’ C G and N’ = {(z,y) € N | z,y € G'}. For
X C G, we typically write G\ X to denote the subdigraph induced by G \ X.
A digraph is finite if G is finite and is said to be finitary if N(z) is finite for
all z € G. In this thesis, unless we state otherwise, we assume all digraphs
to be finite. A walk in G is a sequence of vertices x1xs ...z, such that for all
1 <4 < n we have z;41 € N(z;). In case no vertex is repeated, the walk is
referred to as a path. A cycle is a walk z1xs ... x, such that x12o...2,_1 is a
path and =z = z,,.

1.1. MOTIVATION AND BACKGROUND 11

A kernel in a directed graph is a set K C G such that:

N=(K)=G\ K (1.1)

It is useful to think of this equality in terms of two inclusions and to adopt
the terminology that kernels in digraphs are exactly those sets of vertices that
are both independent and absorbing:

e N~ (K)C G\ K (K is independent)
e N~ (K) DG\ K (K is absorbing)

We will write K7(G) for the set of all kernels in G. Not all digraphs have kernels;
admitting a kernel is a non-trivial property of digraphs, and, as we will see later,
it also provides a combinatorial way to look at consistency of theories in graph
normal form. The basic example of a digraph that does not admit a kernel is
the single loop

G: mQ (1.2)

Consulting Equation (1.1), we see that §) cannot be a kernel in G since
N=(0) =0 2 {x}\ 0, while {x} cannot be a kernel since N~ (z) = {z} €
{z} \ {z}. In particular, () is not absorbing, while {z} is not independent.

Historically, work in kernel theory has been motivated by the close connec-
tion to the notion of perfectness in undirected graphs. In fact, one approach
to the perfect graph conjecture, now theorem [12], addressed it from the point
of view of kernels and directed graphs, see [6]. What is important for us is to
note that the relevant directed notion in this regard was something stronger
than existence of kernels, namely that of kernel perfectness, requiring existence
of kernels also in all induced subdigraphs. And while work was being done
concerning the connection to perfectness in undirected graphs, quite some work
was also being devoted to the search for structural conditions that ensure kernel
perfectness, see e.g., [20, 28, 19].

Since kernel perfectness requires existence of kernels to be preserved in all
induced subgraphs, establishing existence of kernels becomes easier when this
stronger notion is considered. When you aim to prove kernel perfectness you
can assume, in an inductive argument, that any proper induced subdigraph
has a kernel. In proofs, this typically means that you will do a local choice
of vertices around some vertex, and then show how it gives rise to a kernel
for the whole digraph by taking the union with some kernel in an appropriate
induced subdigraph. Such a kernel is usually ensured by induction hypothesis,
and working with kernel perfectness typically means that the conditions you
consider must themselves be preserved by taking induced subdigraphs. This, as
we will see later, is not the case for some conditions that it seems natural to
consider.

The first non-trivial result from kernel theory is that a finitary digraph with
no odd cycles is kernel perfect. The result was first obtained by Richardson
[46]. The proof given there is rather complicated, but can be greatly simplified

12 CHAPTER 1. INTRODUCTION

by using the notion of a semikernel, first introduced by Victor Neumann Lara
in [40]. A semikernel in a digraph G is a set S C G such that

N(S)C N (S)CG\S (1.3)
In other words, S is a semikernel if it is independent, and also satisfies a weaker
form of absorption, N(S) C N~(S5), stating that all vertices pointed at by S
must point back into S. We call this local absorption. Given a digraph G, we use
Lk(G) to denote the set of all semikernels in G. Notice that) € Lk(G) for any
G, and that the loop does not have any non-empty semikernel. A digraph can
have a non-empty semikernel without having a kernel, however, as illustrated

by the following digraph:
C r—sY C z (1.4)
N

Since they are not independent sets, neither {} nor {y} can be a subset of any
kernel, meaning that (global) absorption is impossible and that G has no kernel.
Still, we have Lk(G) # 0, with Lk(G) = {{z}}, the set {z} being independent
and also locally absorbing since y, the only vertex pointed to by z, is itself
pointing back to z.

While non-empty semikernels can exist in digraphs that admit no kernels,
the two notion coincide when we consider kernel perfectness.

Theorem 1.5 [/0] A digraph G = (G, N) is kernel perfect iff every non-empty
induced subdigraph of G admits a non-empty semikernel

In light of this result, we can establish conditions that ensure kernel per-
fectness by showing that they ensure existence of non-empty semikernels for
every non-empty induced subdigraph. Since semikernels are formulated locally,
without demanding global absorption, this is usually much easier, and it is the
approach followed in most work in kernel theory. The following theorem sum-
marizes the most significant results. Recall that a chord on a cycle is an edge
connecting two non-consecutive vertices.

Theorem 1.6 For all digraphs G, we have that Kr(G) # (0 if every odd cycle
in G has one of the following

(1) at least two symmetric edges [19],
(2) at least two crossing consecutive chords [20] or
(8) at least two chords with consecutive targets [28].

As an example, consider the digraph G depicted below. It has a kernel, and
this is ensured by all points of Theorem 1.6.

DUEERN v

1.1. MOTIVATION AND BACKGROUND 13

In fact, G has two kernels: {x} and {y}. We notice that one of these, {x},
is also a kernel in G’. This, however, is not captured by any of the results from
Theorem 1.6, suggesting the possibility of obtaining stronger results. Actually,
the reader might observe that for any digraph that consists of a single odd cycle,
if you add to it one symmetric edge, you obtain a kernel. This is not hard to
see: simply take the target of this new edge, then skip two vertices, and from
then on take every other vertex as you move along the cycle. You end up with
every other vertex except for two consecutive vertices that you did not choose.
But this is no problem, since one of them has the symmetric edge going back
to its predecessor on the cycle — the first vertex chosen. This simple way of
resolving an odd cycle does not generalize, however. This is illustrated by the
following digraph, where each odd cycle has a symmetric edge. We leave it to
the reader to verify that no kernel can be found in this digraph.

%

W <——

(1.8)

d

The problem is that the odd cycles interact in ways that make it impossible
to solve them all simultaneously. This problem of compatibility is the essence
of what makes the search for sufficient conditions both interesting and difficult,
and, as we will see more clearly later, it is also one of the things that makes the
connection to argumentation and paradox so natural and exciting.

It is easy to see that many digraphs exists that have kernels without being
kernel perfect. Any digraph that has a kernel but also contains a loop, for
instance, fall into this category. It might seem, however, that if a digraph is not
kernel perfect, it will be difficult to establish any simple, local conditions that
imply existence of kernels. Indeed, apart from our own work, we are not aware
of any results from the literature that ensures existence of kernels in digraphs
that are not kernel perfect.

When such digraphs are considered, it becomes unclear how an argument
demonstrating existence of kernels should proceed. The conditions we work
with no longer hold for induced subdigraphs, so if we wish to use an inductive
argument, the question of when and how we can apply an induction hypothesis
becomes particularly tricky.

We notice, however, going back to Richardson’s Theorem, that odd cycles
are the only structures that can prevent existence of kernels. We also see that
all conditions in Theorem 1.6 concern conditions that ensure that odd cycles are
somehow resolved by the existence of chords ensuring the existence of appropri-
ate even subcycles. We also readily notice that as well as being resolved from
"within” by chords — as in the conditions from Theorem 1.6 — an odd cycle can
be resolved from the ”outside”, by pointing at some vertex that can be used to
break it, as in the digraph G, depicted in (1.9 below.

G G

(—\ e (> —_— Y —— (19)

14 CHAPTER 1. INTRODUCTION

For this digraph, we have Kr(G) = {{y}}; the loop at x poses no problem
since it points to a vertex we can happily include in the kernel. This suggests
a possible way to attack the problem of finding new structural conditions: we
search for conditions under which odd cycles are harmless because they point
to suitable subdigraphs that break them.

The digraph G’, also depicted in (1.9), illustrates that such an approach
presents us with a challenge; G’, in particular, cannot be resolved since now,
due to the presence of z, y cannot be used to break the loop at x. This leads
to the following general question: what sort of subdigraphs are such that if the
odd cycles in a digraph point to it, then existence of kernels can be ensured?

We address this in Paper B, where we provide some general tools that are
useful to such an investigation and give several conditions that ensure resolution
of odd cycles and in this way establish the existence of kernels in digraphs that
need not be kernel perfect.

1.1.2 Paradox

A paradox is a surprising contradiction, a contradiction which we arrive at from
premises that we think are uncontroversial.! Semantic paradoxes, in particular,
have this property, and the relevant premises that are being challenged are the
rules of classical logic, as well as a very basic intuition about truth, namely that a
statement is true if and only if what it says is true. The liar sentence, for instance
— "this sentence is false” — is inconsistent with these assumptions since they
permit us to deduce that the liar is true if and only if what it says is false. This
presents us with a surprising problem; either something is wrong with the rules
of classical logic, or else something is wrong with our intuitive understanding of
truth. The latter is often formally described by Tarski’s Convention T [47]:

° T(r(bT) AN d)

Here, T is a truth-predicate, the extension of which is supposed to contain
all true formulas from some language which includes ¢. "¢, on the other
hand, is the name of the formula ¢, a term in the language, the purpose of
which is to allow us to use the logical language to talk about its own formulas.
This formalization is the standard approach in the literature, and it is rare to
distinguish between the formal study of truth and the formal study of paradox;
the two are almost always considered together. It seems to us, however, that
a representation where truth is maintained explicitly as a predicate is only
needed when we wish to challenge Convention T, i.e., when we wish to consider
the possibility that some statements are not such that they are true iff what
they say is true. Clearly, this is a possible way to approach the liar and other
semantic paradoxes, but it is not the only one, and, we would argue, not even
the most natural one. We will not dwell on philosophical issues, but simply

I This only applies to what Quine calls the falsical paradoxes [44], but one might argue that
the other kind he proposes - the veridical ones - are not really paradoxes at all, but merely
surprising facts

1.1. MOTIVATION AND BACKGROUND 15

follow Kripke in thinking that truth behaves exactly as we expect, and that the
paradoxes only show that it is partially defined [38]. Also, our aim is not to solve
the paradoxes, but to analyze them. Given our intuitive notion of truth, they
do arise, and since we make the choice to stick with this notion, the interesting
question becomes when and why they arise.

For these questions, it seems that an explicit representation of truth as a
predicate is, at least in the first instance, redundant. Truth, when it satisfies
Convention T, conflates to identity, and it seems that a paradox is simply a
statement p for which p <+ —p can be deduced. For a further illustration of
this, consider the liar sentence formulated in predicate logic: ¥ < —T("¢7).
It is usually required that this formula must be shown to be true in order
for the system to contain a liar. This can be done simply — by endowing the
formal system with means to perform direct self-reference, as explained, for
instance, in [34, Chapter 2, Section 2B] — or it can be done the hard way, as in
Tarski’s original paper [47], itself an application of the diagonalization technique
introduced by Godel in his first incompleteness proof [29]. Either way, there is
not yet a paradox, just a funny looking formula with some possibly non-trivial
internal structure. The paradox arises upon assuming Convention T, since then
we can deduce T("¢7) <> =T("¢7). But then we have again found our p such
that p <> —p, so why the detour?

Of course, for Tarski, and even more so for Gddel, there was true genius
at work in showing that systems specifically designed to avoid this type of
inconsistency would nevertheless give rise to it under what was then seen as
weak assumptions. But for subsequent work, attempting to study paradox, the
exact nature of the p in question seems unimportant. For the ontological concern
about whether or not it exists, it seems adequate to simply point to the original
liar, as it arises in natural language. Of course, one might want to ensure that
the existence of a paradoxical p becomes an artifact of the formal system itself,
that the truth of p <> —p is indeed a possibility. We do not necessarily think
this is appropriate, however, since one might as well think of p <+ —p as defining
p. Still, we remark that in three-valued Lukasiewicz logic [39], the equivalence
does indeed hold just in case p does not obtain a Boolean value, i.e., just in case
truth is not in fact defined for it. We believe this is a nice, simple description of
paradox by formal means, and we discuss it further in Paper C, see also Section
2.4. The interesting challenge, however, is to classical propositional logic, which
carries implicitly the assumption that there can be no such paradoxical p. The
fact that p <> —p is regarded as inconsistent, in particular, precludes the p from
becoming instantiated semantically.

In logic, contradictions are usually quite boring. In fact, it seems wrong
to use the plural form to speak of them; semantically, there is typically only
one contradiction, namely 1, falsehood. What is interesting is how to locate it
in the logical language. Here, it can take many forms, the challenge being to
determine what formulas count as contradictions. But for any two such formulas,
any difference in syntactic form is simply conflated, they are all considered
equivalent. This might not always be the right way to conceive of contradictions,
however. For one, they do arise in practice — they exist in the real world, so to

16 CHAPTER 1. INTRODUCTION

speak (even if they do not, perhaps, in the world of ideas) — and some taxonomy
allowing to detail their properties and draw non-trivial inferences from them is
a much studied challenge in many fields, especially in computer science [2].

In this thesis, however, we will not commit ourselves to any form of dialethe-
ism. Given the formula p A —p, we will not argue that there is any p for which
such a formula is true, and should such a p exist, we are confident that our work
does not address it in any way. Rather, we argue that the two contradictions
p A —p and q <> —q are not really equivalent. They might be both inconsistent
in classical logic, but by virtue of their form, they should not be considered
in the same light. In the case of p A =p, a commitment to dialetheism seems
immediate upon assuming that such p exists, but for g <+ —q it is not, since, as
we have already argued, the liar provides a plausible witness for the existence
of ¢ such that the formula holds.? Now, while it is possible to use Lukasiewicz
logic or some other means to obtain a formal reflection of this fact, doing so
requires the introduction of non-classical notions already in order to represent
the paradox. This, we feel, is hasty. Rather, we believe that classical logic is the
best starting point we have, and that it should be adhered to for as long as pos-
sible. Moreover, since the challenge we wish to take on is intuitively understood
as a challenge to the semantics of classical logic, we think it is questionable to
abandon classical logic already in order to formalize the problem. Ideally, we
want to use formal tools to analyze a question, not evaluate a possible answer.
Also, the search for an answer to the paradoxes is already very widespread, and
with no consensus looking likely to form any time soon, it is our belief that a
more careful consideration as to the exact nature of the question is also in order.

In this thesis, we approach this by introducing the idea that the semantic
paradoxes are demarcated from other contradictions by their form. We take
them to be inconsistencies in classical logic, and we designate them as surprising
for purely syntactic reasons. This leads naturally to the notion of a propositional
discourse — represented formally by theories in graph normal form. Such a
collection of inter-referring, named statements seems to be at the heart of all
the semantic paradoxes and, moreover, it seems to us that a syntactic approach
to the question of paradox is in line with some basic intuitions. Forming a
statement negating itself, for instance, is indeed a possibility in natural language,
and this seems to have more to do with linguistics than with any semantic
notions pertaining to the possible meaning of such a statement. In Paper C, we
develop this view further, providing a more comprehensive argument in favor
of studying propositional discourses. We argue, in particular, that the semantic
paradoxes are exactly those theories in graph normal form that are inconsistent.
In fact, this becomes our definition of paradox.

While our perspective seems novel, it relies heavily on work done by Roy
Cook [14], who introduced what was essentially a formulation of the graph
normal form relying on the use of a falsity predicate instead of negation. He did
not observe that it was a normal form for propositional logic, however, and his

20f course, dialetheism is one possible response to semantic paradox, see e.g., Priest [43].
We do not find it particularly attractive, however, and since it is not really related to our own
technical contributions, we do not discuss it further here.

1.1. MOTIVATION AND BACKGROUND 17

focus was mostly on infinite paradoxes, such as Yablo’s paradox [50]. Crucially,
however, he noted the connection to kernels in directed graphs.

It should be mentioned that both Cook’s work and our own bear close resem-
blance to work done by Haim Gaifman on so-called pointer structures. These
are similar to theories in graph normal form, and Gaifman also relies on the use
of directed graphs to analyze them, see [27, 26]. Still, Gaifman’s work is differ-
ent in that his focus is on arriving at non-classical rules saying how to assign
to particular statements the label ”paradox” — an explicit third semantic value.
When to designate something as paradox, then, becomes the main issue, and
this pushes into the background the search for those combinatorial structures
that are responsible for letting paradox arise in the first place. We should also
mention Thomas Bolander’s PhD thesis [4], where he employed graph-theoretic
techniques to study paradox, albeit in the context of a traditional formalization,
relying on the use of a first order language, focusing on paradoxes that arises in
arithmetic theories due to (variants of) Convention T and unrestricted universal
quantification.

We believe that our approach have three particular advantages compared to
earlier suggestions in a similar vein. First, it is simple, making do with only
propositional means. Second, it is general, making the study of paradox the
same as the study of classical consistency of theories in a normal form. Thirdly,
and most importantly, the equivalent representation in terms of digraphs allows
for a very fine-grained analysis of paradoxical structures in terms of kernel the-
ory. In Paper C, we study this approach to the paradoxes in detail, consider a
series of examples, survey some results, and give a logic for reasoning about dis-
courses that are inconsistent but admit well-defined, consistent sub-discourses.

1.1.3 Argumentation

The study of argumentation has a long philosophical tradition behind it, dating
back at least to Socrates and the ancient Greeks, probably further. The desire to
arrive at some general notions of what counts as a logically correct argument, in
particular, seems to arise naturally in all human societies. If there is interaction,
there is argument, and some preliminary agreement on what is required for an
argument to count as successful is of great importance, if nothing else, then for
very pragmatic reasons.

Following Frege and the formal turn in logic, however, the study of argumen-
tation was mostly seen as a separate issue, belonging, at best, to the informal
branch. An account of argumentation, in particular, must typically provide
some answers also in the context of vagueness and uncertainty — even contra-
diction — and this was increasingly something that was perceived to be outside
the cold realm of pure logic. The search for logical perfection would famously
flounder over results on incompleteness and undecidability, however, and since
then, the trend has been turning. Especially following the increasing popular-
ity of non-classical logics — designed specifically to model warmer notions — the
distinction between argumentation and logic is becoming increasingly blurred.

This development took a particularly interesting turn with the seminal work

18 CHAPTER 1. INTRODUCTION

of Dung [21], who established a particularly nice formal connection between
argumentation on the one hand and non-monotonic reasoning and logic pro-
gramming on the other. Since then, abstract argumentation has become very
popular in the Al-community. The theory proposed by Dung centers around
the notion of an argumentation framework, which is simply a directed graph,
F = (A, R), where vertices, A, are interpreted as arguments and the edge-
relation, R, is interpreted as a relation of attack. Given two arguments, a and
b, an edge (a,b) is thought of as representing an attack made by the argument
a against the argument b. Following the custom in argumentation theory, we
write RT(z) = {y | (z,y) € R} and R~ (x) = {y | (y,x) € R}. Walks, paths
and cycles are defined as in the case of digraphs, c.f., Section 1.1.1.

Arguments are assumed to not have any internal structure, so argumenta-
tion frameworks provide an abstract point of view that allows us to investigate
notions of successful argumentation without having to make any commitments
with regards to the underlying logic, much less the subject matter. This means
that any insights provided by such an investigation will be widely applicable.
It might also raise the worry that argumentation frameworks are too abstract
to elucidate the nature of argumentation, but the vast body of work devoted
to them in recent years, and the great proliferation of different ideas, suggest
that they do indeed capture a non-trivial essence worthy of theoretical consid-
eration. For an overview of the field, including a more comprehensive historical
background, and an exposition detailing its importance to research in Al, we
point to [11].

In much of the work done on argumentation, the goal is to identify the
successful sets of arguments in a framework F = (4, R). A semantics for argu-
mentation, in particular, is an operator s, which provides, for any framework F,
a set s(F) C 24, containing all such sets of arguments. Now, in order to regard
A C A as successful, it seems intuitively reasonable to require that all arguments
from A are mutually compatible, and also that they are in some sense able to
defend themselves against other arguments. The first intuition is made formal
by the requirement that A must be conflict free: no two arguments from A can
attack one another. The second intuition is typically made formal by consid-
ering a function D : 24 — 24 defined by D(A) = {z € A | R~ (z) C R*T(A)}
for all A C A. Intuitively, the function D(A) gives the set of arguments that A
defends; the arguments x such that every argument which attacks x is in turn
attacked by A. The requirement that A must defend itself against attack is then
expressible as A C D(A).

In argumentation, a conflict free set of arguments that defends itself is called
admissible. The term was coined by Dung in his original paper [21], and unless
we state otherwise, all the other semantic notions that we consider also originate
from this paper. For a more detailed account of basic semantic notions in
argumentation theory, including also some that we do not discuss here, we
point to [45, Chapter 2], a newly published book that presents core notions and
gives a nice presentation of the wide range of different research challenges in

1.1. MOTIVATION AND BACKGROUND 19

this field.?

While they capture an intuitive notion of success, it seems that the admissi-
ble sets are in some sense too permissive. The empty set, for instance, is always
admissible; it has nothing to defend and is not in conflict with anything. But
taking this set to be successful seems unnatural; after all, nothing was argued
for! It seems, in particular, that some notion of mazimality must be imposed
on admissible sets before we can regard them as truly successful. For while it
might be that a good argument can be constructed by restricting attention to
only part of the framework, this will often appear inappropriate; you succeed
because you choose to ignore contentious issues. From this worry arises other
semantics for argumentation which are built upon the notion of admissibility.
In an intuitive sense, they aim to limit the room for opportunism in putting to-
gether arguments, and they achieve this by requiring that your admissible sets
should say something about as many arguments from the framework as possible
(by either including or attacking them).

The strongest concept, providing a notion of success that is particularly
conclusive, is that of a stable set, defined by saying that a set A C A is stable
iff RT(A) = A\ A. So A is a stable set iff it is conflict free and also such that it
attacks every argument not in A. Obviously, this implies that A defends itself,
so stable sets are also admissible. While stable sets provide a notion of success
that seems indisputable, it cannot be adopted in general for the simple reason
that such sets sometimes fail to exist. The single argument attacking itself is
the basic example.

So, in general, admissibility requires too little, while stability requires too
much. As a result, a range of intermediate notions have been introduced.
The complete sets, for instance, are those admissible sets for which we have
D(A) = A, i.e., those for which A not only defends itself, but also contains ev-
erything that it defends. We note that taking an admissible set and completing
it is always a possibility — you simply add all defended vertices and iterate the
process until a fixed point is reached. It is not hard to show that you never
violate conflict freeness in this way, so every admissible set can be extended to
a complete set that contains it. An important special case is the completion
of the empty set, which is called grounded. In fact, one popular semantics for
argumentation, especially in applications, takes this as the only acceptable set
of arguments. Then we are left with what is typically called a unique status se-
mantics, the name given to all those semantics, s, such that we have, for every
F, [s(F)| = 1.

While removing all uncertainty regarding the correct outcome of an argu-
ment might be useful in some cases, it really only shifts uncertainty away from

3We also remark that Chapter 5 gives a survey of complexity results for various decision
problems that arise in argumentation. Apart from many problems related to the so-called
grounded semantics, these are mostly non-tractable. We omit discussing complexity issues
further here, since our own work does not address this aspect. In Paper A, however, we
develop algorithmic techniques and give exact algorithms for finding kernels in digraphs, and
this is relevant to argumentation. As far as we are aware, exact algorithms for problems in
argumentation is still a mostly unexplored field of research.

20 CHAPTER 1. INTRODUCTION

the model, where it is an artifact of the system, and into the semantics, as a
meta-question about which notion to use. To illustrate this, it is enough to
note that the grounded semantics is not the only unique status semantics that
has been proposed based on admissible sets. There are at least two others: the
ideal semantics [22], and the eager semantics [9]. Rather than going into detail
about their properties, we simply note that since no unique status semantics
is likely to prove conclusive, it seems to us that in the context of a theoretical
inquiry, it makes more sense to consider general notions, such as admissibility
and stability, than to focus on particular notions that simply extract from the
general ones a particular point of view. In fact, it seems that the choice between
different notions can itself be made subject to formal inquiry, and we think, in
particular, that unique status semantics should be characterized at the logical
level, in terms of how they arise from more basic concepts. This is a challenge
for future work, and we note that it has already received attention from the
point of view of modal logic [31, 30, 10].

In addition to completeness, some other notions of maximality have also
been considered. The preferred semantics, for instance, which requires A to be
a maximal admissible set with respect to set inclusion, i.e., such that there is
no admissible set A’ with A € A’. Another notion that belongs to the same
category is the notion of a semi-stable set, introduced by Caminada [8]. These
are admissible sets A such that AU RT(A) is maximal, i.e., such that you do
not maximize the number of accepted arguments as with preferred sets, but the
number of arguments that obtain a definite status of being either accepted or
attacked.

Given some semantics, s, we can also use it to bestow a semantic status
upon individual arguments. If an argument a € A is such that there is some
S € s(F) with a € S, then we say that a is credulously accepted in F with respect
to s. An argument a € A is said to be skeptically accepted if we have a € S
for all S € s(F). If an argument is neither credulously nor skeptically accepted
with respect to a semantics, it is rejected. Arguments that are credulously but
not skeptically accepted are often called defensible. Intuitively, an argument
that is credulously accepted is involved in some successful line of argument;
it is potentially useful, and should be considered further. An argument that
is skeptically accepted, on the other hand, is involved in all successful lines of
arguments; it is beyond reproach, and arguing against it should be considered
useless.

Notice that credulous acceptance with respect to admissible, complete and
preferred semantics is the same notion. Now, rather than going further in ex-
ploring the particularities of argumentation, we remark instead that stable and
admissible sets seem to form two ends of a spectrum; all stable sets are semi-
stable, all semi-stable sets are preferred, all preferred sets are complete and all
complete sets are admissible. Also, it is not hard to see that the grounded set
is contained in every complete set of arguments, so that skeptical acceptance
with respect to complete semantics is exactly the same as membership in the
grounded set. While semantics have also been suggested that do not rely on ad-
missibility (most notably the CF2 semantics [1]), it seems that gaining a better

1.1. MOTIVATION AND BACKGROUND 21

understanding of admissibility and stability is a key question in argumentation
theory. This is what we study in this thesis, using combinatorial techniques.

In fact, the reader might have already noticed that admissible sets and stable
sets correspond more or less exactly to semikernels and kernels from digraph
theory. We discuss the connection further in Section 2.1, but note already
that this observation seems potentially significant. It means that work done in
kernel theory has immediate relevance to argumentation theory, and it might
also suggests new directions of theoretical research in digraph theory based on
notions coming from argumentation.

In the literature on abstract argumentation, despite the philosophical roots
of the field, it has become common to adopt a pragmatic point of view, where
new developments are motivated mostly by applications in AI. When some short-
coming has been identified concerning some semantic, in some context, then a
new one is proposed to address these shortcomings, often, it seems, on a case
by case basis. Typically, some structural and algorithmic results are provided
along with new notions, but theoretical attention then subsides and the focus
is again shifted towards applications. Soon, the inevitable shortcomings of new
notions lead to further proliferation of proposals.

It seems to us, however, that since much of the appeal of argumentation
frameworks lie in their abstract nature, more theoretical work — mathematically
and logically oriented — should be devoted to the study of core semantic notions.
The close connection to applications in artificial intelligence notwithstanding, a
framework is nothing but a directed graph, and in many cases we wonder if it
might not be best to view it as such, also in order to gain a better understanding
of argumentation.

Indeed, some recent work seem to suggest that a more theoretical trend is
emerging. We have seen, in particular, an increasing number of papers devoted
to giving a logical account, see e.g., [31, 33, 32, 30, 10]. This work relies on
the use of modal logic. In our work, we follow the same conceptual map, but
we take a different route, looking at argumentation frameworks as theories in
graph normal form. This allows us to connect the stable semantics directly to
classical logic. Also, it turns out that the notion of a complete set corresponds
to the notion of consistency in Lukasiwicz logic L3, see [24] and Paper C. In
Paper C, we also develop a logic based on admissible sets, and give a sound and
complete sequent calculus reasoning system for this logic. We believe that our
point of view provides further motivation for a purely theoretical study of the
two notions of stability and admissibility.

Studying when stability is unattainable, in particular, seems like an impor-
tant research challenge. Moreover, studying how the notion of admissibility
behaves in non-stable argumentation frameworks leads to what we think is a
highly interesting perspective, suggesting the possibility of arriving at a taxon-
omy of different cases and different forms of inconsistency. Combinatorial tools
and techniques, developed in graph theory, both provide new insights and aid
in investigations that explore the structure of successful argumentation.

The combinatorial point of view also seems likely to prove itself useful with
respect to the issue of how to address shortcomings of proposed semantics.

22 CHAPTER 1. INTRODUCTION

While shortcomings themselves are often seen only when applications are con-
sidered, a theoretical investigation of why and when they arise — in structural
terms, and in terms of already established notions — might be the right way to
proceed, perhaps a more adequate response than to keep making new proposals.

This summarizes the point of view on argumentation that we adopt in this
thesis, and we hope that our work suggests the appropriateness of devoting at-
tention to theoretical, mathematical investigations in this field. We also note,
however, that while basic notions from argumentation are found in kernel the-
ory, many of the fine-tuned distinctions made in argumentation — motivated by
applications — deserve theoretical attention, and might suggest new directions
for mathematical research. We hope more cross-fertilization of ideas will be
possible between these two fields in the future. Argumentation seems likely to
become even more important to Al, with research into logics for multi-agent
societies and agreement technologies increasingly turning to abstract argumen-
tation for ideas and formal tools [42, 5]. It seems clear to us that a formal
approach, using logic and digraph theory, will prove even more valuable to this
field in the future.

Chapter 2

Presentation of main results

2.1 Connections between different areas of re-
search

In Chapter 1, we have briefly presented three topics in graph theory, philosophy
and artificial intelligence, and in this section we discuss the link between them.
This is not technically challenging, but we think that the connection should be
exploited in future research in all of these areas, and can facilitate interesting
discussions and exchange of ideas. All the connections we discuss here have
been observed before. Roy Cook observed the connection between kernels and
paradoxes in [14], the fact that digraphs provide a normal form for propositional
logic was observed in [3], and the connection between kernels and argumentation
was noted in [15]. Still, we believe this thesis is the first time that all these fields
of research have been considered together. Also, unlike previous work, we do not
primarily address any one of them in particular, but consider technical questions
that seem common to all.

The basic observation connecting argumentation to kernel theory is quite
trivial. We recall from Section 1.1.1 that a kernel K € Kr(G) in a digraph G
is a set K C G such that N~ (K) = G\ K. The connection to the semantics

<_
of argumentation should be clear. If we let G denote the digraph obtained by
reversing all edges in G, then it is not hard to verify that a kernel in G is a stable

set in G and vice versa. Also, recall that local kernels are sets L C G such that
N(L) C N~ (L) C G\ L. Then it is easy to verify that a local kernel in G is an
admissible set in G and vice versa.

It seems that techniques and results from kernel theory have yet to be fully
explored from the point of view of argumentation; as far as we are aware, the
connection has only been briefly mentioned. In [15], for instance, the authors
study irreflexive, symmetric argumentation frameworks (frameworks for which
the edge-relation is symmetric), and show that every such framework admits
a stable set and that the preferred sets agree with the stable ones. They also

23

24 CHAPTER 2. PRESENTATION OF MAIN RESULTS

mention briefly that stable sets are the same as kernels in directed graphs. Still,
they do not explore this aspect, and do not seem to be aware of the results we
summarized in Theorem 1.6, which guarantees kernel perfectness under much
weaker assumptions.’

When discussing paradox in Section 1.1.2, we mentioned that we think of
theories in graph normal form as representing propositional discourses, and we
argued that studying its properties is interesting because it is in these structures
that semantic paradoxes arise. We also mentioned that we wished to conduct
this study using combinatorial means. Now we briefly demonstrate how this is
possible by showing how kernels provide the necessary link between digraphs
and logic. This observation is due to Cook [14]. We start from a digraph G,
and we form the corresponding theory T¢ = {2 <+ A cn () v | 2 € G}. Then,
assuming that K is a kernel in G, we define dx : G — {0, 1} such that

1 ifzek
o@) = {0 ifreG\K (L)

It is easy to verify that J is a satisfying assignment to Tg, i.e., that it makes
all the equivalences true under Boolean evaluation. Going the other way is also
trivial; if § : G — {0,1} is satisfying for Tg, then it is clear that Ks = {z € G |
6(x) = 1} will be a kernel in G.

Going from theories in graph normal form to digraphs is not much more
difficult. Let I € {N,{{1,...,n} | n € N}} and assume that T = {z; <
Nsex, ™ | @ € I} is some (countable) theory in graph normal form. Then,
we let F' be the set of variables from 7' that does not occur on the left of any
equivalence, and we form the corresponding digraph Gp = (Gr, Nr) where

Gr={z; |iel}U{z,Z |z € F}
Nr = Uie{(wi,2) [€ Xi} U{(2,7),(2,2) | v € F}

We introduce a fresh vertex T for every variable x that does not occur to the
left of any equivalence. The reason is that we do not want to force x to be in
the kernel of the digraph corresponding to the theory. Rather, « should be open
for both acceptance and rejection, depending on the rest of the theory. This is
achieved by adding the symmetric edge {(z, Z), (Z,x)}.

Let B = {z | x € F'} denote all the vertices from Gy that do not correspond
to propositional letters in T. Given a function « : X — Y, we let a|z denote
its restriction to domain Z C X. Also, given § : X — {0,1}, we let & denote
the Boolean evaluation of formulas over X induced by ¢ according to classical
logic. Now, given a kernel K C Gr, we define di : Gr — {0,1} as in Equation
(1.1).

Then it is easily verified that dx|q,\p is a satisfying assignment for T in
classical logic. Similarly, if we are given a satisfying assignment 6 : Gy \ B —
{0,1}, we obtain the kernel Ks = {z € Gr | 0(z) =1} U{z € Gr | §(x) = 0}.

(1.2)

n fact, remember Theorem 1.5, stating that a digraph is kernel perfect iff every non-
empty induced subdigraph has a non-empty semikernel. In light of this, it is not hard to see
that for a kernel perfect digraph, every semikernel can be extended to a kernel. So in kernel
perfect digraphs, any preferred set is stable, covering also this aspect of their result

2.2. ALGORITHMIC RESULTS 25

In [3], it is shown that the graph normal form is indeed a normal form for
propositional logic; every propositional theory has an equisatisfiable one con-
taining only formulas of this form.? This is not very difficult to demonstrate, but
we omit the details in the construction, and refer the reader to the presentation
in [3]. What is important is its consequence, namely that directed graphs and
the notion of kernel suffice to give an equivalent definition of classical propo-
sitional logic. For any theory in propositional logic, there is a corresponding
digraph that has a kernel iff this theory is consistent.

This allows us to study consistency in classical logic as a graph-theoretical
problem. The importance of this result depends on how you translate theo-
ries, however. The structural information lost by the transformation to graph
normal form must not exceed the gain from doing so. In fact, the simple trans-
formation presented in [3] does not seem to fare well in this regard, so a search
for more interesting ways of transforming theories into graph normal form is
an interesting direction for future research. For theories already in graph nor-
mal form, however, the tools and results from digraph theory have immediate
relevance, and the fact that they correspond to notions that have been indepen-
dently introduced in argumentation only adds further weight to the claim that
the combinatorial study of inconsistency in propositional discourse is interesting
and worthwhile.

2.2 Algorithmic results

The problem of determining if a given digraph has a kernel, KER, is NP-
complete [13]. While NP-complete problems are considered hard, the search
for fast, exact algorithms that solve hard problems is an active field of research
in computer science [49, 25]. As far as we are aware, however, the challenge of
designing such algorithms for KER has not been much addressed from the point
of view of either kernels in digraphs nor stable sets in argumentation.? In Paper
A, we make a contribution in this regard, giving an algorithm which shows that
while KER is hard, it is among those hard problems for which a reasonably fast
exponential algorithm can be found. We give, in particular, an algorithm for
which we are able to show — using a non-trivial analysis — that the complexity
is 0*(1.427/1) for the general case and O*(1.286/%!) for digraphs that do not
contain any symmetric edges.*

Since both KER and SAT, the problem of determining satisfiability of propo-
sitional theories, are NP-complete, they are equivalent in terms computational
complexity. However, an equivalence on the level of complexity classes does

2Equisatisfiable means that for every satisfying assignment to one there is a satisfying
assignment to the other, i.e., the assignments are not necessarily the same (new propositional
letters might need to be introduced)

3 A notable exception is [18], which addresses algorithmic questions from both a theoretical
and practical angle, but without focusing on giving tight upper bounds. We should also
mention that much work has been devoted to studying where various computational problems
from argumentation belong in the hierarchy of complexity classes, see e.g., [23].

4The notation O*() suppresses polynomial factors from exponential functions.

26 CHAPTER 2. PRESENTATION OF MAIN RESULTS

not necessarily say much about the relationship between the actual techniques
that an optimal algorithm should employ, and how fast such an algorithm can
be expected to run. Interestingly, the algorithm we propose for KER is basi-
cally just an adaptation of the standard DPLL SAT-algorithm [17, 16]. But
the running time, while hypothesized to approximate 2™ for worst case SAT
(where n is the number of propositional letters), is much better.’ Since di-
graphs encode the graph normal form of propositional theories, this means that
the graph normal form is a normal form for which SAT can be decided relatively
quickly. Moreover, translating arbitrary propositional theories to graph normal
form takes only linear time. It typically requires the introduction of many addi-
tional variables, however, affecting thus a parameter on which the running time
of the algorithm depends exponentially. Therefore, there are no immediate im-
plications for solving SAT in general. Our results do suggest, however, that
when small equivalent theories in graph normal form can be found, there is a
computational benefit in solving SAT on these rather than the original theory.

In Paper A, we also address fixed parameter tractability of KER, attempting
to come up with algorithms that are exponential in some other parameter than
the number of vertices in the digraph. We show, in particular, how to solve KER
by transforming G into a directed acyclic graph (DAG). The construction starts
from an arbitrary feedback vertex set — a set of vertices such that removing them
leaves an acyclic digraph — and the complexity becomes O(2|F ‘) where F'is the
set used to construct the DAG. KER, in particular, is fixed parameter tractable
in the size of any feedback vertex set in the digraph, e.g., in the smallest such
set. This result was also obtained in [18], using a similar, but, we feel, slightly
less elegant technique. While the result is nice when small feedback vertex sets
can be found easily, it is of limited significance in the general case, since small
feedback vertex sets need not exist.5

We show, however, that KER is also fixed parameter tractable in any set
of vertices that breaks only the even cycles in G. The trivial algorithm runs in
time O(2!F1) in this case, where E is some set of vertices, the removal of which
leaves a digraph with no even cycles. This result, while not very difficult, is
structurally interesting, but as for the case of using feedback vertex sets, it can
only be expected to prove useful in special cases.

We believe that our work on algorithmic techniques illustrates that KER
is an interesting problem to study from the point of view of finding fast exact
algorithms. It is useful to think of the problem as involving a search through
the maximal independent sets in a digraph, testing whether or not they are
also absorbing. It seems likely that more clever tricks can be found that can
be used to rule out some such sets in advance or during computation. We have
hopes, in particular, that faster algorithms can be designed. It might also be
possible to analyze the running time more optimally, using the measure and
conquer approach described in [25]. More generally, we think it is interesting to

5This assumption about the hardness of SAT is called the strong exponential time hypoth-
esis [35] [7]

6 Also, since the problem of finding the smallest feedback vertex set is itself NP-complete,
in fact, among the original problems considered in Karp’s seminal paper [36]

2.3. STRUCTURAL RESULTS 27

observe how the problem of KER is closely connected to SAT. The algorithmic
techniques we adopt, while formulated on digraphs, correspond closely to tech-
niques used to solve SAT, and we believe that future research should address
further the relationship between these two problems, attempting to explore and
exploit the close link between them.

2.3 Structural results

2.3.1 Sufficient conditions for existence of kernels

We mentioned in Section 1.1.1 that kernel theory has devoted quite some atten-
tion to the problem of finding structural conditions that ensure kernel perfect-
ness. The typical approach is to look inside induced odd cycles for the presence
of suitable internal structures that ensures that they can all be mutually re-
solved. In our own work, however, we have focused on what the odd cycles
point to on the outside, trying to identify conditions under which they can be
mutually resolved because they point to suitable external structures.

As usual in kernel theory, the notion of a semikernel is crucial to the analy-
sis, and our arguments proceed by induction on the size of digraphs. We cannot
assume existence of kernels in arbitrary subdigraphs, so we consider instead ap-
propriate sequences of semikernels, the idea being that we can compose these,
remove those vertices that obtain a definite status, and eventually reach a subdi-
graph for which our structural conditions hold. Then we can apply an induction
hypothesis in the standard manner, combining our sequence of semikernels with
a kernel provided by hypothesis. Formalizing this idea leads to the notion of a
solver, introduced in Paper B.

Definition 3.1 A solver for a digraph G is a sequence of induced subdigraphs
and semikernels (G;, S;)1<i<n such that:

(1) G =G

(2) S; is a semikernel in G; for all1 <i<n—1
(3) Giy1 =G\ (S; UN(S,)) foralll <i<n—1
(4) Sn is a kernel of Gy,.

In Paper B, we also establish the following easy result, which is what makes
solvers useful for establishing existence of kernels.

Theorem 3.2 A digraph has a kernel iff it has a solver.

Using solvers, we are able to show, by fairly complicated arguments, that
a range of various conditions is sufficient to ensure the existence of kernels
in digraphs that are not kernel perfect. Furthermore, we demonstrate that
conditions concerning the parity of cycles in the underlying undirected graph, G,
obtained from G by forgetting the direction of all edges, can be very useful in

28 CHAPTER 2. PRESENTATION OF MAIN RESULTS

establishing such conditions. We show, in particular, that whether or not an
external resolution of odd cycles is available can depend on the nature of the
interplay between the odd directed cycles of G, and the odd, undirected cycles
of G.

We introduce the notion of freeness, saying that a vertex z € G is free if it
does not lie on an odd cycle from G. This extends to sets of vertices F' C G
such that if every vertex in F is free, then F' itself is said to be free. We then
consider various ways in which a free set can be used to break odd cycles. This
typically makes it necessary to place additional restrictions on F', like requiring
the existence of semikernels containing its members, or restricting the allowed
parity of paths between the vertices it contains. The reason why this is needed
has to do with the general challenge we mentioned in Section 1.1.1, namely to
break all odd cycles simultaneously. We must ensure, in particular, that the
partial solutions we come up with are all compatible.

A basic requirement that keeps reappearing, and that seems critical in or-
der for this to be possible, is that each odd cycle must point to at least two
substructures of the appropriate kind. One such structure, in general, is not
enough. Interestingly, this parallels the structure of the results in Theorem 1.6,
where two chords of the appropriate kind (and with the appropriate interaction)
is typically required, even if this is stronger than what seems to be needed when
one considers simple cases.

The digraph, G, for instance, depicted below, is ensured to have a kernel by
Theorem 2.6 from Paper B

G G
AT PZanna N
1'4>y_»7w 1'4>y_»7w
\i \l (3.3)

Actually, also G’ has a kernel ensured by Theorem 2.6, but this is little more
than a sneaky trick: you can always choose one odd cycle to solve in the naive
way, without taking compatibility into account. For all the others, however,
compatibility is a subtle issue. Essentially, the reason why we can make do with
two structures of the appropriate kind in our results is that the other conditions
we stipulate are such that they limit the possible interaction between these two
structures. Then, even if we ”spend” one of them to solve a particular odd cycle,
we still have at least one structure left for each among all remaining odd cycles.
Moreover, since interaction is limited, we know that this structure is unaffected
by our partial solution. As an example, consider the following two digraphs:

2.3. STRUCTURAL RESULTS 29

G G :
Cr—vizy Cr—visa
Z—>=W z—>w—>rhf
7 P
q q

In both G and G’, there are two problematic, self-defeating sequences: (z, z)
and (z,w, g, z), and in both digraphs, it is tempting to look at vertices y,y for
a possible resolution. There is a problem, however, namely that they can only
solve one of the sequences in question. In both G and G’, we have semikernels
{y} and {7, w}, corresponding to whether we use them to solve (x,z), or use
them to solve (z,w,¢q,2). In G, this is where the story ends — it is not possible
to resolve both, and we conclude that Kr(G) = 0. In G’, on the other hand, it
is possible to solve both, but only if you solve (x, x) first by choosing y. This, in
particular, no longer precludes solving (z,w, g, z), since it is possible to choose
r and obtain the kernel {y,r, z}, as predicted also by Theorem 2.6 from Paper
B.

Examples such as these seem particularly interesting from the point of view
of argumentation. In this context, our results can be interpreted as describing
circumstances under which credulous acceptance of specific arguments leads to
resolution of other, possibly problematic, self-defeating sequences of arguments.
It is tempting, in particular, to think of it as mecessary to accept arguments
such as y and r. It seems necessary to accept them, not because they cannot
be refuted, but because accepting them is needed in order to resolve problems
with self-defeat affecting other parts of the network. A basic intuition in argu-
mentation theory is that it is an overreaching goal to minimize the number of
arguments that are not assigned any semantic status — a shared responsibility,
one might say, among participants in the argumentation scenario. It is interest-
ing, therefore, to investigate further what the results from Paper B imply for
argumentation, especially with respect to the notions of maximality that is used
to formulate non-classical semantic notions (like the preferred and semi-stable
semantics).

Considering the link with propositional discourse and paradox makes this
line of thought even more exciting. Could it be that the necessary truth of
particular statements in natural discourse follows not from what they say about
the world or other statements, but instead from what other statements say about
them? Could it be that the paradoxes — when seen as a holistic phenomenon
arising from the totality of a discourse — suggests that truth itself must be
accounted for in an holistic, ungrounded fashion? Perhaps truth — like paradox
— is not really a property of statements or propositions, but of discourses. The
truth of particular statements, in particular, is perhaps only the end product
of the correct semantic account of the discourse of which they form part. Such

30 CHAPTER 2. PRESENTATION OF MAIN RESULTS

an account, it is tempting to think, can not be aggregated from looking at
the truth of individual constituents in the discourse. Rather, it seems that
the discourse itself is the primitive object, and that individual statements are
more like vantage points — providing only a particular perspective on something
indivisible.

2.3.2 Relations that preserve structural properties

Given two argumentation frameworks, it is natural to ask if there are maps be-
tween their vertices that preserve and reflect stable sets, admissible sets, or sets
prescribed by any of the other semantics considered in argumentation. This,
in particular, leads to notions of equivalence between frameworks, where frame-
works F and Fy are said to be equivalent modulo some semantics s, if there is
some relation 8 C A x As such that

e For all S € s(F), we have B(S) € s(F3) (preservation)
e For all S’ € s(F3), we have 37(S’) € s(F) (reflection)

Given such a notion of equivalence, the question becomes if we can find
conditions such that if they are satisfied by a relation, then the relation is an
equivalence relation. This has not been much explored in kernel theory, and to
our knowledge, it has not been much studied in argumentation theory either. In
the context of argumentation, this might be due to the abstract nature of such
a notion of equivalence. In fact, it is more usual to consider two frameworks as
being equivalent when they admit extensions that are syntactically the same, as
n [41]. Still, we believe that the more general notion of equivalence presented
above might prove particularly useful for argumentation, especially with regards
to the overreaching goal of formalizing its notions using logic.

We study equivalence in Paper D, with respect to admissible, complete, pre-
ferred, semi-stable and stable semantics. First, we attempt to argue in more
detail for the point of view that this notion of equivalence is interesting. This
might be a bit of a contentious issue, especially since our general notion of equiv-
alence leads to collapses with respect to certain semantics for argumentation.
With respect to unique status semantics, in particular, the general notion of
equivalence separates all frameworks into two classes, those that have a non-
empty extension, and those that do not. This might disconcert those coming
at this from the point of view of applications in AI, but for us, coming from
logic, it makes perfect sense; a unique status semantics picks a set of tautologies,
arguments that you cannot dispute. The fact that any two non-empty sets of
tautologies are the same does not worry us, but seems reasonable. Indeed, for
us, the collapse is nothing more than a reflection of the fact that unique sta-
tus semantics completely flattens the semantic structure that we are trying to
explore. What interests us are semantic notions that give rise to logical conse-
quence, and unique status semantics are completely uninteresting in this regard.
There, the collapse has happened already at the semantic level; all arguments
belong to one of three categories, accepted, rejected, or rejected and defeated.

2.3. STRUCTURAL RESULTS 31

Consequently, there are no interesting dependencies between them.” But as-
sume, on the other hand, that in some framework F, you are working with a
semantics that requires you to accept arguments b and ¢ whenever you accept
argument a, but also allows you to defeat all of them. Or even more interesting:
consider the case when there is some admissible set allowing you to choose a,
but only at the cost of making it impossible to extend the set to a stable or semi-
stable one. Clearly, when this happens, there are some structures in F which
makes it happen, and our aim is to characterize these structures more abstractly
than by simply pointing at them whenever we think they arise in some concrete
framework. As a part of this project, we want to group frameworks together,
and preferably, although unlikely due to the hardness of the problem, we want
few classes. Collapse, in particular, is a good thing, and it is exactly what a
general notion of equivalence should provide whenever possible.

In Paper D, we focus our technical work on bisimulations. For us, only the
conditions pertaining to connectivity in the digraphs are relevant, so we take a
bisimulation to be a relation 8 C A x Ay such that for all z € A, 2’ € Ay with
xfx’, we have

e Forth: If z € R~ (), then there is 2’ € R (z') such that z32

e Back: If 2/ € R; (2), then there is z € R~ (z) such that z8z’

It is not hard to see that bisimulations are neither sufficient nor necessary
to ensure equivalence with resepct to any of the semantics for argumentation
that we consider. Still, as we show in Paper D, bisimulations have some nice
features with respect to agreement between various semantics for argumenta-
tion. We show, in particular, that if an equivalence relation with respect to
admissibility is also a bisimulation, then it is also an equivalence relation with
respect to the preferred, stable and semi-stable semantics. Not very surprising,
perhaps, but not entirely obvious either. Interestingly, however, this result does
not hold for the complete semantics. There are bisimulations that witness to
equivalence under admissible semantics even when the frameworks in question
are not equivalent with respect to complete semantics (an example is depicted
in Paper D, Figure 2).

While bisimulations do not in general ensure equivalence, we show that they
do so as long as they are also finitely collapsing, a new notion introduced in
Paper D. Its formulation relies on the notion of an infinite backwards walk, a
sequence of arguments 12z ... such that we have z; € R*(z;41) for all i € N.
Notice that in finite frameworks, a backwards infinite walk always involves one
or more cycles. Now, we take to be finitely collapsing those bisimulations (5
such that

e Global forth: For all infinite backwards walks v = z125 ... in F, there is
some ¢ € N such that |8(z;)] =1

7At least not until you consider questions other than those that have to do with semantic
status, for instance how to compute the unique set of accepted arguments in the framework

32 CHAPTER 2. PRESENTATION OF MAIN RESULTS

e Global back: For all infinite backwards walks v = z1x5 ... in Fo, there
is some ¢ € N such that |87 (z;)] =1

In Paper D, it is shown that finitely collapsing bisimulations are equivalence
relations with respect to all the semantics that we consider. For an example
of two digraphs such that their equivalence is witnessed by a finitely collapsing
bisimulation, consider the following two digraphs

F: Fs :
P Z e P Z e M
x Y z X2 Y2
pa——— S—F S

A bisimulation between F and Fy is 8 = {(z,z2), (v, y2), (z,22)}, and it is
easy to see that this is also finitely collapsing. Admittedly, this example is not
terribly interesting, and we consider it a challenge for future research to inves-
tigate further what types of frameworks admit a finitely collapsing bisimulation
between them. This is interesting in its own right, and also because it touches
upon the question of how the notion of a finitely collapsing bisimulation can
play a role in the search for new sufficient conditions for the existence of kernels
and non-empty admissible sets. We can ask: what can the conditions we already
know be transformed to under a finitely collapsing bisimulation? If some struc-
tures known to ensure kernels can be mapped to some other structures under
a finitely collapsing bisimulation, then it seems likely that we will be able to
demonstrate that kernels exist also in the presence of these other structures.

Even more interesting is the search for a tighter characterization of equiv-
alence relations themselves. The ultimate goal is to arrive at some non-trivial
structural conditions that are satisfied iff the relation is an equivalence with re-
spect to some semantics. This goal seems difficult to reach, but partial results,
such as those we present in Paper D, seeking to cover an increasing number of
interesting cases, seems like the way forward.

2.4 Reasoning about paradox and admissibility

As we have stressed throughout our exposition so far, we think of our research
as addressing properties and peculiarities of the graph normal form. One con-
ceptual insight that we believe to have resulted from our work is that the graph
normal form provides a particularly interesting view on classical consistency.
As we argued also in Section 1.1.2, we believe that inconsistency of theories in
graph normal form describes accurately the semantic paradoxes. Also, we have
seen that consistency corresponds to the notion of stability in argumentation.
Lastly, we have seen that when analyzing such theories, we can use tools and
import results from kernel theory. A second conceptual insight seems implicit,
namely that as an alternative to classical consistency, the notion of a semiker-
nel/admissible set offers a non-classical semantics that provides, for theories in
graph normal form, a interesting local view on classical consistency.

An admissible set requires all arguments to be defended against their attack-
ers, i.e., that the corresponding equivalences evaluates to true under classical

2.5. CONCLUSION AND FUTURE WORK 33

rules. But it does not require a total assignment of Boolean values to all in-
volved vertices. So have we just rediscovered strong Kleene logic [37]7 In fact,
the answer is no, since giving a partial assignment of Boolean values to variables
in a theory in graph normal form will not — under strong Kleene logic — always
be possible in such a way as to make all the equivalences in this theory true.
What we have rediscovered, rather, is Lukasiewicz logic [39]. But only a special
fragment of it, namely the fragment that obtains when we restrict our language
exclusively to formulas of the graph normal form. This is not, of course, a nor-
mal form for Lukasiewicz logic, but it suggests an application of this logic to the
study of paradox and admissibility. It captures, in logical terms, precisely the
local view of classical inconsistency that we are after. Both A and — are eval-
uated according to strong Kleene logic, and because evaluation of equivalence
in Lukasiewicz logic requires identical values to both sides of the equivalence,
this means that an essentially classical equivalence obtains whenever a boolean
value appears on either side.®

Turning to Lukasiewicz logic, however, we are left somewhat unsatisfied
with the point of view it offers. The focus, in particular, is the ordinary one,
in which logical consequence is considered as taking us from a theory to the
formulas that necessarily follow from it, i.e., those that come out as true under
all assignments of semantic values that satisfies the theory. This, however, is
a somewhat boring notion of logical consequence for theories in graph normal
form. In Paper C, we show that at the level of individual arguments, it produces
as logical consequences only those arguments that are in the grounded extension.
The more interesting notion arises from asking what is possible given a theory
in graph normal form — to ask what could be the case, given the restrictions
imposed by the theory. This is where local consistency lives, together with
admissible sets, semikernels, and various semantic paradoxes. In Paper C, we
make a conceptual argument to the effect that this notion is important and
should be studied, and we also provide a sequent calculus for reasoning about
possibility in propositional discourse.

This then, in light of the connections made earlier, amounts to a reasoning
system for the study of membership in semikernels, credulous acceptance with
respect to admissible sets, local consistency of theories in graph normal form,
and consistency for a special fragment of Lukasiewicz logic.

2.5 Conclusion and future work

In this thesis, we have studied directed graphs. We have not thought about
them as purely combinatorial objects, however, but looked at them from the
point of view of logic, taking them to be a particularly clear and simple repre-
sentation of the propositional discourse — theories in graph normal form. We
noted connections between kernel theory, logic, and the theory of abstract argu-
mentation, and we suggested that the study of consistency is what unites these

8For what we think is a convincing argument in support of the claim that strong Kleene
evaluation is essentially classical, we refer the reader to the famous footnote 18 in Kripke [38].

34 CHAPTER 2. PRESENTATION OF MAIN RESULTS

fields. Moreover, we suggested that inconsistency, when it arises in propositional
discourse, should be thought of as paradoxical — that the statements leading to
inconsistency do exist, but demonstrate that classical logic falls short when it
is combined with a basic intuition about truth. Giving this intuition priority,
while also trying to stay as close to classical logic as possible, we explored a local
view on classical consistency — provided equivalently by semikernels from kernel
theory and admissible sets from argumentation. We used combinatorial tools,
and we argued that these should be exploited more actively in future work. We
suggested, in particular, that kernel theory and argumentation would benefit
from an increased mutual exchange of ideas and research questions.

Towards the end of each section in this chapter, we have mentioned briefly
what we think are interesting directions for future research into the questions
that we have addressed. In this final section, we would like to point out two
possible directions for future research that we have not considered in this thesis,
but which we think of as interesting challenges for the future.

First, we would like to mention agency. It seems, in particular, that this
notion is implicit both in our account of propositional discourse, and in the
account provided by argumentation. Both a discourse and an argument typically
has more than one participant, in particular, and it seems that at some stage,
these should be introduced into the formalism, and accounted for logically, along
with the other core notions involved. Multi-agent argumentation has already
received quite some attention in the literature, see for instance [45, Part III,
but not much, so far, from a logical point of view. We think that the design
of nice formal logics for argumentation in the context of epistemic agency is a
natural and exciting direction for future research.

Secondly, we are interested in studying the infinitary case, when we allow
infinite branching in our digraphs and infinite conjunction in our theories in
graph normal form. It was show by Cook [14] that for all finite, cyclic digraphs,
there is an equivalent infinite digraph without any directed cycles, so, in fact,
for the infinitary case, considering only acyclic digraphs is fully general. While
it seems very difficult to arrive at elegant structural conditions ensuring kernels
in this case, the goal should be to identify some structures — like the odd cycles
in finitary digraphs — that are always present when inconsistency arises.’

‘We mention that the search for a characterization of such structures is closely
related to the search for some nice notions of compactness for infinitary logic,
as well as to the axiom of choice. For a presentation of the main challenges
involved, and some relevant technical connections, we refer the reader to [3].

90ne natural hypothesis, which we are currently exploring, is that some variant of Yablo’s
paradox [50] is always present in infinitary acyclic digraphs that do not admit kernels

Bibliography

[1]

Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida. Scc-
recursiveness: a general schema for argumentation semantics. Artificial
Intelligence, 168(1-2):162-210, 2005.

Leopoldo Bertossi, Anthony Hunter, and Torsten Schaub, editors. In-
consistency Tolerance, volume 3300 of Lecture notes in computer science.
Springer, 2005.

Marc Bezem, Clemens Grabmayer, and Michal Walicki. Expressive power
of digraph solvability. Ann. Pure Appl. Logic, 163(3):200-213, 2012.

Thomas Bolander. Logical theories for agent introspection. PhD thesis,
Informatics and mathamtical modelling, Technical University of Dennmark,
2003.

Piero Bonatti, Eugenio Oliveira, Jordi Sabater-Mir, Carles Sierra, and
Francesca Toni. Some open questions for the integration of trust with
negotiation, argumentation and semantics. In Cyprus panel. 2010.

Endre Boros and Vladimir Gurvich. Perfect graphs, kernels and cooperative
games. Discrete Mathematics, 306:2336-2354, 2006.

Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The com-
plexity of satisfiability of small depth circuits. In Jianer Chen and Fedor
Fomin, editors, Parameterized and Exact Computation, volume 5917 of
LNCS, pages 75-85. Springer, 2009.

Martin Caminada. Semi-stable semantics. In Proceedings of the 2006 con-
ference on Computational Models of Argument: Proceedings of COMMA
2006, pages 121-130, Amsterdam, The Netherlands, The Netherlands,
2006. IOS Press.

Martin Caminada. Comparing two unique extension semantics for formal

argumentation: Ideal and eager. In BNAIC 2007, pages 81-87, 2007.

Martin W. A. Caminada and Dov M. Gabbay. A logical account of formal
argumentation. Studia Logica, 93(2-3):109-145, 2009.

35

36

[11]

[12]

[13]

[16]

[17]

[18]

[23]

[24]

BIBLIOGRAPHY

T. J. M. Bench Capon and Paul E. Dunne. Argumentation in artificial
intelligence. Artif. Intell., 171(10-15):619-641, 2007.

Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas.
The strong perfect graph theorem. Annals of Mathematics, 164:51-229,
2006.

Vasek Chvatal. On the computational complexity of finding a kernel. Tech-
nical Report CRM-300, Centre de Recherches Mathématiques, Univeristé
de Montréal, 1973. http://users.encs.concordia.ca/~chvatal.

Roy Cook. Patterns of paradox. The Journal of Symbolic Logic, 69(3):767—
774, 2004.

Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Symmetric
argumentation frameworks. In Proceedings of the 8th European conference
on Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
ECSQARU’05, pages 317-328, 2005.

Martin Davis, Georgs Logemann, and Donald Loveland. A machine pro-
gram for theorem proving. Communications of the ACM, 5(7):394-397,
1962.

Martin Davis and Hillary Putnam. A computing procedure for quantifica-
tion theory. Journal of the ACM, 7(3):201-215, 1960.

Yannis Dimopoulos, Vangelis Magirou, and Christos H. Papadimitriou. On
kernels, defaults and even graphs. Annals of Mathematics and Artificial
Intelligence, 20:1-12, 1997.

Pierre Duchet. Graphes noyau-parfaits, II. Annals of Discrete Mathematics,
9:93-101, 1980.

Pierre Duchet and Henry Meyniel. Une généralisation du théoreme de

Richardson sur l'existence de noyaux dans les graphes orientés. Discrete
Mathematics, 43(1):21-27, 1983.

Phan Minh Dung. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.

Artificial Intelligence, 77:321-357, 1995.

P.M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argu-
mentation. Artificial Intelligence, 171(1015):642 — 674, 2007.

Paul E. Dunne. Computational properties of argument systems satisfying
graph-theoretic constraints. Artif. Intell., 171(10-15):701-729, 2007.

Sjur Dyrkolbotn. Doing argumentation using theories in graph normal
form. In Rasmus K. Rendsvig, editor, ESSLLI 2012 Student Session Pro-
ceedings. 2012.

BIBLIOGRAPHY 37

[25]

[26]

[27]

[31]

[32]

Fedor V. Fomin and Dieter Kratsch. Ezact Fxponential Algorithms. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 2010.

Haim Gaifman. Pointers to truth. The Journal of Philosophy, 89(5):223—
261, 1992.

Haim Gaifman. Pointers to propositions. In Andre Chapuis and Anil
Gupta, editors, Circularity, Definition and Truth, pages 79-121. Indian
Council of Philosophical Research, 2000.

Hortensia Galeana-Sanchez and Victor Neumann-Lara. On kernels and
semikernels of digraphs. Discrete Mathematics, 48(1):67-76, 1984.

Kurt Godel. Uber formal unentscheidbare sitze der principia mathematica
und verwandter systeme i. Monatshefte fiir Mathematik und Physik, 37:173—
198, 1931.

Davide Grossi. Argumentation in the view of modal logic. In Peter McBur-
ney, Iyad Rahwan, and Simon Parsons, editors, ArgMAS, volume 6614 of
Lecture Notes in Computer Science, pages 190-208. Springer, 2010.

Davide Grossi. On the logic of argumentation theory. In Wiebe van der
Hoek, Gal A. Kaminka, Yves Lespérance, Michael Luck, and Sandip Sen,
editors, AAMAS, pages 409-416. IFAAMAS, 2010.

Davide Grossi. An application of model checking games to abstract argu-
mentation. In Hans P. van Ditmarsch, Jérome Lang, and Shier Ju, editors,
LORI, volume 6953 of Lecture Notes in Computer Science, pages 74-86.
Springer, 2011.

Davide Grossi. Fixpoints and iterated updates in abstract argumentation.
In Gerhard Brewka, Thomas Eiter, and Sheila A. Mcllraith, editors, KR.
AAAT Press, 2012.

Anil Gupta and Nuel D. Belnap. The Revision Theory of Truth. MIT Press,
1993.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat.
Journal of Computer System Science, 62(2):367-375, 2001.

Richard M. Karp. Reducibility among combinatorial problems. In Ray-
mond E. Miller and James W. Thatcher, editors, Complezity of Computer
Computations, The IBM Research Symposia Series, pages 85-103. Plenum
Press, New York, 1972.

Stephen Cole Kleene. On notiations for ordinal numbers, volume 3. 1938.

Saul Kripke. Outline of a theory of truth. The Journal of Philosophy,
72(19):690-716, 1975.

38

[39]

[40]

[41]

[42]

[50]

BIBLIOGRAPHY

Jan Lukasiewicz. On three-valued logic. In L.Borkowski, editor, Selected
works by Jan Lukasiewicz, pages 87—88. North Holland, Amsterdam, 1970.

Victor Neumann-Lara. Semintcleos de una digrafica. Technical report,
Anales del Instituto de Matemaéticas II, Universidad Nacional Auténoma
México, 1971.

Emilia Oikarinen and Stefan Woltran. Characterizing strong equivalence for
argumentation frameworks. Artificial Intelligence, 175(14-15):1985-2009,
2011.

Sascha Ossowski. Coordination and agreement in multi-agent systems. In
Matthias Klusch, Michal Pechoucek, and Axel Polleres, editors, Coopera-
tive Information Agents XII, volume 5180 of Lecture Notes in Computer
Science, pages 16-23. Springer Berlin / Heidelberg, 2008.

Graham Priest. The logic of paradox. Journal of Philosophical Logic,
8:219-241, 1979.

W. V. Quine. The ways of paradoz and other essays. Random House, New
York, 1966.

Iyad Rahwan, editor. Argumentation in artificial intelligence. Springer,
2009.

Moses Richardson. Solutions of irreflexive relations. The Annals of Math-
ematics, Second Series, 58(3):573-590, 1953.

Alfred Tarski. The concept of truth in formalised languages. In John
Corcoran, editor, Logic, Semantics, Metamathematics, papers from 1928
to 1958. Hackett Publishing Company, 1983. [translation of the Polish
original from 1933].

John von Neumann and Oscar Morgenstern. Theory of Games and Fco-
nomic Behavior. Princeton University Press, 1944 (1947).

Gerhard J. Woeginger. Exact algorithms for np-hard problems: a survey.
In Michael Jiinger, Gerhard Reinelt, and Giovanni Rinaldi, editors, Combi-
natorial optimization - Fureka, you shrink!, pages 185—207. Springer-Verlag
New York, Inc., New York, NY, USA, 2003.

Stephen Yablo. Paradox without self-reference. Analysis, 53(4):251-252,
1993.

Part 11

Papers

39

Chapter 3

Paper A: Finding kernels or
solving SAT

This paper was published in Journal of Discrete Algorithms, vol.10, pp.146-164,
January 2012.

41

Finding kernels or solving SAT

Michat Walicki and Sjur Dyrkolbotn
Department of Informatics, University of Bergen

michal@ii.uib.no

Abstract

We begin by offering a new, direct proof of the equivalence between the problem of the
existence of kernels in digraphs, KER, and satisfiability of propositional theories, SAT, giving
linear reductions in both directions. Having introduced some linear reductions of the input
graph, we present new algorithms for KER, with variations utilizing solvers of boolean equa-
tions. In the worst case, the algorithms try all assignments to either a feedback vertex set, F',
or a set of nodes E touching only all even cycles. Hence KER is fixed parameter tractable not
only in the size of I, as observed earlier, but also in the size of E. A slight modification of
these algorithms leads to a branch and bound algorithm for KER which is virtually identical
to the DPLL algorithm for SAT. This suggests deeper analogies between the two problems and
the probable scenario of KER research facing the challenges known from the work on SAT.
The algorithm gives also the upper bound O*(1.427|G‘) on the time complexity of general
KER and O*(1.286/¢!) of KER for oriented graphs, where |G| is the number of vertices.

1 Introduction

The concept of a kernel of a digraph (an independent set reachable from every outside node by
an edge) was introduced in [33] as a generalization of a solution of a cooperative game and has
since then found applications in both positional and cooperative game theory as well as in logic.
Determining the existence of a kernel has become a problem of independent interest in graph
theory, starting with the classical results of Richardson, [29, 30], and followed in the last decades
by several publications, e.g., [26, 14, 15, 1, 18, 12], with a recent overview [4].

The problem of the existence of kernels in digraphs, KER, is NP-complete, [6], so in a trivial
sense it is equivalent to the satisfiability of propositional theories, SAT. The equivalence has been
applied, e.g., in [24] for representing finitely branching dags as consistent propositional theories,
in [11, 12] for studying default logic, in [13] for correlating models of logic programs and kernels
of appropriate digraphs and in [34] for analysing circularity in logical paradoxes. But it has not
received a separate treatment, independent from particular applications. From an algorithmic
perspective, it is natural to ask for a more fine-grained analysis of the exact relationship between
SAT and KER. An answer should provide an indication both as to whether kernel theory can
contribute to SAT-solving, and as to how techniques developed for SAT-solvers can be employed
to increase the efficiency of deciding KER. Equivalence of the two problems with respect to some
complexity class does not suffice to answer such questions because, in order for a reduction to
be useful in practice, even constant factors may matter, requiring a more detailed analysis of the
actual choices and possible heuristics.

In this article we focus on KER, showing that the reducibility of KER to SAT has a practical,
algorithmic content. This is found not so much in the direct application of SAT-solvers, although
this too is a viable approach for some cases, but rather in the similarities between the problems
encountered while trying to solve KER (directly) and those faced by SAT-solvers. We present a
series of novel algorithms for KER, utilizing new observations of graph-theoretical nature but also
the possibility of solving SAT at appropriate places. These can be very efficient for some classes of
graphs, but are hardly optimal in general. We then present our final algorithm for KER, which is

very similar to the central SAT-algorithm DPLL, [10, 9]. We review several issues which, arising
from earlier experiences with SAT, are likely to affect future work on KER.

The question of how kernel theory can be used to solve SAT more effectively is left for future
work, but we hope that the connection we demonstrate here indicates strongly that SAT-solvers
might indeed have something to gain from utilizing the graphical nature of KER.

Section 2 introduces the basic definitions and establishes the equivalence of KER and SAT,
giving new linear reductions in both directions, simpler than previously available. The problem of
finding a kernel is formulated in terms of assigning boolean values to the nodes of the graph, an
assignment is a solution when it determines a kernel and a graph is solvable if it has a solution.
Section 3 presents some linear (or low polynomial) graph reductions which preserve and reflect
solvability and are later used by the discussed algorithms. Section 4 presents several results
relating solvability to various conditions on feedback vertex sets. In Subsection 4.1 we also show
how to solve KER by constructing a dag from a digraph. This is essentially the technique used
in the algorithms from [11, 12]. In our case, however, a single dag suffices for either finding a
kernel or concluding its non-existence. In the worst case, we try all assignments to a feedback
vertex set, and thus the complexity of the trivial brute-force O*(2/¢1) is reduced to O*(2!F1),
where F' C G is a feedback vertex set.! Following that, we show that one can reduce this factor
even further to the number of even cycles only. Subsection 4.2 gives an algorithm which, for each
assignment to a subset of nodes F touching all even cycles, determines in linear time if the resulting,
induced assignment is a solution, thus giving the complexity O*(Q‘E‘). Both these algorithms show
that the problem is fixed parameter tractable, FPT, taking the size of F', respectively F, as the
parameter. We also discuss a variation which, instead of inducing the values along the obtained
dag, decides solvability of the appropriate system of |E| boolean equations over |E| variables.
Section 5 introduces the main, recursive algorithm, based on the simplifications introduced in
Section 3. It subsumes the algorithm from [12] as a special case and allows to show the complexity
bound O*(1.427!¢1) for the general case and ©0*(1.286/¢!) for oriented graphs (with no 2-cycles).
It turns out that, except for the fact that it works on digraphs and not on CNFs, it is exactly
the DPLL algorithm — the basis of most modern SAT-solvers. This brings a new aspect of the
relationship to SAT, and we conclude listing a series of conjectures and hypotheses on the expected
issues and choices in the further development of the algorithms for KER, originating from the
experiences with SAT-solvers.

2 Background

A digraph (directed graph) is a pair G = (G, N), where G is a finite set of nodes and N C G x G
is a binary relation that describes the directed edges of G.2

For a vertex z € G, we denote by NT(z) = {y € G | N(z,y)} the set of out-neighbours
of z, and by N~ (x) = {y € G | N(y,x)} the set of in-neighbours of x with respect to the
directed-edge relation of G. Neighbours of x is the union of its out-neighbours and in-neighbours,
Nt (z)UN~(x). The degree of z € G, d(z), is its number of neighbors. Letting (NT)* denote the
transitive closure of NT, we use [z) = {y | y € (N7)*(z)} to denote the set of vertices reachable
from x and (z] = {y | z € [y)} to denote the set of vertices from which z is reachable. These
notational conventions are extended to subsets of vertices, for example, for all X C G, we let
N7(X) = Uzex N~ (z). For an X C G, we also write G\ X to denote the subgraph of G induced
by the subset G\ X.

A walk p is a sequence of vertices (xq, 1,2, ..., Z,) such that V0 < i < n : 2,41 € NT(x;)
and such that all edges traversed are distinct, i.e. whenever z; = z; for 0 < i # j < n, we have
Zit1 # Tj41. The length of a walk is the number of edges it uses, I(p) = n. A walk is a path if it
is also a sequence of distinct vertices. A cycle is a walk (xg, ..., Zp—1, 2y,) such that (xg,...,Zp—1)

1The notation O*() suppresses polynomial factors from exponential functions.

2Some results presented below apply to the infinite digraphs and infinitary propositional logic. However, in the
present context of algorithm design, we assume all involved sets to be finite. Also, unless stated otherwise, by a
graph we always mean a digraph.

is a path and x,, = 1o € N*(z,_1).

A sink in G is a vertex « € G without out-neighbours and sinks(G) = {z € G | NT(z) = o}
denotes the set of sinks of G. A vertex which is not a sink is internal, int(G) = G \ sinks(G). A
root of G is a vertex x € GG such that every other vertex is reachable by a path from =z.

A subset of vertices S C G is strongly connected if (*): Vz,y € S : x € [y) Ay € [x). Such
an S is a strongly connected component if there is no set S’ O S such that (x) holds. A strongly
connected component S is final whenever N*(S) = S. Since this will be of relevance for some
algorithms, we remind the reader that it is possible, for instance by using Tarjan’s algorithm [32],
to decompose a graph into its strongly connected components in linear time.

For a digraph G, G denotes the undirected graph obtained by turning every directed edge (x, y)
into an undirected one {x,y}. An oriented graph is a digraph G obtained from G by giving every
undirected edge some direction. Such a graph does not contain any cycles of length 2.

A kernel of a digraph G = (G, N) is a subset of vertices K C G such that:
(i) G\ K O N7 (K) (K is an independent set in G) and
(i) G\ K C N~ (K) (from every non-kernel vertex there is at least one edge to a kernel vertex).

Any kernel of G is an independent and dominating set in G. These two properties are equivalent
to K being a maximal independent subset of G. Conversely, given a maximal independent subset
K, we can determine if it is a kernel of G by verifying that every vertex € G \ K has a directed
edge into K (a G-edge in G might be only to x.)

Consequently, a possible (if not most efficient) algorithm for finding the kernels would unorient
the input digraph G, find G’s maximal independent subsets, and for each such check if every node
outside it has a directed edge to the subset. The number of maximal independent subsets of
any G is limited by Moon and Moser’s 3 bound, [25], and such subsets can be produced with

polynomial delay, [22]. It follows that there is an algorithm that finds all kernels in a graph,
el

by just checking each such subset, in time O*(33). This running time is in fact tight for the
problem of finding all kernels, as can be seen considering G that is a collection of disjoint symmetric
cycles of length 3, i.e. the reversal of every edge is also present. For such a graph every maximal
independent subset of G is a kernel and there are 3’ of them. Even though for most digraphs
only a proper subset of the maximal independent sets will be kernels, finding all kernels is not a
computationally feasible problem. We consider only the problem of determining the existence of
a kernel which, when one exists, amounts usually to producing it.

The problem is addressed using the equivalence between the existence of kernels and the
satisfiability of propositional theories, arising from an equivalent definition of kernels. For a
digraph G = (G, N), an assignment o € {0,1}% (of truth-values to the vertices of G) is correct at
avertex r € G if a(z) =1 < (N1 (z)) C {0} or equivalently, if:

(a(z)=1 A a(NT(z)) C{0}) VvV (a(z)=0A1€a(NT(z)) (2.1)

An a € {0,1}€ is a solution for G, a € s0l(G), if a is correct at every vertex of G, and if such
an « exists G is solvable. For any a C G x {0,1}, we denote o' = {z € G | (z,1) € o} and
a® = {x € G| (x,0) € a}. For all graphs G and all assignments o € {0,1}€ it holds that « is a
solution iff ol is a kernel:

a € 50l(G) <= o' = G\ N~ (a') <= o' is a kernel of G (2.2)

A possible algorithm for finding kernels is then based on the fact that every digraph G induces a
propositional theory 7 (G) by taking, for each z € G, the formula

T /\ -y, (2.3)

yeENT(z)

with the convention that 1 = /\ye - y.2 Then, letting mod(T) denote all models of a theory T, the
following equality holds:
s0l(G) = mod(T(G)). (2.4)

Since determining kernels is a special case of determining the models of propositional theories, we
can feed the equations (2.3) together with z = 1 for all z € sinks(G) to a solver of systems of
boolean equations, to determine if G has a kernel. Alternatively, we can feed the problem to a
clausal SAT-solver. First, each equation (2.3) is equivalent to

1 = (zVv \/ y) A /\ (my V —x). (2.5)

yeEN+(z) yeENt(z)

Collecting now the right-hand-sides of these new equations and adding the requirement for all
z € sinks(G), yields the formula in CNF:

CNF(G) = N\ <(x\/ Voo A A (—|y\/—|x))/\ N\ = (2.6)

z€int(G) yeENt(x) yeENt () zE€sinks(G)

Satisfiability of CNF(G) is equivalent to the solvability of the system of equations (2.5) for all
internal nodes, with all sinks assigned 1 which, in turn, is equivalent to the existence of a kernel
in G, by (2.4).4

The above reduction and the resulting CNF(G) are essentially the same as in [7]. The linear
reduction in the opposite direction used there 3-Colorability, so we give a direct reduction from
SAT: every propositional theory T can be transformed in linear time into a digraph G(T) such
that mod(T) = sol(G(T)). Many different graphs can satisfy these requirements, so we give only
one example. First, assume a theory T given as a set of equivalences of the form

T /\ Y, (2.7)

€1,

where all y, z; are variables, and where every variable occurs at most once on the left of <». The
digraph G(T) is obtained by taking variables as vertices and, for every formula, introducing edges
x — y; for all i € I;. In addition, for every variable z not occurring on the left of any <+, we add a
new vertex z and two edges z — Z and Z — z. This last addition ensures that each variable z of T
which would become a sink of G(T), and hence could only be assigned 1 by any solution of G(T),
can be also assigned 0 (when the respective Z is assigned 1). Letting V(T) denote all variables of
T, and sol(X)|y the restriction of assignments in sol(X) to the variables in Y, we have that

mod(T) = sol(g(T))|v(T) (2.8)

Now, an arbitrary theory T can be transformed into the above form. To simplify the transforma-
tion, assume T to be given as a set of clauses, each clause C = (C*,C~) consisting of the set of
positive, CT = {z, | p € P}, and negative, C~ = {-z,, | n € N}, literals. First, let ac be a new
variable. The formula C’ : ac < —ac A —C' is equisatisfiable with C, with models related by the
equation mod(C") = mod(C) x {{a¢,0)}. Substituting for =C, we obtain a more explicit form
of C"tac <> —ac A N\,ep ~Tp A \pen Tn- We introduce for every variable in the initial theory
x € V(T), a new variable Z. For every such pair of variables we introduce the formulae (i), and
for every clause C the formula (ii):

(i) z <> -7 and T < —x.

3Satisfiability of such a theory is equivalent to the existence of solutions for the corresponding system of boolean
equations. This motivates the use of the name “solution”, which was also used in the early days of kernel theory,
e.g., in [33], p.588, or [30].

4 Assuming the adjacency list representation of the argument G = (G, N), CNF is linear in the number of
vertices, |G|, and edges, |N| (each edge (z,y) giving rise to two pieces of data: —y V —z and the element y in the
disjunction for z: z V... Vy V ...).

(i) ac <> —ac A Nyep Tp A N\pey —Tn

The theory C” containing formulae (i) and (ii) is equisatisfiable with C' and mod(C) = mod(C")|y (c)-
Defining T" = [Joer €7 and letting G(T) = G(T’), the equality (2.8) remains valid.

Example 2.9 For Ty = {—x}, respectively, To = {—x V y}, we obtain the digraphs:

(ac, ——=TFT—=x LaCQHf%ﬁm

=
G(T1) G(T2) y—=y

We note that G(T) can be defined so that it is oriented and has no loops. In addition to ac, add
two more nodes in a 3-cycle (ac,bc,cc,ac), and for every x € V(T), introduce in (i) two more
new nodes, replacing the 2-cycle by the 4-cycle: (z,Z,z’, 2",).

Both equations (2.4) and (2.8) hold for arbitrary digraphs but when they have infinite branch-
ings, the corresponding theory is in infinitary propositional logic. In this paper, we are concerned
exclusively with usual propositional logic and finite graphs, so “graph” and “arbitrary graph”
mean here only a finite digraph.

3 Preprocessing

This section presents some simplifications reducing the input graph, which will be later combined
with different algorithms. In Subsection 3.1, we show that we can consider only the problem
for graphs without sinks, since kernels of an arbitrary graph G are determined by the kernels of
its appropriate, sinkless subgraph which can be obtained from G in linear time. Subsection 3.2
presents some further simplifications of a graph which are based on local dependencies and are of
linear, or low polynomial, complexity.

3.1 Forcing values

The obvious brute-force approach, simply checking the condition (2.1) for every possible assign-
ment, can be improved by observing consequences of a given partial assignment. The following
definition captures some such consequences that are recognizable locally in the graph.

Definition 3.1 A partial assignment to a graph G is an o € {0,1}% for any X C G. Given such
an o, we define inductively its extension to the nodes which obtain forced values:

al =at
ad =a’

oy = NT(af))UN (o) Ua)
al, = sinks(G\ a?)Ual ,U{z e NT(y) |y € a A{z} =N*t(y)\al}
1

1

Fized-point is reached when o} = a}_,, no later than for k = |G|. We then let a* = Ja
a® =Ja? and set @ = {(n,1) | n €@} U{(n,0) | n €a’}.

ol

Example 3.2 Consider the following two graphs:

N

xT

T

nN<—C
QU —>9
Q\

C:

G

e ——

In C, a = {{x,1)} gives oY = {z,y}, ai = {z,2} and then of = {z,y,2}, o} = {x,y, 2}, i.e.,
a={z,y,z} x{0,1}.

In G, from a = {{(c,0)} we obtain @ = {{(c,0),(b,1),(a,0),(f,0),(e,1),(d,0)}, while =

{{c, 1)} leads to B = {(c,1),(d,0),(b,0),{a,1),{f,1),{e,0)}. In both cases, the resulting assign-
ment is a a solution of G. Starting with v = {{e,0)} does not induce any values, i.e., 5 = 7.

C shows that @ may happen to be a (non-functional) relation, i.e., @t N@® # @. If this is the case,
then we cannot find a correct assignment that extends a. However, if @ is a function, then for all
x € dom(a@) we have the following weaker form of correctness:

(@(z) =1 Aa(Nt(z))C{0}) Vv (a(z)=0A3JyeNTt(z):y¢a’) (3.3)

We say that @ is consistent in this case. Given a consistent partial assignment @, it might, but
need not, be possible to extend it to a solution for G. This depends on the solvability of the
subgraph yet to be assigned, but also on the possibility of finding a solution for the remaining
graph such that each vertex assigned 0 by @ is eventually justified by the assignment of 1 to one
of its out-neighbours. In particular, we have to meet this constraint on the border of «, defined
as follows:

Definition 3.4 Given a partial assignment o to a graph G, the border of « is the set bord(a) =
{z €dom(a) |a(z) =0A1 & a(NT(z))}.

The formula (3.3) implies that a consistent partial assignment is correct everywhere with the
possible exception of its border.

Remark 3.5 When a partial assignment a is correct on its whole domain, i.e., o € sol(dom(a)),
then o' C G is called a local kernel (sometimes semi-kernel) in kernel theory. Local kernels are
used in inductive proofs of sufficient conditions for the existence of kernels in digraphs from certain
classes, e.g. in [2, 15, 14, 18]. Deciding if a graph has a local kernel is NP-complete, [13].

Any B € sol(G) must be such that its restriction to any subset B C G is consistent on the
subgraph induced by B. Also, every solution respects all values induced by its own restrictions, in
particular, induced from the empty assignment. Consequently, the values induced from the empty
assignment are the same in all solutions (if any). These observations are gathered in the following
lemma. G¢ denotes the subgraph G\ dom(@), & denotes the empty assignment, and we abbreviate

G =G,

Lemma 3.6 For an arbitrary G:
1. bord(9) = &;
2. for any partial assignment « : sinks(GS) = &;
3. VB € 50l(G) VB C G : Bl = Blypm(arn)
4. sol(G) ={BUD | B € sol(G°)}.

PrOOF. 1. It follows by induction that each @; satisfies (2.1), i.e., NT(@}) C @2 AVx € 29 :
N*(z) N @} # @. This holds trivially at the start with @; = @, and after first iteration when
@3 = sinks(G) and @9 = @. Assuming (2.1) as IH for @;, then

for each new 2 € @9, , : v € N~ (@}), because N (2}) C @? by IH

for each new z € @}, : & € sinks(G\ @9,) — the last component of Definition 3.1 does not
apply, since for any y € @2 there is a 2 € N*(y) N @} by TH.
2. @ = a; = a;41 for some i > 0 and assume z € sinks(G2), i.e., NT(z) C dom(a). If
N*(z)na' # @, then x € o, and otherwise z € a, ;. In either case x € dom(a;11) = dom(a).
Contradiction.
3. By induction on the steps used in the construction of BTB, Definition 3.1, we show that for
all i : (BB)i = Blaom((8l):)- The basis is trivial since (8|p)1 = (B]B) = Blaom((s|s))- For the
induction step, any x € (8|p):+1 gives one of the following cases:

(0) z € (B]B)Y,, ie., either

e x € (B|5)? which, by TH, means that € 3° or

ez € N ((Blp)}) UN—((8]5)}) which, by IH and correctness of 3, means that x €
N*(BY)UN~(BY) C B° or

(1) @ € (B|B)}, ie., cither

e x € (B|p)} which, by TH, means that z € 8 or

o x € sinks(G\ (B]5)24), i.e., NT(x) C (B|p)?, € B° by point (0), and = € 5* by
correctness of 3, or

o {a} =N*(y)\ (B]5)21 :y € (B]8)21, i.e. by point (0) we have y € 8% and N*(y) \
{x} C B°. Then by correctness of 8 we must have {z} = N*(y) \ 8% with = € 8.

4. Forevery z € G° : N*(z)N@" = @ and, by 2, NT(2) N G° # @. Hence, every f € sol(G°) can
be combined with & into a correct solution for G. But the values on dom(&) can not be chosen
otherwise since, by 3, Va : o € s0l(G) — @ gorn () = @- O

The construction from Definition 3.1, together with Lemma 3.6, will provide the basic simpli-
fication mechanism used in all our algorithms. According to point 4, we can first (in linear time)
induce all values from the sinks of G, removing dom(@) from the graph. Then, trying various
partial assignments o to the remaining, sinkless subgraph G°, point 3 ensures that it suffices to
consider only the induced assignment &, thus reducing the search space.

In the following subsection, we identify some particular, structural patterns allowing local
simplifications of the graph.

3.2 Simplification

The number of possible simplifications, preserving and reflecting solvability, can be unlimited. In
practice, one has to choose some which can be expected to occur frequently and can be performed
cheaply. Two such simplifications are given, providing also some information about the structural
properties of kernels. The first one concerns a special type of path.

Definition 3.7 A path p = (o, ®1, ..., 2y(p)) is isolated if VO <4 <I(p) : NT(2;) = {@sp1}-

It follows from Definition 3.1 that any assignment, of 0 or 1, to any vertex on an isolated p will
induce values to every other vertex on the path. So the vertices on isolated paths do not contribute
anything to the structural properties of G determining its kernels. They can be removed.

Definition 3.8 For an isolated path p = (o p, ..., Ti(p),p) With I(p) > 2, let P C G denote all nodes
z;p on p. The graph C(G,p), the contraction of G on p, is defined by a mapping f : G — C(G,p):

e C(G,p) =G\ {wip | wip € PYU{z), x}}
o f:G — C(G,p) is defined by f(z) = x when x € C(G,p), f(zip) = a:g when i+ 1(p) is even
and f(x;,) = x;, otherwise

o C(N,p)={{z,y) | I, y) e (fT(@)x fTy)NE:2"=aVa' =24, VY = Tip)p}

Example 3.9 We contract the isolated path p = (xg, 1, x2, T3, 24) in the digraph G, obtaining the
digraph C(G, p) where f is defined on p by f(xo) = f(x2) = f(xa) = acg, (z1) = f(z3) = le,. Also
shown is the digraph C(G,q) obtained by contracting q = (b,x1, T2, x3,x4) with f(b) = f(z2) =

Jlas) = a2, f(a1) = flzs) = 2.
G: C(G,p): (G, q)

Zo b xp<7b To — 1z,
| __—/ | |
2! ¢ 29 e T 207)

7 AN Y

4
To c

T3

e

Contraction of isolated paths preserves and reflects solutions as stated in the following Fact. (f;g
denotes function composition in diagrammatic order: f followed by g.)

Fact 3.10 For any isolated path p with l(p) > 2 in any G :
sol(G) = {a | 38 € s0l(C(G,p)) : a = f; B}

PrOOF. D) For a B € s0l(C(G,p)) define a € {0,1}¢ by Vz € G : a(x) = B(f(x)). To show
a € s0l(G) it suffices, by definition of f, to show that « is correct on p. For z; , such that i+ I(p)
is odd or i = I(p), correctness follows since by definition of f and the fact that p is isolated we
have f(N*(z;,)) = N&GW)(f(ﬂci,p)). All other z; ,’s are such that i + I(p) is even , and since p is
isolated we have f(NT(NT(z;,))) = f(2ip) = f(2ip)p)- So correctness follows from correctness

of a((p),p)
C) Assume « € s0l(G). By definition of f and the fact that p is an isolated path it follows that

Vo :Vy1,y2 € f(2) : a(y1) = a(y2). Then we define S for every € C(G, p) by choosing arbitrary
y € f~(z) and taking B(x) = a(y). Then § is correct and it satisfies Vz € G : a(z) = B(f(x)) O

As the second simplification we remove basic contradictions.
Definition 3.11 An z € G is a basic contradiction if Jy € NT(z) : NT(y) C N*(z).

Important special cases include the in-neighbours of sinks, loops, and triangles such as the following

graph:

r —

L ——0

The following fact is obvious:

Fact 3.12 If x is a basic contradiction in G then Va € sol(G) : a(x) = 0.

PROOF. Let y € NT(x) be such that NT(y) C NT(x) and o € s0l(G). If a(y) = 1 then
a(z) = 0, while if a(y) = 0 then, for some z € N*(y) : a(z) = 1. But then also a(z) = 0 since
z€ NT(y) € N*(z). O

The notion of basic contradiction is motivated by the fact that a (general) contradiction, i.e. an
2 such that Vo € sol(G) : a(x) = 0, may not be identifiable as such locally by inspecting its fixed
neighbourhood. For instance, in the following graph, x is a contradiction since x = 0 is necessary
(and sufficient) for the existence of a correct assignment to the rest of the graph.

The contraction of isolated paths can turn a contradiction into a basic one, as the following example
illustrates.

Example 3.13 The graph C(G,p) results from contracting the isolated path p = (xg, 1, x2) in G.
After contraction, ¢ becomes a basic contradiction, revealing that it is a contradiction in G:

G: ¢(G,p):
Y Y
C—>Ty) —>T1 — T2 C‘>$2<7CE;

The specific case of Fact 3.10, covered by the following fact, characterizes the contradictions
which become basic after contraction of isolated paths. (Basic contradiction is a special case when

l(p)=0and l(q) =1.)

Fact 3.14 Given isolated paths p = (£0,p, T1,p, - Tip),p)s 4 = (T0,q> T1,q -+ Ti(q),q = Ti(p),p) SUCh
that I(p) + 1(q) is odd. If c € G is such that xo p, x4 € NT(c), then Ya € s0l(G) : a(c) = 0.

PROOF. Assume arbitrarily that p has odd length and that we start by contracting p to obtain
H = C(G,p). Then we have mzl) € N (c), and there is an isolated path ¢ = (x¢ 4, 71,4, e TY(g),q =
29) in H. Contracting ¢ to obtain K = C(H,q) we obtain a graph where 2 = 29 € N,{(c) and
N (x}) = {29} So by facts 3.10 and 3.12 it follows that Vo € sol(G) : av(c) = 0. O

Similar facts can be proven for other situations, where contracting some collection of paths
reveals a basic contradiction (for instance in the case of isolated cycles of odd length, or with two
paths p, g as in Fact 3.14 but admitting also outgoing edges at nodes with even indices z5;.) We
do not attempt to give a complete classification, however.

Towards an algorithm for KER, we gather the two rules for isolated paths and basic contra-
dictions into the simplification procedure simp(G) as shown in Algorithm 3.15. The algorithm
returns the error value L if it discovers the non-existence of solutions. Otherwise, by Facts 3.10,
3.12 and Lemma 3.6, every solution to the input graph G can be obtained from a solution to the
returned graph. °

Algorithm 3.15 simp(G)

if there is an isolated path p with {(p) > 2 then
return simp(C(G, p))
else if there is a basic contradiction x € G then
a:={(z,0)}
if @ is a function then
return simp(G \ dom(a))
else
return |
else
return G

4 Breaking cycles

According to Richardson’s theorem [30], every finitely branching (in particular, finite) graph not
containing odd cycles has a kernel. Consequently, a possible approach to KER is to try breaking

5Inducing and checking the existence of isolated paths can be done in linear time. The trivial search for basic
contradictions would visit, for every node z, each of its out-neighbours y € N*(z), checking if N*(y) C N*(z).
The worst case |G|? hardly ever obtains and, in practice, even this trivial procedure is sub-quadratic.

the odd cycles. Below, we reduce the number of cycles to consider and give a general treatment
of this approach utilizing the following concept.

Definition 4.1 For a graph G, we define B(G) = {X C G | V3 € 50l(G) : Ja € {0,1}¥ : @ = 3}.
An X € B(G) is called a basis for sol(G).

Thus, for any X € B(G), any solution for G can be obtained by inducing from some assignment
to X, reducing the complexity of the brute-force approach to 21%!. (As inducing from a partial
assignment takes linear time, the notion of a basis is almost the same as the concept of strong
backdoor from SAT.) It remains to be proven that suitable X € B(G) exists. Below we provide
two types of bases, guaranteed to exist for any graph. In algorithmic terms this means that
KER, when parameterized by the size of either of these bases, is FPT. It should be noted here
that a more obvious choice of parameter for KER, the size of the kernel we are looking for, does
not make the problem FPT for general graphs unless collapses, deemed unlikely, occur among
the parameterized complexity classes.® So the result in Subsection 4.2, admitting as a basis any
set of vertices touching all even cycles, appears to be the best currently available regarding the
parameterized complexity of KER.

4.1 Feedback Vertex Sets
A feedback vertez set for a graph G is a subset F' C G such that G\ F' is acyclic (a dag).
Proposition 4.2 For any graph G, if F is a feedback vertex set for G then F € B(G).

PRrROOF. Let F' be a feedback vertex set for G and consider arbitrary 5 € sol(G). Then by lemma
3.6 we have f|p = 5‘d0m(m)' All we need to prove is dom(8|r) = G. So consider G\ dom(8|F).
By Lemma 3.6.2, this graph has no sinks, and as F' is a feedback vertex set, it has no cycles. Since
G is finite, it follows that G\ dom(8|r) = &, as desired. O

This observation gives a simple algorithm for KER: find some feedback vertex set F' and try
all possible assignments to its nodes, verifying if the induced assignments are correct on the whole
graph. More cleverly, proposition 4.2 can be used to construct a branch and bound algorithm that
only branches at vertices from F. An algorithm based on this idea is presented in [12]. We will
return to branch and bound algorithms in Section 5, but note here that as the success of such an
approach depends on finding small feedback vertex sets, we can not expect it to be optimal for all
graphs. It will be good enough, though, for solving KER effectively on graphs that admit small
feedback vertex sets. This follows from the recent work in [5], showing that the problem of finding
a minimum feedback vertex set is FPT in the size of such a set. In particular, KER is FPT in the
size of a minimum feedback vertex set.

Feedback vertex sets are useful tools when graphs are viewed algebraically as systems of boolean
equations. In this context they allow for a systematic substitution of equals for equals that both
preserves and reflects solutions, allowing us to represent G more compactly than the system 7(G)
from (2.3). In the rest of this subsection we present this construction, linking substitution in
systems of boolean equations with feedback vertex sets of graphs. We do this by introducing
labeled dag’s that are nice in their own right in that they provide a visualization of the bases
originating from feedback vertex sets. ”

F denotes such a set and given it, we represent G as a (labeled) dag D(F) = (Dp, Np), where
F' ={2' |z € F} is a set of new elements and:

Dr = GUF'

Ne = (No\{(n.) o€ FY) U{(w.o') |2 € F Az e N¥())

61n [19] it is shown that using the size of the kernel as parameter does make the problem FPT for planar digraphs.
([27] provides an introduction to parameterized complexity.)

"The question whether this correspondence could be applied for solving more general systems of boolean equa-
tions seems an interesting research challenge in its own right

10

The new vertices are exactly the new sinks F’ = sinks(D(F)) \ sinks(G) and |F’| < number of
cycles in G. The labeling, defined by I(z) = x for z € G and I(2’) = x for the new &’ € F’, serves
to establish a unique correspondence between solutions of D(F') and of G.

Example 4.4 D(a,b) € dag(G) is obtained from the feedback vertex set {a,b}.

a ~b hb——=>Cc—>d—>e—f—=>}
A |
j; CV/ D(a, b) \d/i

G

l;

The double ‘a’ would disappear if we constructed the dag D(b) from the feedback set {b}. It would
have an edge from a’ (which became a) to V' and no extra a without incoming edges.

Let dag(G) denote the set of so obtained dags from a given G. Given a D(F) € dag(G), we can
use inductive definitions over this representation. In particular, any assignment to the new sinks,
B8 € {0,1}F ', induces an assignment 3 to the whole D, in linear time. We only verify that the
values assigned to the new sinks z’ € F’ are the same as the values induced at the respective
x € F. In the above D(a,b), trying o’ = 1 = ¥’ fails inducing @ = 0. Trying ¥ =1 and ¢’ =0
induces the same values at b and a, allowing to conclude the existence of a kernel for G.

s0l(G) becomes thus captured by a new system of equations requiring the values assigned
to F’ to agree with the values induced in F'. The system is defined as follows. For every vertex
x € G\ sinks(G) = int(D(F)), divide the set of its out-neighbours N () into two disjoint subsets:
Nj (&) = Nj(2) N F' and Nj; (@) = Nj-(@) \ N («).

Definition 4.5 For x € sinks(G) let FRMp(py(x) = 1 and for x € int(D(F)) define:

FRMD(F)(I‘) = /\ =y A /\ —\FRMD(F)(Z).
yel(NF (z)) 2N (x)
The reduced system is EQUpry(G) = {FRMppy(x) =z | x € F'}.

Example 4.6 (4.4 continued) The reduced system EQUp(q)(G) has two equations: a = —b
and b= =(=b A =(-a A =(—a A —==b))).

The dag D(b) € dag(G) would give the corresponding reduced system with only one equation
(equivalent to the one obtained by substituting a = —b in the above system), namely: b = —(=b A
=(==b A =(==b A ==b))). Simplifying its right-hand side, we gradually obtain the trivial equation
b= —(=bA—(==bA—-==b))) = =(=bA-0)) =b.

Each FRMpr)(x) contains only variables from F, so an o € {0,1}¥ can be extended to o* €
{0,1}¢ as follows (a[¢] denotes the usual evaluation of the formula ¢ under the assignment «):

| a(z) ifxeF

o(z) = { a[FRMppy(x)] otherwise (4.7)

This makes a* a function consistent with @ induced according to Definition 3.1, i.e., a* C @a.
Every solution for G is, in fact, such an o* obtained from a solution for EQUp) (G).

Proposition 4.8 For any D(F) € dag(G):
sol(G) = {a* |« € {0, 1} AVz € F : a(z) = a[FRMpr)(z)]}.

PROOF. D) If the equality holds for F, then (4.7) makes it hold also for all other nodes. Then,
for every x € G, we have that (*) o*(z) = 1 & o[FRMp(p)(z)] = 1, and hence

11

@=1 & (N " @A\ -alFRMp)(2)]) =1 (5)

yEl(Nzr(ac)) zEN;g(;z)
& (/\ —a*(y) A /\ —u*(z)) =1 (%)
yEUNT) (@) ZENE (2)
& N-o'y) =1 N7t (z) = (N} (z)) U N§ ()
yeEN*(z)

& Vy:yeNt(z) = a*(y)=0
C) For an arbitrary 5 € sol(G), let & = B|p. Since F' € B(G), so @ = 8. But since @ and a* both
are functions and o* C @, so a* =a = (. O

In Example 4.6, the reduced system simplified to one trivial equation b = b, so the graph G has
exactly two solutions, each induced from a solution to this equation.

Expressing this proposition in terms of the assignment @, induced in the dag D(F) € dag(G)
from the assignment o € {0, 1} " to its new sinks F”, gives the following claim:

s0l(G) = {ala | @ € {0,1}7 AV2' € F': a(2') = a(x)}.

The above algorithms, whether utilizing the reduced system of equations EQUpry(G) or merely
inducing values directly in D(F), rely on finding an arbitrary feedback vertex set. The following
subsection presents an algorithm for which it suffices to find a subset of nodes breaking only the
even cycles.

4.2 Breaking Even Cycles

Dually to Richardson’s theorem, we have the following fact.

Lemma 4.9 If G # &, sinks(G) = &, and G has no even cycles, then sol(G) = &.

PROOF. Assume towards contradiction that o € s0l(G). Clearly, a! # @. So choose a € o' and
consider a sequence of sets V; : N — P([a)) such that

Vo = {a}
Vair1 = Ugzer,, N1 (2)
Vaive = Uyevy,,, (U=}, where y, € N7 () is such that a(y,) =1 (if it exits).

By correctness of «, such a sequence satisfies |J; Va; C at and |J; Vait1 C o and, as sinks(G) = @
soVi € N:V;, # @. Also, it is easy to see that for every n € N and every a,, € V,, there is a
sequence of edges (a,a1,as,...,a,) such that Vi : a; € V; N NT(a;_1). So there is an infinite
sequence of edges p = {(a,ay,as,...) such that Vi : a; € V; N N7 (a;_1). Since G is finite this is
only possible if 35 > i : a; = a;. Let 7, j be a pair satisfying this condition and such that for all
i<k <l<j:ar# a. The sequence of edges C' = (a;,ai11, ..., a;) must be of even length since
otherwise a; € a' N a®. We have found an even cycle, contradicting our assumption about G. O

From an algorithmic point of view, the observation that odd cycles are the only obstacle to the
existence of kernels suggests (not always efficient) algorithms based on breaking the odd cycles.
The above observation suggests that we can restrict attention to even cycles, and the following
proposition makes this suggestion precise. A subset of vertices X C G is an even cycle transversal,
if G\ X contains no even cycles.

Proposition 4.10 If X C G is an even cycle transversal, then X € B(G).

PROOF. For an arbitrary 8 € sol(G), Lemma 3.6 gives that (]x Assume towards

= B‘dom(ﬁ\j)'
contradiction that G' = G\ dom(B|x) # @. By Lemma 3.6.2, G’ has no sinks, and also Vz € G' :
Yy € N*(z) Ndom(B|x) : B(y) = 0. This implies that 8 = Blaom@re) Y B’ for some B’ € sol(G').
However, as G’ is a graph with no sinks and no even cycles we have sol(G') = @ by Lemma 4.9.
This is our contradiction. |

12

Clearly, for many graphs this represents a significant improvement over the algorithms from the
previous subsection, reducing the worst case exponent from the number of cycles to the number
of even cycles. Even though an implementation seeking to take advantage of this encounters the
problem of finding an even cycle transversal (finding a minimum such is NP-hard, and not known
to be FPT), one can argue also for the practical relevance of Proposition 4.10, besides the merely
theoretical improvement. In some situations, it can happen that an even cycle transversal can be
easily obtained from the input. In general, it often suffices to find a small — and not a minimum
— such set and this can be done relatively efficiently.®

Example 4.11 (3.2, 4.4 continued) The graph G has two even cycles: (b,c,b) and (b,c,d, a,b).
Trying b =1 (respectively, 0), induces the assignment @ (respectively, 3) as in Example 3.2. The
induced assignments are functions and hence solutions by Proposition 4.10 and Definition 4.1.

The above example might be insufficient since b is, in fact, a feedback vertex set, so the conclusion
follows already by Proposition 4.2. The following example, shows the difference.

Example 4.12 In the following graph G
b R
a E—
the only even cycle is C = {(a,b,d,c,a). Breaking it at, say a, leads to two trials:

a =1 induces b=c=d =0 but then d =0 gives a conflict inducing b =1, and

a =0 induces b=1,d = 0, but no more vertices obtain any induced values.
Neither assignment induces a solution, so Definition 4.1 and Proposition 4.10 imply sol(G) = &.

In the graph G\ {e}, we have the same even cycle. Trying a =1 gives a conflict as above, but
from a =0, we obtain b=1=c and d =0 = f, yielding a solution.

o

This concludes the first set of our algorithms for KER. Except for the obvious algorithm using
CNF(G) from (2.6), testing SAT (of boolean equations) is of use here only as a possible enhance-
ment. The algorithms from the present section can be very efficient when applied to graphs with
few (even) cycles and, particularly, when cycles or feedback vertex sets are easily read from the
input. We do not think, however, that they will be optimal for all kinds of instances. Their likely
shortcoming will arise from the comparison to the algorithm proposed in the following section,
which also shows much tighter connections between KER and SAT.

5 KER and SAT

Algorithms in the previous section perform the initial simplification, Algorithm 3.15, extract a
relevant subset X of vertices and then answer KER solving a system of equations or trying blindly
assignments to X, which induce the assignments to the whole graph.

The following, recursive Algorithm 5.1 performs simplification and induction at each recursive
call, returning an element of sol(G), if such exists, and L otherwise. It takes an additional
argument, the partial assignment «, and constructs its extension to a complete solution, if possible,
or returns L if not.

The sub-routine sols is used to solve more efficiently graphs that have maximum degree 2. It
is given in Algorithm 5.2 and is probably best explained by simply stating Lemma 5.3.

8Finding a minimum feedback vertex set is shown to be FPT in [5]. Given a graph with vertices G, and such a
subset V' C @, one can try moving, one at a time, a vertex x from V back to the induced subgraph G \ V, checking
if the resulting, induced subgraph G \ V U {z} has an even cycle. This last problem is in P by the recent result
from [31]. If no even cycle appears, we continue with V' \ {z} and the induced subgraph extended with z, while if
some does, x remains in V. What remains in V, after trying all its vertices, is an even cycle transversal.

13

Algorithm 5.1 sol(G, a)

Input: A digraph G and a partial assignment « (initially a = &).
Output: S € s0l(G) with o C § if it exists, L otherwise.

QI DUttt e // Definition 3.1 applied to G U dom(«)
if « is not a function then return L

G:= G\ dom(a)

if G = @ then return o

G = SIMP(G) e /| Algorithm 3.15

if G = 1L then return L

if G has maximum degree 2 return sols(G, a)
Choose some =z € G

return sol(G,a U {{z,1)}) ® sol(G,a U {(z,0)})

Algorithm 5.2 soly(G, o)

Input: A digraph G of maximum degree 2 and some partial assignment «
Output: S € s0l(G) such that o C 3, L otherwise.

= =
= o

e /| Definition 3.1

if « is not a function then return L

G:= G\ dom(a)

if G contains an odd cycle without any reversible edge then
return L

if bord(a) = 0 then
return a U S for any 8 € sol(G)

Choose some connected component S € G

B = {3 € s0l(S) | N*(bord(a)) N g # 0}

if B # 0 return P 5 s0l2(G, U B)

else return soly(G, U) for any 8 € sol(S)

14

Lemma 5.3 For any, sinkless, loopless graph G of maximum degree 2: G has a solution iff every
odd cycle in G has a reversed edge

PRrROOF. Let Gg = {51, S2, ..., Sn} be the n connected components of G. Clearly, sol(G) # 0 iff
V1 < i < n:sol(S;) # 0. Since each componenet S; has maximum degree 2, so its underlying
graph S; is either a path or a chordless cycle. So either S; does not have an odd cycle or else it
is an odd cycle, possibly with some reversed edges. Solvability of S; follows from Richardson’s
theorem in the first case. For the second case of S; being an odd cycle, if S; has no reversed edge
then, by lemma 4.9, S; does not have a solution. If S; has one or more reversed edges we show
that it has a solution. Write S; as zox1%a...z, where n+ 1 = |S;| is odd, and x;+1 € N (x;) for
all i > 0, with addition modulo n. Choose z;, ;41 such that also z; € NT(x;11), and define « by
ot = {z;} UlUgejeilj | (i = j) mod 2} UU; o j<, {wj | (i # j) mod 2}. Tt is easily verified that
« is a solution for S; O

Correctness of Algorithm 5.2 follows readily from lemma 5.3. In particular, line 4 determines if
G has an odd cycle without reversed edge and the algorithm proceeds only if it does. After this
the question of solvability of G is settled by Lemma 5.3. We must aquire the actual solutions for
use later in the algorithm. But this is easy - the brute-force approch, for instance, would do it
by simply computing all maximal independet sets in all components. In lines 7 and 11 we require
only one solution (to G and a component S C G respectively), and this is even easier. For the case
of odd cycles with reversed edges we refer to the proof of lemma 5.3 where we construct an acutal
solution. For all other components, S, a solution is found by simply assigning 1 and 0 to every
other vertex along S, which works since S is either a path or an even cycle without any sinks nor
loops. Consequently, the vertices assigned 1 form an independet set, while every other vertex, on
pain of contradicting sinklessness, will have some edge going into this set.

Now, the reason why the algorithm cannot simply stop upon having noted that G is solvable
is that each vertex in bord(a) requires that one of the vertices it points to is 1. This means we
have to search through a potentially large collection of solutions for G. This happens in lines 8-10
and is considered in more detail in the proof of Proposition 5.5 below.

Correctness of Algorithm 5.1 is now quite obvious, although strictly speaking, it is not an
algorithm but a class of algorithms. For instance, the simplification of a graph, as well as inducing
of values from a given partial assignment, could be defined otherwise and replace those used here.
Also, several minor issues are left for more detailed decisions. For instance, « is only a solution
to the reduced graph obtained after a possible series of contractions at line 5. The solution for
the actual input graph has to be reconstructed from it by a corresponding series of applications
of Fact 3.10.

The polynomial (in the size of the original graph) time, spent in each recursive call on the
computation of @&, can be improved since, once it starts going, it only needs to consider border
vertices from dom(a), Definition 3.4. A conflict (a vertex assigned two values so that @ is no
longer a function) must occur at these vertices, and once it is detected, the algorithm can return
the failure value at line 2.

Two more central decisions are left open. The operation @ denotes angelic choice, ignoring the
possible argument L, ie, 2@ L =1@®z=x,andz# LAy # L = (z®y) € {z,y}. (It is also
used in line 10 of Algorithm 5.2.) An implementation has to decide how to perform the choice of
the first value tried. Finally, we have not specified how to choose an & € G for branching at line 8.
A specific instance of the above algorithm was presented in [12]. It performs no simplification
and branches only from maximal degree cyclic vertices. Proposition 4.2 guarantees sufficiency of
branching only from cyclic vertices, and choosing maximal degree is often sound.” However, it is
not always the best choice, as evidenced by the following example.

Example 5.4 Consider the graph G:

9Whether degree refers to the in-degree, out-degree or their sum may depend on the implementation and, in
particular, on the way of inducing. In our case, inducing happens both along and against the direction of the edges,
so degree of a vertex means for us the number of all (bot in and out) neighbours.

15

‘e T~
va—y
L~

=

= T
~_ =
The minimal degree is 2 = deg(y) = deg(z) = deg(r). Branching from y gives two cases:

y = 1 induces the solution withx =q=z=0andy=w=r=1

y = 0 induces the solution withq=z=r=1andz=y=w=0.
Similarly, each branching from z induces a solution. So, Algorithm 5.1 branching first on some
nodes with minimal degree, terminates successfully in just one recursive call. This need not happen
when branching on x, the only vertex with mazimal degree. Inducing from x = 1 gives y = q¢ =0
which yields a conflict at y, while x = 0 induces only r = 1, i.e., requires further recursive calls.

8<—

r

It is probably too much to ask for an algorithm that always makes the optimal choice of branching
vertex. As a simple and general rule for arbitrary graphs, choosing a vertex with maximal degree
may be a good heuristic. Taken in conjunction with Algorithm 5.2, it suffices to establish the
following upper bound on the time spent by Algorithm 5.1.

Proposition 5.5 Algorithm 5.1 can be made to run in time O*(1.4271G1), for all G.

PROOF. Sinks are removed already when inducing from the empty assignment and loops when
removing the contradictions, so all graphs, G’, considered by Algorithm 5.1 after these initial steps
are loopless and sinkless. Thus, all vertices have degree 1 or more.

(A) Consider first the case of repeated branching at line 8 on vertices with degree 3 or more.
Methods invoked in lines 1-6 are linear (or low polynomial). Trying assignment of 0 may not
induce any values, while assignment of 1 induces values to at least 3 neighbours. This gives the
recurrence T'(|G’|) = T(|G'| — 1) + T(|G’'| — 4) for arbitrary subgraph G’ C G. So if the algorithm
branches always at line 8 and terminates at 2, 4 or 6, we get the upper bound of (’)*(1.381'6“)‘
(B) Another case occurs when recursion terminates at line 7 with calls to soly. There are then
two subcases:

(B.1) If bord(a) = @, then if G = G\ dom(«) is solvable, any solution to G’ extends « and its
existence is checked in polynomial time in line 4. (If needed, a solution can be found as suggested in
the discussion following Lemma 5.3.) The whole case is therefore handled, lines 1-7, in polynomial
time with no branching.

(B.2) The complex case is when bord(a) # (. Then, if the subgraph G’ = G\ dom(«) is solvable, we
may risk having to generate all its solutions, in search for one matching its 1’s against all border
vertices. This happens in lines 8-10 of Algorithm 5.2. The algorithm chooses some component
S of G’ at line 8, and branches on its every solution that leads to a reduction in the size of the
border. The depth of the recursion in soly is thus bounded by the minimum among the number
of disjoint components in G’ and the size k = |bord(a)| of the border. Taking all components
to be of the same size [, gives ‘Cj—/‘ as their number in G’. (This simplification is justified by the
cases identified below.) At each recursion level, line 9 of Algorithm 5.2 inspects all solutions of
the current connected component S with max degree 2 and size [. Denoting the number of such
solutions by S(1), gives the following formula for the upper bound on the complexity of sola(G', a):

S()mn(SR), (5.6)

This reflects the worst case of branching at line 10, for each component of G, which contributes
a multiplicative factor S(I) * ... to the complexity. Recursive calls at line 11 contribute only an
additive factor S(I) + ..., since they allow to use and propagate arbitrary solution 3 of the current
component. Now, S(I) is limited from above by the number of maximal independent sets which,
for the concerned graphs with max degree 2, satisfy the reccurence S(I) = S(I —2)+ S(l —3), with
S(1) approaching 1.321* as [grows, cf. [17]. Still, this is only the behaviour in the limit, while the
initial conditions for low I’s give worse bounds, as can be seen considering the following two cases:

16

B.2.1 If for all S; € G/, I; = |S;| > 4, then the number of solutions in any such S; is bounded from
above by 1.381¢, the worst case obtaining for 5-cycles, I = 5, with up to 5 < 1.381° solutions.
G’

By substituting into (5.6) we get 1.3815+min(15 k) < 1.3815*% = 1.381‘G/‘, i.e. the upper
bound not exceeding that from case (A).

B.2.2 If for some S; € G', we have I; < 3, the worst case obtains when all components of G’ are
symmetric 3-cycles (i.e., with all edges reversed), since they have 3 solutions each.!’ Now,
let n denote the number of times we encounter the upper-bound in (5.6), i.e., the number
of times Algorithm 5.1 terminates in line 7 with a call to soly on such a collection of 3-
cycles. Let Gq,Go,...,G, and ki, ks..., k,, denote the subgraphs and the numbers of border
vertices in each of these n instances of the problem (assuming always the greatest possible
k; = |dom(a;)|, i.e. |Gi| = |G| — k;). Instead of giving the running time in terms of each
|G;| we express it directly in terms of |G|, as the sum of all n instances of (5.6), each with
S(3) = 3 for symmetric 3-cycles:

n .G —k;
S gmint Ttk (5.7)
i=1

|Gl=k;

We maximize 3™ *4) for each k;, noting that since both functions of k; are monotone,
one decreasing and the other increasing, the maximum is obtained when both are equal, i.e.,
for k; = %. Now, n and the k;’s are mutually dependent but (5.7) reaches the maximum
when all branches of the recursion tree have already processed k; = |4ﬂ vertices, and call soly
with |G;| = %. Then, according to (A), n = 1.381'F". To see that this is the worst case,

first assume that any of the branches continues splitting, i.e., that Algorithm 5.1 continues
G|

branching at line 9 with subgraphs smaller than —=. This amounts to increasing k;, so
min(‘Glgki,ki) = ‘G‘;ki. Consequently, in (5.7) the term t = 318 = 3% i replaced by

3|G[—4 3|G|—16

two terms, 1 = 3~ 1z and t3 = 3~ 1z | for the subgraph reduced by 1, respectively 4
vertices, according to the recurrence from (A). But ¢; + t2 < ¢, and the sum keeps thus
decreasing if splitting and reducing the size of the subgraphs continues in this way. If,
on the other hand, there are fewer than n branches since some terminate earlier for k; <

|4ﬂ7 then (5.7) has fewer terms, some smaller than 3%, Thus, the maximum of (5.7) is
ITRNIe]

s = 7 el
13815 «3% =4.1435 < 1.427/9,

B.2.2 is the overall worst case. The obtained 1.427!C! dominates 1.381%7 which should be added
as the time spent on reaching the n calls to soly terminating all the branches. We obtain thus
0O*(1.42761) as the overall upper bound for the whole Algorithm 5.1. O

A more detailed analysis might improve this bound but even the estimate given here shows that
Algorithm 5.1 is better than checking every possible maximal indpendent subset of G, i.e., every
potential solution. In particular situations it is possible to specify the choice of branching vertex
more carefully and thereby get improved running times for certain classes of graphs. This is done
below for the class of oriented graphs.

5.1 Oriented graphs

Many possibilities of improvements of Algorithm 5.1 exist in the interplay of the different choices
involved and an interesting, related, question is how much the complexity can be improved when
attention is restricted to special classes of graphs. We show that for the oriented graphs it is possi-
ble, by choosing « € G for branching in a certain way, to obtain a better bound than O*(1.427|G‘).
For the analysis in this subsection Algorithm 5.2 will play no role, so for simplicity we assume

10This might not be immdiately obvious, but the analysis performed here for 3-cycles can be performed in exactly
the same way for 2-cycles, yielding an upper bound which is smaller than for 3-cycles. The result for 3-cycles below
is worse than for [; > 4 in B.2.1, so assuming only some (but not all) components to be 3-cycles gives a better case.

17

that Algorithm 5.1 is run to completion, i.e. without calling soly in line 7. In fact, we establish
an upper bound on the number of kernels in oriented graphs, not just the time it takes to decide
if one exists.

Proposition 5.8 For oriented G : |sol(G)| < 1.286/C! and Algorithm 5.1 can run in O*(1.286/¢1).

PrOOF. We run Algorithm 5.1 on some oriented graph G. Since sinks, contractible paths and
basic contradictions are removed without branching we assume that G is free of these. We analyze
the running time by considering the following possible cases:

1. G has a vertex z with one or more in-neighbours, [N~ (z)| > 1, and a single out-neighbour
{y} = N*(z). Branching from any such = € G, gives the two cases:

(a) x has a single in-neighbour: Then, since G does not contain any contractible paths, the
in-neighbour of x must be y and then we have a cycle of length 2. Since G is obtained
from some oriented graph this cycle must originate from the contraction of some path
which led to the reduction of input size by at least 2. We are thus justified to view
the actual size as |G| — 2, this earlier reduction being polynomial. The assignment
of either 1 or 0 to z induces a value at least to y, giving the recurrence T(|G|) =
TG —2-2)+T(|G] —2—2) =2T(|G| — 4).

(b) z has two in-neighbours: Then there are two further subcases:

e y is an in-neighbour of : Then there is a 2-cycle in G and we can view its size as in
the previous case, |G|—2. Since x has another neighbour, distinct from y, we induce
values to at least 2 other vertices when we assign 1 to while we induce 1 to y when
we assign 0 to z. So we obtain the recurrence T'(|G|) = T(|G| — 5) + T(|G| — 4).

e yisnot an in-neighbour of z: Then we induce values to 3 other nodes when we assign
1 to x. If we assign 0 to x we induce 1 to y. But since G is sinkless and y is not an
in-neighbour of x, there is some out-neighbour of y, distinct from z, that is induced
0 in this case. It follows that we get the recurrence T'(|G|) = T(|G|—4)+T(|G|—3).
This is the worst possible situation for case 1).

Every G with maximum degree 3 or less will fall under the current case, i.e., have a vertex
x with a single out-neighbour. This follows since G is sinkless and therefore has at least one
final strongly connected component S with |S| > 2. Clearly, every vertex in S has at least
one in-neighbour and one out-neighbour. But if every vertex in S has two out-neighbours
then since S is final it follows that there is a vertex in S with two or more in-neighbours,
contradicting the fact that no vertex has degree more then 3. Consequently, in the following
case, when no vertex with a single out-neighbour exists, the degree of a graph is at least 4.

2. Case 1) does not apply and G has maximum degree 4. Then there is some final strongly
connected component S C G where every vertex has more then one out-neighbour. It follows
that every vertex in S has exactly two out-neighbours and exactly two in-neighbours. To see
this note that since S is final the sum of out-neigbors over vertices in S must be less then
or equal to the sum of in-neighbours over vertices of S. So either every vertex has two in-
neighbours or else there is some vertex that has more then two in-neigbors, the latter option
being ruled out by G having maximum degree 4. We analyze the situation with branching
on an arbitary vertex x from S, obtaining two cases:

(a) x has some out-neighbour that is also an in-neighbour. Then there is a cycle of length
two that has been obtained from contracting a path. This yields T(|G|) = T(|G]| — 2).
Also, on assignment of 1 to x we induce values to at least 2 other vertices while on
assignment of 0 to x we do not neccesarily induce any values. So the recurrence becomes
T(IG]) = T(|G| =5) + T(|G| = 3).

18

(b) All neighbours of x are distinct. Then, on assignment of 1 to z we induce values to
4 other vertices while if we assign 0 to x then we might not induce anything and so
might have to solve a problem of size T(|G| — 1). However, since we removed x from
G to obtain the graph corresponding to this subproblem there is a vertex with only
one out-neighbour in this graph. This gives us, by case 1), the worst case recurrence
T(G|-1)=T(G|—-1-4)+T(|G| —1-3) =T(|G| = 5) + T (|G| — 4). The recurrence
is thus T(|G|) = 2T(|G| — 5) + T(|G| — 4).

3. Case 1) does not apply and G has a vertex of degree 5. Then we branch on such a vertex
obtaining T(|G|) = T(|G| — 1) + T(|G| — 6).

The recurrence from 3 is the overall worst-case in this analysis, giving the bound O*(1.286|G‘).

d

Notice that the proofs of Propositions 5.5 and 5.8 do not specify completely how to choose a
branching vertex, but only narrow the choices down to sets of vertices with some desired properties.
The question about the exact choice is still highly relevant for an implementation.

5.2 DPLL

If, in Algorithm 5.1, we take G to be a CNF formula, the algorithm turns out to be exactly
the pseudo-code for the DPLL algorithm for satisfiability, [10, 9], which is the basis of virtually
all modern SAT-solvers (for a relatively recent overview, one can consult e.g., [23]). Inducing
in the first line amounts then, typically, to the unit propagation and the condition ‘« is not a
function’ amounts to the ‘conflict’ in the SAT-solving parlance. An « satisfying all clauses in G is
returned, line 4. Otherwise, the remaining problem is preprocessed for the next recursive call, line
5. Simplification may include elimination of clauses with pure literal (occurring only positively or
only negatively), as well as learning and many other heuristics depending on the implementation.
We suggested, similarly, a wide range of possible choices in Section 3. Choosing then wisely the
branching literal = is one of the crucial aspects of successful SAT-solvers.

The coincidence of Algorithm 5.1 and DPLL goes beyond the mere fact of both instantiating
the general branch and bound schema. It involves also the fact that kernels can be seen as
solutions, (2.2), and that during their gradual construction, partial assignments induce values to
the neighbourhoods, in analogy to unit propagation and other constraint propagation techniques
in SAT. One may therefore expect the lessons from SAT-solving to be relevant for KER-solving.
The crucial aspects of SAT-solvers concern the efficiency and range of inducing values from a
given, partial assignment, line 1, and the choices of the branching point and its value required
to get the most out of the propagation of constraints implied by the performed choices, line 8.
These two elements occupy the critical position, as SAT-solvers spend around 80% of time on
this phase. It is reasonable to expect a similar situation in KER-solving. The importance of this
aspect has been illustrated by the complexity analysis. The bound O*(1.427/¢1) for the general
case and its improvement to (’)*(1.286|G‘) for oriented graphs, were obtained due to the respective
graphs enabling, at each recursive call, some minimal extension of the current partial assignment,
thus reducing the remaining search space. This justifies also the expectation that Algorithm 5.1,
propagating partial assignments recursively, will outperform the algorithms from Section 4, which
do not take any advantages of the attempted partial assignments.

There seems to be no general guidance in actually performing the choice of branching vertex.
High degree may often work well but, as we saw in example 5.4, is not necessarily optimal. It
might be too much to ask for a strategy working best in all cases but uncertainty at this point
may also reflect the lack of experience and overview of the problem instances. In SAT-solvers, the
choice is performed depending on the subclass of instances for which the solver is designed. Choice
of the branching literal in solvers for random-SAT uses a lookahead procedure, which determines
the reduction in the search space effected by each choice. Solvers for industrial-SAT can use the
results of learning from the earlier encountered conflicts.

We have thus mentioned another important aspect: a SAT-solver is designed for a specific
category of instances. A solver deciding SAT quickly on instances from industrial, or other rational

19

and systematic contexts (using additional techniques of conflict analysis and clause learning),
may perform poorly on random instances. For random instances, “local search” heuristics for
merely finding a solution may be extremely efficient but remain incomplete, being unable to
conclude unsatisfiability. The winner of several categories of the SAT-competition in previous
years, SATxzilla, is actually a collection of various algorithms, which are only chosen appropriately
depending on the analysis of the actual instance. The lack of one, uniform approach and the
need to adjust solutions and heuristics to appropriately limited subclasses of instances is a general
lesson from SAT. One can expect KER to face the same challenge of identifying such relevant
subclasses. It is likely, however, that just as the DPLL schema is at the core of virtually all
efficient procedures for solving SAT, so does Algorithm 5.1 express the core structure of efficient
approaches for solving KER.

An important case of subclasses are those for which the problem becomes tractable. For
instance, 2-SAT is NL-complete and Horn-SAT is P-complete. Search for sufficient conditions
for kernel existence is an active research field, e.g., [1, 14, 15, 18, 3], with a recent overview
in [4]. Further research should, in our opinion, consider also the problem of finding classes of
graphs which may not admit kernels but have complexity bounds for the KER-problem below
NP-completeness.!!

Finally, let us mention an interesting SAT phenomenon — phase transition. When the clausal
density (the ratio of number of clauses to the number of variables) is below 4, the theory is, with
high probability satisfiable, while when it exceeds 4.5, the theory is almost certainly unsatisfiable.
The instances with the clausal density around the transition value, 4.25, are the most difficult to
solve. It is not obvious how to translate this into the graph language. Graph density (average
degree) seems to be a relative of the clausal density, so one might conjecture that sparse graphs
should be solvable with high probability (as are, e.g., all trees, dags and 50% of all cycles.) Very
dense graphs might be expected to be relatively easy (e.g., kernels in a weakly complete digraph
G (one with a complete underlying graph G) are exactly nodes z satisfying N~ (z) = G \ {z})
but should be expected to be unsolvable. A naive guess might expect the most difficult problems
somewhere in the middle between these two extremes. This is partially confirmed by the tests of
the algorithm presented in [12]. According to them, sparse graphs and graphs with density over
50% are relatively easy, while those with density around 15-20% are most difficult. On the other
hand, it has been shown in [16] that the kernel problem is NP-complete for planar digraphs of
degree at most 3, so the “easy” instances of KER can certainly be difficult enough. It remains to
be seen if phase transition from SAT has a counterpart in KER and, if so, under what measure of
graph density.

5.2.1 Why not reducing to SAT?

The relevance of SAT for KER should not be overestimated to the point of dismissing the latter
by merely translating its instances into SAT and using SAT-solvers. Sophistication of modern
SAT-solvers might suggest such a move and can even be expected to yield good results in various
cases.

The main reasons, justifying our separate treatment of KER, are complexity considerations.

According to the bound on the number of maximal independet subsets, 3%, and the possibility
to produce them with polynomial delay, general KER can be solved in O*(1.443!¢1). The analysis
of Algorithm 5.1 lowers this bound to ©O*(1.427/1). For general SAT, on the other hand, the best
known upper bound is of order O*(Qn(l_m)), where n is the number of variables and m
the number of clauses, [8]. (Note that this converges to O*(2") as the ratio m/n grows. For DPLL
solving k-SAT, 2" is also the lower bound, as k goes towards infinity, [28].) SAT-instances of form
(2.6), representing KER, provide thus a non-trivial subclass which can be solved more efficiently
than this general upper bound, irrespectively of the m/n ratio.

1 One non-trivial result of this kind follows from the work done on stable matchings. An algorithm presented
in [21] decides existence of stable matchings for the roommates problem in polynomial time. This solves KER
in polynomial time for any digraph that is an orientation of a line graph and for which every weakly complete
subgraph is acyclic.

20

On a more practical side, it is possible that instances of KER, when translated into SAT, would
be amenable to a uniform processing with the gains comparable to the difference between these two
upper bounds. It is also possible that subclasses of digraphs, like the oriented ones, making KER
easier, could be translated into instances making also SAT easier. But the gains in complexity,
both for the general KER and for the oriented graphs, were based on specific strategies for selecting
active literals, which do not seem to be reflected in those applied in SAT-solvers. To use SAT-
solvers with comparable increase in efficiency will almost certainly require their adjustments and
is a possible direction for further research. Similar remark applies to the simplifications from
Section 3. When translated into the operations on the translated SAT instances, they correspond
to techniques used in SAT-solving: basic contradictions can be discovered by means of implication
graphs for binary clauses, while contraction of isolated paths amounts to detection of equivalent
variables from binary clauses. Many SAT-solvers perform such simplifications only at the stage
of preprocessing, while Algorithm 5.1 performs them dynamically at each recursive call. Indeed,
for general instances of SAT, the cost of their repetitive use tends to exceed the gains (though
some use of such “inprocessing” may be viable, [20]). But for KER instances, propagation of
values along the isolated paths and checking neighbourhood of a vertex are among the simplest
possible operations. As many isolated paths or basic contradictions can be expected to appear
only dynamically, their repeated simplfication may be worthwhile. A similar move could be easily
implemented in a SAT-solver, but it is typically not included, due to low average cost/gain ratio.
In special situations, the difference may be of exponential order.

Example 5.9 Consider the following graph which should be seen as arising only during compu-
tation from remowval of nodes assigned 0. All nodes ¢; and a; can have more outgoing edges.

Yy—z

v

x

T B A

Its translation into CNF, following (2.6), yields the clauses:
i) a; V by V ¢;, —a; V —by, —a; V oe; and b V¢, —b; V —e; — for each lower triangle, and

i) eVy\,a, "V -y, ~xVoa; (foralll<i<k),yVz —yV-ozandzVz, ~xV -z
Assume a SAT-solver selects, as the active literals, consecutive ¢;’s. Trying

c1 =1, the unit propagation yields a1 =b; =0
and this operation is repeated k times, after which the clauses in ii) are reduced to:

i) xVy, ~xV -y, yVz, yV-zandzVz, ~xV-oz.
Now a conflict results trying both values 0,1 with any choice of the active literal. Backtracking
one ¢; literal at the time, and trying ¢; = 0, gives the same result, so that after 2511 trials, this
backtrack search concludes unsatisfiability.'?

Algorithm 3.15 identifies contradictions efficiently (footnote 5) and sets first all a; = 0. The
rest of the graph is processed in linear time. Algorithm 5.1 may assign various ¢;’s and/or b;’s
before going to x,y, z, where two attempts with 0 and 1 at any of these nodes unveil unsatisfiability.

In short, solving KER directly gives gains in complexity and efficiency and corresponding gains
could be achieved by fine-tuning a SAT-solver to the specific form of SAT-instances arising from
KER. However, in order for this fine-tuning to give comparable effects, it would have to follow the
results of the direct analysis of KER, as presented in this paper.

12Such claims must, of course, be taken with serious reservations. A particular solver, using a particular strategy
and heuristic, might actually happen to avoid the problem. Although the example seems also to depend on the
strategy for selecting the active literals, one can adjust it to many different strategies, since all ¢; might possess
other outgoing edges (e.g., occur in most clauses). The main point is that simplifications of such form are, typically,
performed by a SAT-solver only in preprocessing and not during the computation.

21

6 Conclusions

We have studied the problem, KER, of solvability of digraphs or, in the more standard language, of
determining if a given digraph has a kernel. We began by observing its equivalence to the problem
of satisfiability of propositional formulae, whether in usual or infinitary propositional logic. Seeing
different applications of digraph kernels, in areas such as game theory and non-classical logics, it is
conceptually rewarding in itself to see that kernels can be expressed — equivalently and naturally
— as models of propositional theories.

‘We have proposed a series of graph reductions which preserve and reflect solvability and, being
linear (or low polynomial), can be incorporated into the algorithms for KER~solving. In Section 4,
we gave two such algorithms: one based on the extraction of a feedback vertex set, F', and another
reducing the complexity even to O* (2|E |), where E is an even cycle transversal. As a consequence,
KER is FPT not only in the size of F but also of E. (As an instance of reducing KER to SAT, we
gave a variant of the first algorithm where solving a reduced system of boolean equations replaced
blind trials of all assignments to the sinks of a labeled dag, representing the input graph.) These
algorithms can be expected to perform well on graphs with few (even) cycles and, especially, when
even cycle transversal or, at least, feedback vertex set can be easily obtained from the input.

The question about a general algorithm for arbitrary instances of KER, led in Section 5 to
another, new algorithm, which turns out to be virtually identical to the well-known DPLL algo-
rithm, underlying modern SAT-solvers. From this we dare draw a series of conjectures for further
development of the research on KER. It suggests that this final algorithm may outperform others
on the large, practical instances of KER. This, however, will depend on more detailed decisions,
because the presented sketch gives only a class of algorithms. It leaves open the possibility for
further choices and improvements at points were such possibilities were realised or are still in-
vestigated in the context of SAT-solving. Experience with SAT-solving suggests that one will
have to adjust choices and heuristics to specific subclasses of instances. As a particular case, we
showed that, with a specific branching strategy, oriented digraphs guarantee a certain minimum
of inducing during the recursive trials, allowing to reduce their worst case bound to O*(1.286|G‘).
For the general case of arbitrary graphs, one can still ensure minimum inducing guaranteeing the
worst case bound not exceeding O*(1.427/¢1).

We have shown that SAT-solving can be, to some extent, incorporated in KER~algorithms.
More importantly and generally, however, solving KER appears to pose the same kind of choices
and challenges, as met earlier in the design of SAT-algorithms. One can therefore expect that
issues known from SAT, like those exemplified in Section 5.2, have graph-theoretic counterparts
that will come up in the design of KER-algorithms. This itself may provide an independent
motivation, and a specific direction, for the further study of KER. On the other hand, it does not
seem unreasonable to expect that SAT-solvers may eventually benefit from KER-algorithms. The
fact that KER can be formulated just as naturally in the language of graphs as in the language
of logic or of game-theory, suggests that the problem can act as a useful point of reference for
the exchange of ideas between these different fields. A better understanding of KER might very
well foster a better understanding of the relationship between different problems that, apart from
being computationally demanding, often appear to have little in common.

Having seen several new algorithms, the reader might expect also a report of their implemen-
tation and performance in practice. However, the analogy to SAT suggests that one should not
rely here on any simple statements of the kind “algorithms perform well in practice”. More pre-
cisely, any such statement should be qualified by a careful description of the instances and actual
performance measures. Experimentation with various implementations seems to be, in the case of
KER as it is in the case of SAT, an independent and extensive field of work, not to be dismissed
in a few sentences. We leave this important aspect for future work.

22

References

(1]

Martine Anciaux-Mendeleer and Pierre Hansen. On kernels in strongly connected graphs.
Networks, 7(3):263-266, 1977.

Claude Berge and Pierre Duchet. Recent problems and results about kernels in directed
graphs. Discrete Mathematics, 86:27-31, 1990.

Mostafa Blidia. A parity digraph has a kernel. Combinatorica, 6(1):23-27, 1986.

Endre Boros and Vladimir Gurvich. Perfect graphs, kernels and cooperative games. Discrete
Mathematics, 306:2336-2354, 2006.

Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. Journal of ACM, 55(5):1-19, 2008.

Vasek Chvatal. On the computational complexity of finding a kernel. Technical Report
CRM-300, Centre de Recherches Mathématiques, Université de Montréal, 1973. http://
users.encs.concordia.ca/~chvatal.

Nadia Creignou. The class of problems that are linearly equivalent to satisfiability or a
uniform method for proving NP-completeness. Theoretical Computer Science, 145:111-145,
1995.

Evgeny Dantsin and Edward A. Hirsch. Worst-case upper bounds. In Handbook of Satisfia-
bility, pages 341-362. 2008.

Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394-397, 1962.

Martin Davis and Hillary Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7(3):201-215, 1960.

Yannis Dimopoulos and Vangelis Magirou. A graph theoretic approach to default logic.
Information and Computation, 112:239-256, 1994.

Yannis Dimopoulos, Vangelis Magirou, and Christos H. Papadimitriou. On kernels, defaults
and even graphs. Annals of Mathematics and Artificial Intelligence, 20:1-12, 1997.

Yannis Dimopoulos and Alberto Torres. Graph theoretical structures in logic programs and
default theories. Theoretical Computer Science, 170(1-2):209-244, 1996.

Pierre Duchet. Graphes noyau-parfaits, ii. Annals of Discrete Mathematics, 9:93-101, 1980.

Pierre Duchet and Henry Meyniel. Une géneralization du théoreme de Richardson sur
Pexistence de noyaux dans les graphes orientés. Discrete Mathematics, 43(1):21-27, 1983.

Aviezri S. Fraenkel. Planar kernel and grundy with d<3, dout<2, din<2 are NP-complete.
Discrete Applied Mathematics, 3(4):257-262, 1981.

Zoltan Fiiredi. The number of maximal independent sets in connected graphs. Journal of
Graph Theory, 11:463-470, 1987.

Hortensia Galeana-Sanchez and Victor Neumann-Lara. On kernels and semikernels of di-
graphs. Discrete Mathematics, 48(1):67-76, 1984.

Gregory Gutin, Ton Kloks, Chuan Min Lee, and Anders Yeo. Kernels in planar digraphs.
Journal of Computer and System Sciences, 71(2):174-184, 2005.

23

[20]

Marijn Heule, Matti Jarvisalo, and Armin Biere. Efficient CNF simplification based on binary
implication graphs. In Theory and Application of Satisifiability Testing, volume 6695 of LNCS,
pages 201-215, 2011.

Robert W. Irving. An efficient algorithm for the stable roommates problem. J. Algorithms,
6(4):577-595, 1985.

David S. Johnson, Mihalis Yannakakis, and Christos H. Papadimitriu. On generating all
maximal independent subsets. Information Processing Letters, 27:119-123, 1988.

Inés Lynce and Joao P. Marques-Silva. An overview of backtrack search satisfiability algo-
rithms. Annals of Mathematics and Artificial Intelligence, 37:307-326, 2003.

Eric C. Milner and Robert E. Woodrow. On directed graphs with an independent covering
set. Graphs and Combinatorics, 5:363-369, 1989.

John W. Moon and Leo Moser. On cliques in graphs. Israel Journal of Mathematics, 3:2328,
1965.

Victor Neumann-Lara. Semintcleos de una digréafica. Technical report, Anales del Instituto
de Matemadticas II, Universidad Nacional Auténoma México, 1971.

Rolf Niedermeier. Invitation to Fized Parameter Algorithms (Oxford Lecture Series in Math-
ematics and Its Applications). Oxford University Press, USA, 2006.

Pavel Pudldk and Russell Impagliazzo. A lower bound for dll algorithms for k-sat. In In
Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, SODAOO,
2000.

Moses Richardson. On weakly ordered systems. Bulletin of the American Mathematical
Society, 52:113-116, 1946.

Moses Richardson. Solutions of irreflexive relations. The Annals of Mathematics, Second
Series, 58(3):573-590, 1953.

Neil Robertson, Paul D. Seymour, and Robin Thomas. Permanents, pfaffian orientations and
even directed cycles. Annals of Mathematics (2), 150(3):929-975, 1999.

Robert Tarjan. Depth-first search and linear graph algorithms. In Switching and Automata
Theory, 1971., 12th Annual Symposium on, pages 114-121, Oct. 1971.

John von Neumann and Oscar Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1944 (1947).

Michal Walicki and Sjur Dyrkolbotn. The graphical structure of paradox. 2010. http:
//www.ii.uib.no/~michal/graph-paradox.pdf.

24

Chapter 4

Paper B: Kernels in
digraphs that are not kernel
perfect

This paper was published in Discrete Mathematics, vol. 312, no 16, pp. 2498-
2505, August 2012.

67

Kernels in digraphs that are not kernel-perfect

Sjur Dyrkolbotn and Michal Walicki
Department of Informatics,
University of Bergen, Norway

Abstract

An equivalent of kernel existence is formulated using semikernels. It
facilitates inductive arguments, which allow to establish several sufficient
conditions for existence of kernels in finite digraphs. The conditions iden-
tify classes of digraphs that have kernels without necessarily being kernel-
perfect.

Kernel theory received particular attention due to the connections with per-
fect graphs, and much work has revolved around the kernel-perfect digraphs —
ones in which every induced subdigraph has a kernel. A lot of the theoretical
interest in the field undoubtedly stems from the connections between such di-
graphs and orientations of perfect graphs ([2] gives an overview). The perfect
graph conjecture has now become theorem and the interest in kernel theory
among graph theorists seems to have diminished. This is unfortunate as the
kernel-problem seems interesting in its own right, also because it encodes easily
many problems from game theory, argumentation theory, logic and logic pro-
gramming, see e.g. [3, 4, 5, 6, 7, 8]. In such a wider context, kernel-perfectness
is all too strong a property, which can hardly be expected in most structures of
potential interest.

1 Basic concepts, semikernels and solvers

We consider only finite digraphs, G = (G, N), with G a set of vertices and N C
G x G a set of directed edges. We use the notation N (z) = {y | (z,y) € N}
and N~ (y) = {z | {z,y) € N} and write NT(G,x) when we need to identify
the appropriate G. We often work with N~ [z] = {«} U N~ (), the closed in-
neighborhood of z. Function applications are extended point-wise to sets, e.g.,
N=(X) = Uyex N~ (@), N~[X] = U, cx N o], ete.

A subset of nodes X C G may be treated as the induced subdigraph X,
and G\ X denotes the subdigraph induced by G \ X. G denotes the underlying
undirected graph, i.e. with N = {{z,y} C G| (z,y) € N}. We consider only
simple paths and cycles, i.e. no vertex is repeated except that on a cycle the
first is the same as the last. The term walk is reserved for cases when vertices
are internally repeated. We write P = P, , to indicate that P is a path from z

toy. Then P, ,, denotes the sub-path of P going from z to w. A path P = P, ,
alternates on F' C G if every other vertex of P is in F. (It is not required
that the first vertex of P is in F'.) We allow ourselves to denote directed and
undirected paths in the same way, but state explicitly that P is in G or in G.
When P is viewed as an induced subgraph we might write P to stress that we
are thinking of it as undirected. Paths and cycles are odd or even, depending
on the parity of the number of edges used.

Paths P = P, ,,Q = Qy,. can be appended whenever PNQ = {y}, giving the
path PQ from z to z (with only one occurrence of y). Paths P = P, ,,, Q = Q. ,
with 2 € NT(y), on the other hand, can be concatenated when PN Q = 0,
written P; Q. A vertex is also treated as an even path (the empty path), and
we write P;z to denote the path P = P, , extended with z € N*(y). For a
path P = P, ,, int(P) denotes the set of internal vertices of P, i.e. all vertices
on P except {z,y}.

[G,) denotes the cone of x in G — the set of vertices to which z has a directed
path in G. We write [G, z)., [G, z), to denote only those vertices to which x has
an even or an odd directed path, respectively. The definition extends to the
undirected case in the obvious way with [G,z) denoting the set of vertices to
which z has an undirected path in G. Since x is regarded as an even (empty)
path, we always have = € [G,z). C [G, z).

A kernel of a digraph G = (G, N), is a set K C G such that:

N™(K)=G\K (L.1)

This is the case iff K is independent, N~ (K) C G\ K, and absorbing, N~ (K) D
G\ K. The empty digraph, with G = &, has the unique kernel K = &. Not
every digraph has a kernel, the obvious example being an odd directed cycle. A
fundamental result is Richardson’s theorem [12], which states that if a (finitely
branching) digraph has no odd directed cycles then it has a kernel.

The concept of a semikernel is a useful technical tool in kernel theory, intro-
duced by Victor Neumann-Lara in [11]. A semikernel is an independent subset
of a digraph L C G that is locally absorbing, i.e. such that:

N*Y(L)S N (L) CG\L (1.2)

A kernel is a semikernel, while a semikernel L satisfying N~7[L] = G is a kernel.
Sk(G) denotes the set of semikernels in G and Kr(G) the set of its kernels.

Virtually all results in the literature about the existence of kernels address
kernel-perfect digraphs, namely, ones where every induced subdigraph has a
kernel ([2] gives an overview). A basic result, stating that a digraph is kernel-
perfect iff each induced subdigraph has a semikernel, is typically used to obtain
sufficient conditions for kernel-perfectness, e.g. in [9]. We use semikernel in a
different way, based on the concept of a solver.

Definition 1.3 A solver for a digraph G is a sequence of induced subdigraphs
and semikernels (G;, L;)1<i<n such that:

(1) G, =G

(2) L; is a semikernel in G; for all1 <i<n-—1
(8) Giy1 =G \N[L;] forall1 <i<n-—1
(4) Ly is a kernel of G,,.

Having a solver is equivalent to having a kernel:

Theorem 1.4 A digraph has a kernel iff it has a solver.

ProoF. =) If K € Kr(G), then (G, K) is a solver for G.

<) Let (G;, L;)1<i<n be a solver for G and let K = J;.;,, L;- We show that
K is (i) independent and (ii) absorbing. -

(i) Assume towards contradiction that there are z,y € K with y € Nt (z).
Since every semikernel is independent and K is a union of semikernels, z and y
belong to different ones, say x € L;, y € L;. There are two cases, both leading
to contradiction. If ¢ < j, then y € N~ (L;) since L; is a semikernel. Then, by
Definition 1.3, y ¢ Gj andsoy & L;. If j < i, thenx € N™(L;), so z ¢ G; and
(ii) If there is some z € G\ N™[K], then x ¢ N~[L;] for all 1 <4 < n. But
then z € G, \ N7 [Ly], contradicting the fact that L, is a kernel in G,,. a

In employing solvers to prove existence of kernels, it will be useful to consider
sets of semikernels containing some given vertex x € G, denoted Sk(x), or
Sk(G, x) when we need to identify the digraph. We will be particularly interested
in the minimal members of Sk(z) (w.r.t. set-inclusion). We denote the set of
these by minSk(z). We will also use completions of semikernels, defined as
follows:

Definition 1.5 The completion L of an L € Sk(G) is defined inductively:

Lo = L
Liyw = sinks(G\ N~ (L;))

Fized-point, L = L; 1 = L;, is reached no later than at i = |G].

Every L;, in particular L, is a semikernel. L can be characterized equivalently
as the minimal M € Sk(G) such that L C M and G\ N~ [M] is sinkless.

A particularly important case obtains starting with Ly = &. Then L; =
sinks(G) and the semikernel & is a subset of every kernel (if G has any). This
observation originates from the proof of Richardson’s theorem, [12], was clarified
in [10] and is stated generally, without redundant side conditions, in [1].

Fact 1.6 For any G: Kr(G) ={KU@Z | K € Kr(G°)}, where G° = G\ N~ [2].

As a consequence, possible restrictions to sinkless digraphs are inessential, since
the existence of kernels in any G is determined by their existence in its sinkless
residuum G°. In particular, every digraph with G° = @ has a unique kernel,

for instance, every dag with no infinite directed path. We will not use this fact
explicitly, but one main result presented in the next section is stated only for
sinkless digraphs.

The minimal semikernels containing x and their completions will be use-
ful because they ensure the existence of certain paths in G, as detailed in the
following lemma.

Lemma 1.7 For a digraph G, any € G and any L € minSk(z) we have:

(1) For everyy € L there is a directed path P = P, of even length, alternat-
ing on L.

(2) For everyy € L\ sinks(G) there is some z € L for which there are directed
paths P = P, ., and Q = Q. of even length, alternating on L.

PrOOF. (1) We consider some arbitrary L € minSk(z) and form the following
set of vertices:

L'={ye L|3P=P,, in G which is even and alternating on L} (1.8)

Since z is regarded as the empty (even) path, x € L’. Consider arbitrary y € L'
and let P = P, , be even and alternating on L. Then P is also alternating on
L', since each even vertex on P, being in L, is also in L’.

We show L' € Sk(z), thereby proving the claim (since then either L = L' or
else we have contradicted minimality of L). Now, from L’ C L it follows that L’
is independent. Assume towards contradiction that L’ is not locally absorbing,
i.e. there is some y € L’ with z € NT(y) for which NT(2) N L' = . Since L is
a semikernel it follows that there is some w € NT(z) N (L \ L’). Consider the
even directed path P = P, ,, alternating on L. Since w ¢ L' we know that w
is not on P (since otherwise P, ,, would witness to w € L'). If z is on P, then
P, . is odd and alternating on L and so P, .;w is even and alternating on L,
contradicting w ¢ L’. If z is not on P, we obtain the directed path P;z;w that
is even and alternating on L, again contradicting w ¢ L.

(2) For all y € L the claim follows from (1) (remembering that we have the
empty path y). Any y € L\ L is in L; for some 4, by Definition 1.5, so we
proceed by induction on i. The basis case ¢ = 0 is already established. For
the induction step we consider an arbitrary y € L; \ L;_1. By Definition 1.5,
y € sinks(G\ N~ (L;—1)) and since y ¢ sinks(G), we have NT(y) # @. In
particular, there is some z € NT(y) N N~ (L;—1) which means there is some
v € Li—1 N NT(z). Then by IH there is r € L with directed paths P = P, .
and @ = Q,, both even and alternating on L. To prove the induction step we
show that there is a directed path R = R, , that is even and alternating on L.
There are three simple cases to consider. If y € @, then since y € L and @ is
even and alternating on L we can take R = Qy,» and R will then be even and
alternating on L. If y € Q but z € Q, then Q. , is odd and alternating on L
and so we can take R = y; Q.. The only possibility left is y ¢ Q and z € Q.
In this case, we take R = y; z; Q. O

The usefulness of the lemma will become clear in the following section.

2 Some sufficient conditions for kernel existence

Our results involve combinations of the properties from the following definition.

Definition 2.1 A vertex x € G is free if it does not lie on any undirected odd
cycle in G. A subset F' of vertices from G is:

(1) free iff all x € F are free;
(2) even iff there is no odd directed path in G between any distinct x,y € F;

(8) strongly even iff [G,x)e N [G,y)o = @ and [G,z), N [G,y)e = & for all
distinct x,y € F;

(4) a candidate iff Sk(G,x) # @ for every x € F;

(5) a perfect candidate iff it is a candidate and Sk(G',xz) # & for every x € F
and every induced sinkless subdigraph G' C G that contains x.

G is said to be:

(a) separated by F' iff for every directed odd cycle C in G, there is an ' € C
such that Nt (z') N F # &;

(b) doubly separated by F iff it is separated by F' and for all odd directed cycles
C in G, with the exception of at most one, there are distinct ',y € C
such that NT(2YNF #£ @ and Nt (y)NF # @;

(c) strongly separated by F iff for every odd undirected cycle C in G there
are distinct ',y € C st NT(2)NF # 2 and NT(y)NF # .

The remainder of the paper shows that the following combinations are sufficient
for the existence of kernels:

e (3)+(4)+(a) — Theorem 2.2;
e (1)+(5)+(b) — Theorem 2.6;
e (1)+(2)+(c) - Corollary 2.14, for sinkless digraphs.

Corollary 2.14 follows from Theorem 2.12, stated with more general properties to
be introduced in due course. We also give counterexamples showing insufficiency
of some weaker conditions, in particular of (1)+(c) and of (1)+(2)+(b), for
sinkless digraphs.

The conditions require the existence of F' C GG with some separation property
(a)-(c), which allows to “break” every odd cycle. Conditions from (1)-(5) are
placed on F' to ensure that this can be done and, in particular, that it can be
done simultaneously for all odd cycles. Obviously, (3) implies (2), (5) implies
(4), while (c) implies (b) which implies (a), so strengthening any conditions
yields trivial corollaries.

Theorem 2.2 ((3)+(4)+(a)) A digraph G which is separated by a strongly
even candidate F', has a kernel K D F.

PrOOF. We prove the claim by induction on the number of odd directed cycles
in G. The basis case is covered by Richardson’s theorem, [12], according to which
a (finite) digraph with no odd directed cycle has a kernel. For the induction
step we choose some arbitrary odd directed cycle C' in G. We choose some
z € FNNT(C) and L € minSk(G,), which exist because F is a candidate
that separates G. We then consider G = G\ N7[L] and F' = F\ N~ [L].
Obviously, F'\ F C N~[L], but in fact also F'\ F/ C L. To see this, recall that
Lemma 1.7.(1) gives us even directed paths P = P, , in G for all y € L, i.e.
L C [G,z)e. On the other hand, if there is z € F' N N~ (L) then there must be
we NT()NL,ie we[G,2), Butthen w € [G,2), N [G,)., contradicting
strong evenness of F'.

Now, if F’ is a strongly even candidate that separates G’ it follows by IH that
G’ has a kernel K’ with F/ C K’. In this case, (G, L) combined with (G, K')
gives a solver for G and LU K’ € Kr(G) by Theorem 1.4. Since F\ F/ C L and
F’ C K', we also get F' C LUK’ so this completes the induction step. We show
that F’ satisfies the conditions of IH with respect to G’.
(a) F’ is obviously strongly even in G’, since F is such in G.
(b) To show that F’ separates G’, assume towards contradiction that it does
not. Then there is an odd directed cycle C’ C G’, for which there is a free
vertex y € FNN'T(C') in G but not in G, i.e., y € N™[L]. If y € L then
C’ could not be a directed cycle in G', since N~ (y) € N7[L]. Soy € N~ (L)
and this means that there is an odd directed path (single edge) from y to some
2€ NT(y)NL,ie. z€[G,y),. Since z € L € minSk(G,z) we have, by Lemma
1.7.(1), that there is an even directed path P = P, , in G, i.e. z € [G,z).. But
then z € [G,z). N [G,y),, contradicting strong evenness of F.
(¢) To show that F” is a candidate, assume towards contradiction that it is not,
i.e., for some y € F' : Sk(G',y) = @. Choose some M € minSk(G,y). Since
M’ = MNG' = M\ N~[L] is independent and non-empty but is not a semikernel
in G/, there exists an r € NT(M') NG’ with N*(r)Nn M’ = @. Since M is a
semikernel G this means that there is some z € NT(r)NMNN~[L]. If z € L then
r € N7(2) C N7[L] and r ¢ G’, so it must be the case that z € M N N—(L).
Let w € N*(z) N L. Then by Lemma 1.7.(1) there is a directed path P = P, ,,
in G of even length that is alternating on L. In particular, w € [G, z).. But we
have, also by Lemma 1.7.(1), a directed path Q = Q. in G that is even and
alternating on M. Since w € N*(z) C N*(M) we have w ¢ M by M being
independent and so either @, ., (if w is on @) or Q;w is an odd directed path
in G, giving us w € [G, y),. This contradicts I’ being strongly even. O

For instance, {a,e} is a strongly even candidate separating the following G,
which therefore has a kernel:

aﬁb@d e<—f=<—g=<—h

Example 2.3 Consider the following digraphs:
G G2 : Gg . G4 .

1 -
Gz ey) v) y
Y z Q 2w 2 v _w
Both digraphs Gy and Gg have kernels by Theorem 2.2, witnessed by the strongly
even candidates {y}. Gg has no kernel and Theorem 2.2 fails for the candidate

{z,w}, which is not strongly even. Gy has a kernel since here the candidate
{z,w} is strongly even due to the presence of v.

9

In the following, we will consider conditions on a free subset F', Definition 2.1.(1),
and some additional conventions will simplify the presentation. A vertex z € F
is free for an odd (directed or undirected) cycle C, if x € N*(C), i.e., if there
is an 2/ € C with z € NT(a') (since z is free, it is not on C). We denote
it Fr(G,z,2’,C,F). Such an 2’ € C is safe (for C), denoted Sa(G,z’,C, F).
A free vertex x € F is critical for 2’ on C, Cr(G,z,2’,C, F), if 2’ is the only
vertex on C' which has an out-neighbour in F. It is always intended that C (or
a variant like C’, C; etc.) denotes an odd cycle. We often drop arguments if
they are clear from the context or irrelevant, e.g. Fr(z,z’,C) is written when G
and F are clear, and often it suffices with merely Fr(z,C), Sa(y’,C), Cr(z,C)
(implicitly, only the primed arguments are on odd cycles).

For an F C G, an (in-)neighborhood function f : F — 2% is one with
f(x) C N~ (x) for all z € F. When F C G is free, the associated neighborhood
function returns the set of vertices on all directed and undirected odd cycles for
which x € F is free:

flz)={2"|3C, 2" € C: Fr(z,2',C,F)} for all x € F. (2.4)

The following lemma will prove quite useful; point (2) ensures that if z is free
for an odd cycle C, the associated f(z) contains a unique node from C.

Lemma 2.5 For any digraph G and any free set F C G that separates G, let f
be associated according to (2.4). Then, for all odd undirected cycles C in G:

(1) If Fr(z,C), y € C and there is a P = P, , in G, then P meets f(z)NC.
(2) If Fr(xz,C) then there is one and only one x' € C such that 2’ € f(x).

(3) If distinct o',y are safe for C and this is witnessed by x € NT(2')NF and
y € NY(y')NF, then every undirected path P = P, , in G meets either '
ory'.

PRrROOF. (1) Assume towards contradiction that Fr(z,z’,C), y € C and there
is an undirected path P = P, , in G that does not meet f(z)NC. Let w be the
first vertex on P that meets C and consider P’ = P, ,,. Then P’ does not meet
C on any internal vertex and w € f(x) by assumption. We have x € N*(z/)

and w # 2, so there are undirected paths A = A,, ,» and B = B,, ,» in C, with
different parity (they are obtained from traversing C' from w to 2’ along and
against the direction of edges). Then P’'A;z and P’B;x are undirected cycles
from G and one of them is odd, contradicting freeness of x € F.

(2) Existence of z’ is direct from definition of Fr(x,C). For uniqueness, as-
sume towards contradiction that there are two distinct 2’,2” € C such that
x € NT(2')N NT(x"). Since 2’ and x” are distinct, there are undirected paths
A = Ay zv and B = By v in C with different parities. So either x; A;x or
x; B; x is an odd undirected cycle in G, contradicting freeness of x.

(3) Let Sa(z’,C) and Sa(y’,C) hold, witnessed by x € NT(z') N F and y €
N*(y") N F and assume towards contradiction that there is an undirected path
P = P,, in G that does not meet =’ or y'. By points (1) and (2) it follows
that P does not meet C. Since x’ # y’, there are undirected paths A = Ay o/,
B = By, in C that have different parity. So P;A;x or P;B;x is an odd
undirected cycle from G, contradicting freeness of x. a

Theorem 2.6 ((1)+(5)+(b)) A digraph G that is doubly separated by a free,
perfect candidate F C G, has a kernel.

PrOOF. We proceed by induction on the number of odd directed cycles in G,
with the basis case given by Richardson’s theorem. For the induction step, we
construct sequences (G;)1<i<n and (L;, z;)1<i<n—1 With G; = G, such that:

Fr(Gy,x1,Cq) for some C; € G1 & Ly € minSk(Gy, 1)

Git1 =G, \ N7[(L;)] for 1 < i < n, where:

V2 <i<n:Cr(Gia;, C;) for some C; C G; & L; € minSk(G;, ;)
Ve € FNG, : =Cr(Gy,x,C) for all C C G,

(2.7)

If there is an odd directed cycle C' with only one free vertex z, as allowed by
Definition 2.1.(b), then C; = C and z; = z. All odd cycles C; are directed, i.e.
from G.

Properties 2.7 express an attempt to construct a solver for G. For the re-
sulting G,,, we have three possibilities: either (i) it is empty, or (ii) it satisfies
the assumption of IH or (iii) it does not satisfy the assumption of IH. In case
(i) Gy, has the kernel K = @ and in (ii) it has a kernel by IH, having fewer odd
directed cycles than G. Then a solver for G is obtained by appending (G,,, K)
to the sequence (G;, L;)1<i<n—1 — and G has a kernel by Theorem 1.4. The rest
of the proof shows that case (iii) can not happen.

G,, is sinkless by the observation following Definition 1.5. F N G, is free in
G, since F'is free in G, and it is a perfect candidate, because G,, is sinkless and
because every sinkless induced subdigraph G’ of G,, is also a sinkless induced
subdigraph of G. To show that F'N G,, doubly separates G,, we will use the
following claim. For 1 < i < n we let G = G\ G; = Us=! N~[L], so for
1§i§j§n:G;§G;.

Claim (A): For all 2 <i <mn and = € G;, there is an undirected path X = X, ,, in
G such that:

(1) For all ¢ € X NG, there is an odd undirected cycle C,; in G containing ¢
and the vertex immediately preceding it on X.

(2) fzeFthen N (z)NXNG, =02.

We prove it by induction on ¢. For the basis case, x € G5 = N~[L1], Lemma
1.7 gives a directed and hence undirected path X = X, ,, in G5 . So XNG2 =0
and points (1) and (2) hold trivially.

For the induction step consider any x € G;;, \ G; = N~ [L;]. By Lemma
1.7 there is an undirected path P = P, ,, that is in N=[L;] C G, ;. By (2.7) we
have Cr(G;, z;, x}, C;, F') for some odd directed cycle C; C G;. Remember that
if there is an odd directed cycle C' in G with only one free vertex, as allowed
by Definition 2.1.(b), then C'= Cy. Since ¢ > 2 this means that C € G;. Since
C; C G;, C # C; and the fact that G is doubly separated by F' ensures that
there is ¥’ € C; such that ' # z} and ¥y’ is safe in G but not in G;. Since ¥y’ is
safe in G, there is some y € F'N N (y') such that Fr(G,y,y’, C;), and since y’
is not safe in G;, we have y € G, that is y € G; . By IH, there is an undirected
path R = Ry ,, in G satisfying conditions (1) and (2).

To fill the gap between the paths P and R, we consider an undirected path
Q = Qg In G, passing through 2 and 3’ (in that order) with every internal
vertex of @ lying on C;. Let z be the first vertex on P that is also on @ (possibly,
z=z;orz=y),andset PP =P, ., Q =Q., and S =P'Q’.

The undirected path S (or its prefix) will start the desired path X. We
argue that it satisfies condition (1). It might meet G;11, say at w, but since
y€ Gy, PPCPCG;, and z; € G, we have w € Q" \ {y, x5, 2]}, i.e, wis
on C;. Let v be the vertex immediately preceding w on S. Since P’ is in G,

and also zj € G, it follows that S meets C; for the first time at some vertex
from G, ;. In particular, w is not the first vertex from S that is on C;. Since
the internal part of @ is in Cj, it further follows that v is on C;. So Cj is the
desired odd cycle proving condition (1) for S.

Let p be the first vertex from S (starting from x) that is on R and let
R = Rp,,. Now, assume towards contradiction that p € G,;11. Then, since
Pisin G;; and @Q is in C; except for {z;,y} C G;,,, we have p € C;. So, in

particular, R meets C;. Let p’ be the first vertex from R (starting from y) that
is on C;. Since 3y’ € G; we know from IH, condition (2), that p’ # /. It follows
that there are undirected paths A = A, ,/, B = B, of different parity and
so either Ry, ,y Ap iy or Ry v By iy is an odd undirected cycle, contradicting
freeness of y € F. (Since we pick p’ to be the first vertex from R that is on C;
we know that R, ,» and A, B does not meet internally.) It follows that p & G;41.
Consequently, for all ¢ € R’ N G4 there is some r € R’ preceding it on R’.
Then, by IH, there is an odd undirected cycle C, in G containing both ¢ and r
(remember that G,1 C G;). It follows that claim (1) holds for X = S, ,R’.

To show point (2), assume towards contradiction that there is 2’ € N~ (x) N
Giy1 N X. Let 2” be the vertex preceding 2’ on X. Then by (1) we have an
odd undirected cycle Cyr in G containing both z” and z’. Now, let ¢ be the
first vertex on X that is on Cy (possibly, t = z”’). Since z” is on Cyp, t # 2.
So there are undirected paths A = A; ;r, B = By 4 of different parity, both in
Cyr. So one of X 4 A;x, X, B;x is an odd undirected cycle in G, contradicting
freeness of « € F. This completes the proof of Claim (A).

Assume now that G,, is not doubly separated by FFNG,,. We have Vz € FNG,, :
=Cr(G,,z,C) for all C C G,, by construction (2.7), so from the assumption
that G,, does not satisfy IH it follows that here must be at least one C,, in G,
with two distinct vertices z’,y’ € C, that are safe in G but not in G,. This
means that there are free vertices x € NT(2/) NG, and y € NT(y') N G,,.
' £y, soy & f(x) and 2’ € f(y), by Lemma 2.5.(2). By Claim (A), there are
undirected paths X = X, ,, and Y =Y}, ;, in G that do not meet N~ (z) N G,,
and N~ (y) N Gy, respectively. So X does not meet z’ and Y does not meet
y', and by Lemma 2.5.(1), neither X meets 3y’ nor Y meets z’. It follows that
there is an undirected path P = P,, in G that does not meet {z’,y'}. But
this contradicts Lemma 2.5.(3). This contradiction shows that G,, satisfies the
assumptions of IH, i.e., case (iii) can not happen. This completes the proof. [

Obviously, if a digraph consists of disconnected components, Theorem 2.6 can
be applied to each component separately (allowing one odd directed cycle with
only one safe vertex in each component.)

Example 2.8 (a) Theorem 2.2 does not apply to the following G, since no
separating set — neither {a,b, c}, {a,b} nor {c,b} — is strongly even:

r—y—>a b<~—9y =1/

1~ o N

2 ¢ z
It has a kernel by Theorem 2.6 since {a,b,c} is a free, perfect candidate, doubly
separating G. Although there is no local kernel that includes both a and b, things
work out thanks to the additional free vertex c¢. Removing it, would leave a
digraph without any kernel, so this illustrates also that, in general, at most one
odd directed cycle can be allowed to have only one free vertex, as in Definition
2.1.(b).
(b) Freeness of a doubly separating, perfect candidate F in Theorem 2.6, can
not be weakened by requiring merely that no vertex in F' lies on an odd directed
cycle. In the following digraph, {a,b,c,d} satisfies such a requirement:

— ,)
rT——>y——>a b<~—1y' =—1x

NdOX S

z——>c d<—— 7
S~ 7

Still, there is no kernel, since it is not possible for both one of {a, c} and one of
{b,d} to be in the same semikernel (which is needed to “break” both odd directed
cycles).

10

Freeness and its consequences in Lemma 2.5 seem crucial for Theorem 2.6.
Quite generally, the essential conditions for kernel existence seem to concern
parity, as exemplified already by Richardson’s theorem. Although imposing
such conditions on the undirected paths in the underlying graph may appear
unnecessarily restrictive, the above theorem shows that it may be useful and,
perhaps, even necessary.

This is further illustrated by our last theorem. It does not make any assump-
tion about the existence of semikernel, replacing it by a structural condition: in
a sinkless G, strongly separated by a free set F, at least one local kernel exists.
Additional parity condition (evenness of F') ensures that one can keep construct-
ing a solver for G. The proof involves a new auxiliary concept of reachability
in G, relatively to a given neighborhood function. For a digraph G, F' C G and
any neighborhood function f : F' — 2, we denote by

[G, x)ff the set of all vertices y € G such that G contains an undi-
rected path P = P, , that does not meet f(z) internally.

The requirement that int(P) N f(z) = @ means, in particular, that if y € f(z)
and there is an undirected path P = P, , that does not meet f(x) before
reaching y, then y € [G,2)~f. What makes this notion of reachability useful
is that it allows us to define for any F' C G and any neighborhood function
f: F — 2%, the following strict partial order on F:

v<pyiff (yeGa) ' Az g[Gy)),

Fact 2.9 For any digraph G and neighborhood function f, the relation <y is a
strict partial order.

Proor. The relation is clearly irreflexive. To prove transitivity, assume = <y
y<yzandlet P=PF,,, Q= Q. be the undirected paths witnessing to this
fact (so they are in G). First we prove that z € [G,z)~/. Assume it is not.
Letting p be the first vertex on P that is on) we obtain the undirected path
R = P, pQp.. Then R must intersect f(x) internally and as P witnesses to
x <y y, it follows that () must intersect f(z) say, at g. We have ¢ € int(R)NQ,
int(Q) N f(y) = @ and y & f(y), 50 Quq N fy) = @ meaning that Qyqix
witnesses to = € [G,y) ™7, contradicting z <; y.

To prove = & [G,z)~f, assume towards contradiction that = € [G,2)~/ is
witnessed by Z = Z. .. Let ¢ be the first vertex on) that is on Z. Then
S = Qy.qZ4. is an undirected path from y to x and, since = ¢ [G,y)~/, there
must be some r € f(y) on int(Z) (since none such exists on @, which witnesses
to z € [G,y)~f). But then Z, ,;y gives y € [G,2)~/, contradicting y <; 2. O

Consequently, for any neighborhood function f on F' and any <j-maximal x €

F', we have:
VyeF:yelGaz)f szelGy) (2.10)

This helps to prove the following lemma.

11

Lemma 2.11 Given any G separated by a free F C G, let f be given by (2.4).
If [G,y) =/ is strongly separated by F for all y € F then for every <;-mazimal
xeF:

(1) [G,z)~f induces a bipartite subdigraph.

(2) For everyy € F and every odd undirected cycle C in G: if Fr(y,C) and
y € [G,x)~7, then Fr(x,C).

PrOOF. (1) We show that any <j-maximal x € F satisfies the claim. Assume
towards contradiction that there is an odd undirected cycle C' in the underlying
subgraph [G,z)~f. From the fact that F strongly separates [G, =)~/ it follows
that this subdigraph is loopless, i.e. all odd cycles contain at least 3 vertices.
Then C N f(z) = &, for otherwise x would be on an odd undirected cycle in
G, contradicting its freeness. To see this, note that if 2’ € C'N f(x) and z is
a first node from C' on some undirected path P = P, ,» (in G) witnessing to
2" € [G,x)~7 for some 2’ # 2’ on C, then z # z’. So there are two undirected
paths A, ;- and B, ./, both in C, of different parities, giving an odd undirected
cycle P, A, ;2 or Py B, o5 x. Now, since F strongly separates [G, zc)*f there
are distinct 3/, 2’ € C such that Sa([G,x)~7,y',C) and Sa([G,x)~7, 2, C), wit-
nessed by y, z € F withy € N*(y/) and z € N*(2/). Since C'isin [G,2)~f, there
are undirected paths P = P, 1, @ = Q. in [G,z) /. Also, since CNf(z) = &,

there are undirected paths P’ = P, , and Q' = @Q), _, also in [G,z)~/. P’ can
be taken as P;y or, if that is a walk (due to y occuring on P), as the path
P, (similarly for Q"). Since x is <y-maximal, (2.10) implies that there are
undirected paths U = U, , and V =V, ,, contained in [G,y)~/ and [G,z)~/,
respectively. It follows from Lemma 2.5.(1) that neither U nor V meets C' on
any internal vertex. Also, z is certainly not on C since it is free. It follows
that there is an undirected path W = W, . in G that meets neither y’ nor 2’

(obtained from U and V). This contradicts Lemma 2.5.(3).

(2) Assume contrapositively that there is an odd undirected cycle C' in G and
some y € F with Fr(y,C), y € [G,z)~7 and ~Fr(z,C). Since y € F, it does
not lie on any odd undirected cycle, so y ¢ f(x). Hence there are undirected
paths from z to every vertex on C that do not meet f(z) internally (obtained by
extending such a path going to y). Then C is in [G,2)~/, but this contradicts

point (1). O

Theorem 2.12 For a sinkless G separated by a free, even F' C G, let f be given
by (2.4). If F strongly separates [G,xz)~F for every x € I, then G has a kernel.

PrOOF. We proceed by induction on the number of odd directed cycles in G.
The basis case is Richardson’s theorem. For the induction step we choose some
o € F that is maximal with respect to <;. Let G’ = [G,z)~/. We prove first:
Claim (B): G’ is sinkless.

To show it, assume contrapositively that there is some y € G’ such that N (y)N

12

G’ = @. Now, since y € [G,z)~/, there is some undirected path P = P, , in G
that does not meet f(z) internally. Since G is sinkless we know that Nt (y) # @.
So then there must be some z € Nt (y) such that P; z does meet f(z) internally.
It follows that y € f(z). But then € N (y) NG’ so y is not a sink in G’ after
all. The contradiction establishes Claim (B).

By Lemma 2.11.(1), G’ is bipartite, so let By, Ba be a bipartition. Assuming
w.lo.g. € By, we show that By € Sk(G,z). Indeed, B; is independent in G,
so assume towards contradiction that it is not locally absorbing, i.e., for some
y € Nt(By) : Nt(y) N By = @. Now, since f(z) C N~ (z) it follows that
f(z) € By, so N*(By) C [G,z)~f. In particular, y € B, C G'. But we have
Nt (y)NG'N By = @ and, obviously, N*(y) NG’ N By = @, so y is a sink in G/,
contradicting Claim (B).

Let L € minSk(z) be such that L C By and consider its completion L. We
obtain a solver for G if we can establish that the TH applies to Gz = G\ N~[L].
F’' = FNGy is a free, even set in Gg, since F is such in G, so the IH fails to apply
to Gy only if F” does not separate G or does not strongly separate [Go,y)~/ for
some y € F’. This can be the case only if there is an odd undirected cycle C in
Gy with an ¢’ € C such that there is y € (FNNT(y')) \ Gz. Since C is in Gg it
follows that y € N~ (L) (rather than L, which would mean that N~ (L)NC # @
and thereby contradict C' being in Gz). It follows that there is z € N*(y) N L
and by Lemma 1.7.(2) there is an even directed path P = P, ,, alternating on
L, where v € L C By. Since y € F, Fr(y,C) and ~Fr(z,C) (since C is in Gy),
we know from Lemma 2.11.(2) that y ¢ G’. Now, from the directed path P, ,
we obtain an alternating directed path P’ = P;vv such that every internal vertex
from P’ is on P. (P’ can be taken as y; P or, if that is not a path, as P, ,.) We
have v € G’ and y € G’ so int(P’) must meet f(z) at some vertex 2. If it does
not, we obtain y € [G,z)~/ = G’ from the existence of an undirected path from
x to y not passing through f(z) (obtained from some such path U = U, ,, and

P’ traversed from v towards y). Now, f(x) C N~ (L) so from the fact that P’
is alternating on L and y € N~ (L) it follows that P, ., has even length. So we
obtain the directed odd path P;yz,;x in G, contradicting the fact that F' is an
even set.]

Example 2.13 (a) In the following digraph G, the existence of a kernel is wit-
nessed by the free, even set {t,t'}, with [G,t)™f = @ = [G,#')~F. (Neither
Theorem 2.2 nor 2.6 is applicable.)

22

N~—~— ~—

(b) Strong separation (of odd undirected cycles) can’t be weakened to double sep-
aration (of odd directed cycles). In the following G', [G',a)~/ is doubly separated
(trivially, since it has no directed odd cycle) and the free, even set {a} separates

13

G', but G’ has no kernel.

AN SO

T—>=y—>=a—>=w—>=v——>19 th
—

(¢) Neither can we drop the evenness condition, as shown by the following G”:

AN Gt

T—>Yy—>0—>W—>0—>19 ty
~—

F = {a,t1,t,} is free, separating and it strongly separates the cone [G”,a)~7.
It is not even, however, having an odd directed path, e.g., a —t}, and G” has no
kernel, as can be seen by checking that Sk(a) = @.

(d) The following digraph, with a directed odd cycle instead of the undirected one
in G”, has a kernel — not by Theorem 2.12, but by 2.6. It has no even, strongly
separating set, but {a,t1,th} is a free, doubly sepamting, perfect candidate.

AN Ot L

r—>y—>a—>w—>0——>1o ty
~—

Theorem 2.12 gives trivially the following corollary.

Corollary 2.14 ((1)+(2)+(c)) A sinkless digraph G, that is strongly sepa-
rated by a free, even F' C G, has a kernel.

References

[1] Marc Bezem, Clemens Grabmayer, and Michal Walicki. Expressive power
of digraph solvability. Annals of Pure and Applied Logic, 163(2):200-212,
2012.

[2] Endre Boros and Vladimir Gurvich. Perfect graphs, kernels and cooperative
games. Discrete Mathematics, 306:2336-2354, 2006.

[3] Nadia Creignou. The class of problems that are linearly equivalent to
satisfiability or a uniform method for proving np-completeness. Theoretical
Computer Science, 145:111-145, 1995.

[4] Yannis Dimopoulos and Vangelis Magirou. A graph theoretic approach to
default logic. Information and Computation, 112:239-256, 1994.

[5] Yannis Dimopoulos, Vangelis Magirou, and Christos H. Papadimitriou. On
kernels, defaults and even graphs. Annals of Mathematics and Artificial
Intelligence, 20:1-12, 1997.

14

[6]

Yannis Dimopoulos and Alberto Torres. Graph theoretical structures in
logic programs and default theories. Theoretical Computer Science, 170(1-
2):209-244, 1996.

Phan Minh Dung. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artificial Intelligence, 77:321-357, 1995.

Aviezri S. Fraenkel. Combinatorial game theory foundations applied to
digraph kernels. FElectronic Journal of Combinatorics, 4(2), 1997.

Hortensia Galeana-Sanchez and Victor Neumann-Lara. On kernels and
semikernels of digraphs. Discrete Mathematics, 48(1):67-76, 1984.

John R. Isbell. On a theorem of Richardson. Proceedings of the AMS,
8(5):928-929, 1957.

Victor Neumann-Lara. Semintcleos de una digrafica. Technical report,
Anales del Instituto de Matemadticas II, Universidad Nacional Auténoma
México, 1971.

Moses Richardson. Solutions of irreflexive relations. The Annals of Math-
ematics, Second Series, 58(3):573-590, 1953.

15

84CHAPTER 4. PAPER B: KERNELS IN DIGRAPHS THAT ARE NOT KERNEL PERFECT

Chapter 5

Paper C: Propositional
Discourse Logic

This paper has been submitted to Synthese

85

Propositional Discourse Logic

Sjur Dyrkolbotn and Michat Walicki
Institute of Informatics
University of Bergen, Norway

Abstract

A novel normal form for propositional theories underlies the logic PDL,
which captures some essential features of natural discourse, independent
from any particular subject matter and related only to its referential struc-
ture. In particular, PDL allows to distinguish vicious circularity from the
innocent one, and to reason in the presence of inconsistency using a mini-
mal number of extraneous assumptions, beyond the classical ones. Several,
formally equivalent decision problems are identified as potential applica-
tions: non-paradoxical character of discourses, admissibility of arguments
in argumentation networks, propositional satisfiability, and the existence
of kernels of directed graphs. Directed graphs provide the basis for the
semantics of PDL and the paper concludes by an overview of relevant
graph-theoretical results and their applications in diagnosing paradoxical
character of natural discourses.

1 Introduction

The natural discourse, in idealized form, can be seen as a network of cross-
references, statements that assert or deny each other. Some statements assert
external facts. What should count as fact, however, might be a very contentious
issue, in which case it seems safest to regard a fact as nothing more than the
statement expressing it. The idealization amounts to abstracting from the speci-
ficity of facts, which depend on the actual subject matter, and concentrating on
the referential structure, the mutual dependencies between the involved state-
ments. Facts can be then taken as statements which are considered true, inde-
pendently from any other statements.

A statement is considered true if what it claims is accepted to hold and,
typically, all statements of a discourse obtain (at least possible) truth-values
corresponding to the status of their claims. Occasionally, however, a discourse
malfunctions, resulting in the impossibility of assigning any truth-value to some
of its statements. The liar and other standard paradoxes provide obvious ex-
amples, but typical situations tend to be more complex. If, for instance, Frank

LOf course, we are not saying that this is what facts are, only that they can be treated
in this way, without impairing correctness of the formal model. Our model works unchanged
also when no such facts are available.

asserts the opposite of John, John asserts the same as Paul while Paul expresses
agreement with Frank then, at first, the situation may be unclear. But a mo-
ment of reflection shows that regardless of the actual subject matter, no one
can be right and no one can be wrong. If Frank is right, then John is wrong,
but then Paul is wrong so Frank must be wrong too. In a similar way all possi-
bilities end up undermining themselves and from this we are forced to conclude,
by logic alone, that the discourse has malfunctioned.

We are concerned here with diagnosing the disease, the inability of a classical,
propositional discourse to express something that can be consistently evaluated
as true or false. The mere diagnosis of such cases is of independent interest and
importance, because it is only from a proper diagnosis that one can begin to
analyze why things went awry in a particular case. For example, a lawyer cross-
examining a witness looks first for inner contradictions, and if he finds some,
these provide the cue as to which claims deserve particular scrutiny. While the
answer to the question of why anomalies appear may be specific to the domain
and circumstances of the discourse, the question of coherence does not hinge
on any such extraneous elements. Certainly, agreement with facts (undisputed
statements) is mandatory but, in general, does not suffice for ensuring coherence
of the discourse. This problem deserves a separate treatment.

The referential structure of discourses will be represented as directed graphs,

which capture many essential properties, circularity in particular, in a simple
and intuitively appealing way. The associated logic PDL allows to localize mal-
functioning (sub)discourses and gives precise insight into the structural causes
of the anomalies, in particular, the vicious circularity. The reported results can
be summarized as follows:
Section 2: Deciding if a propositional discourse hides any anomalies or else
can be consistently evaluated, has several, formally equivalent decision prob-
lems: stable extensions in argumentation networks, the existence of kernels in
digraphs and satisfiability of propositional theories. Collecting these equiva-
lences (some known earlier only separately) unifies various fields, simplifying
also many proofs.

Section 3: Local kernels (generalizing kernels) of digraphs provide semantics
for arbitrary, also inconsistent discourses, and the logic is not explosive, allow-
ing to establish valid consequences also when the discourse is inconsistent, for
instance, identifying consistent subdiscourses. Local kernels of a graph G can
be captured logically using a simple axiomatization of G in Lukasiewicz’s logic
L3. In particular, we show that kernels correspond to consistent assignments
in classical logic while local kernels correspond to consistent assignments in L3.
We note, however, some shortcomings of L3, the central one relating to the
difficulties with treating the third value (paradox) in the same was as the two
classical ones. Paradox seems to be admitted into a discourse only when it is
not possible to find any classical truth assignment. In this sense it has a neces-
sary character, as opposed to the classical values, which must be only possible,
for the discourse to be meaningful. In L3, as is typical in non-modal logics,
questions of possibility (consistency) can only be addressed by some indirect

means. We therefore introduce propositional discourse logic, PDL. It allows
to decide possible truth-values of complex formulae over arbitrary discourse
graphs. When graphs correspond to syntax trees, the logic becomes classical
propositional logic. By the equivalences from Section 2, it gives the means for
deciding:

e paradoxical character of discourses;

o satisfiability of propositional theories;

e acceptability and admissibility of arguments in argumentation networks;

e the existence of (and membership in) local kernels in digraphs.

Meaningful information will be deduced also from inconsistent discourses, but
we use only two truth-values with connectives evaluated by the standard rules.
Avoiding any extraneous assumptions, which can affect what counts as an
anomaly, should make the resulting diagnosis no more dubious than the classical
intuitions on which it is based. In light of this, we dare call our logic essentially
classical.

Section 4: PDL is based on the concept of local kernel and kernel-theory provides
valuable results for the analysis of discourses. We cite a series of such results
and show their applications in diagnosing problematic cases. At the same time,
these results make precise many intuitions, in particular, concerning (vicious)
circular reference.

More invovled proofs, not included in the text, can be found in the appendix.

Before we embark on the technical parts we present some of the intuitions
about natural discourse that we seek to capture. They may enhance under-
standing of and motivate the technical parts, but are not necessary and the
reader interested only in the latter, can go directly to Section 2.

Elements of natural discourse

Natural discourse is open-ended, it has no discernible beginning nor end, there
is no period, only “...” preceding and following every statement. Yet, every now
and then we have to stop and consider some part of it, some relative totality.
Consider the series of consecutive statements, with some longer suspensions,
marked by the horizontal lines, at which the possible truth-values of the state-
ments made so far are evaluated, giving the results in the respective column:

a ...The next statement is false... 71 L7100 L

b The next statement is false... 71 L1711 L

¢ The first statement (a) is false ... 1

c’ . and, by the way, so is the next one... 71010 L (1.1)
d The next statement is false... 711110 ’

e The previous statement is false... 0|01

f The previous statement is false... 1

f” ... and so is this one... L0

At point b, the truth-values of the two statements are unclear. If the person sus-
pends the voice after ¢, we may think that he has said the last word, making no

sense. But if he continues as indicated, the discourse becomes again potentially
meaningful at ¢/, while at e and [all statements can even be assigned classical
truth-values. At f’, however, it dissolves again. At this point it exemplifies all
phenomena we will address, so there is no need to extend it.

Open-endedness means, in particular, that many statements are undeter-
mined at the moment they are made; their truth-value is not exactly known,
either because one can not provide their ultimate justification in terms of “hard
facts” or other statements, or else because they address future contingents, de-
pending on events or statements which have not yet been clarified. “Snow is
white” may be unproblematic, but is a rather special case, representative at
most of a special class. The pair d — e illustrates well this modal element. In the
absence of any additional information, there seems to be no reason to choose
between d and e, and keeping both possibilities is the most natural, not to say
ethical, way. Under special circumstances, such sets of possibilities can be nar-
rowed to unique truth-values, resolving indeterminacy into certainty. Yet even
with the simplest, empirical claims, one does not have the capacity to verify
them all against their eventual justification basis. Most statements are there-
fore accepted on the basis of other statements, in many situations on the basis
of faith, in others on the basis of some defaults or coherence.

Importantly, even when empirical evidence is insufficient, truth-values of
many statements can be intuitively ascertained. This does not imply any ide-
alism nor any reduction of truth to coherence, only that it might be difficult to
argue with one who does not agree that if e is wrong then d is right. It seems
hard to deny that internal coherence is an indispensable feature of meaningful
discourse and equally hard to deny that our approzimations of truth often fal-
ter on exactly this point. Most significantly, accepting some statements on the
basis of (empirical) facts does not in any way exclude accepting others on the
basis of internal coherence. We will show how to draw a line separating these
two kinds in any propositional discourse.

The inherent indeterminacy and possible reliance on “mere” coherence re-
flect the holistic character of such cross-referential networks. Due to mutual
dependencies, the discourse can not always be evaluated assigning step by step
correct values to single statements. If ¢’ is right, then d must be wrong, but this
may, in turn, depend on e, ¢, etc.? Consequently, an anomaly is an accident of
the whole discourse, not of any particular among its statements. Just like no
particular statement among a — b — ¢ is wrong, there is no single culprit among
all statements a — f’ — they malfunction only together. Certainly, easiest to
identify are single paradoxical statements, like the liar, but they represent only
special cases of discourses, namely, those limited to a single statement. There is
no need to distinguish such special cases from more complex ones, like a —b— ¢
or a— f’, once we accept the anomaly as an holistic phenomenon of the totality
of a discourse. The meaning of this, possibly controversial claim, should be

2When unfolded in time as a sequence of consecutive statements, such a holistic network
of mutual dependencies gives rise to anaphoric and cataphoric references, yielding the non-
monotonic character of the discourse. But since non-monotonicity appears thus only as a
special, temporal view of mutual dependencies, we will not devote it separate treatment.

transparent in view of the just mentioned examples. It is also in line with more
recent developments. In the infinitary Yablo’s paradox [32], for instance, no sin-
gle statement is paradoxical, taken on its own. Saying, on the other hand, that
every one of them is, requires to consider them in conjunction with all others.?

Classical logic expresses an extreme desire for coherence — in the presence
of any inconsistencies, discourses simply “explode”. The process of reasoning
towards consistency is certainly very natural and classical logic captures many of
its essential features. What is not natural, however, is the exploding, and as we
shall see, not even classical logic needs it. The classical way of reasoning makes
perfect sense for discourses that are, when viewed as a whole, inconsistent. If
this isn’t immediately obvious, consider how one concludes paradoxicality of,
say, a — b — ¢ in (1.1). Trying a = 1 leads to a contradiction and so does
a = 0 — in both cases, using classical means alone. PDL will allow such classical
reasoning in the presence of inconsistency, without any deductive explosion.

This is made possible because, as in natural discourse, contradictions are
regarded in the first instance as only locally significant. They may render the
possible truth or falsity of some statements unclear, but do not pollute all
statements in the discourse. A person contradicting himself at some point, may
say valid things in the next moment.

For the open-ended natural discourse, a local analysis is inevitable since
every totality is only relative. Moreover, what is taken as the actual totality
bears a crucial influence on the truth-values of the involved statements. If, at
point f’, we view only the last three statements d — e — f’, it is consistent. But
if we go all the way back to a, then there is no way of assigning, in a consistent
way, truth-values to all statements — the discourse is paradoxical. Likewise, the
discourse which is inconsistent after a —b— ¢, can acquire a promise of potential
meaning at ¢, and even become fully meaningful, allowing classical distribution
of truth-values among all its statements at e or f.

The inconsistency of a discourse D does not prevent us from deducing useful
information about its particular statement x. For instance, there can be subdis-
courses that are consistent, and if x is true or false in some of these, then we
might want to know — after all, D itself is just a snapshot of some larger totality.
Its choice seems, at least in part, guided by the desire to avoid inconsistency.
So if we can do better by looking at smaller or larger discourses, why not? A
counter-argument might be that it is unclear where to draw the line. Admitting
any subdiscourse containing x might be too permissive. In discourse (1.1), for
instance, stopping after d is hazardous. It refers to the later statement e, so
a judgment about d commits us also to a specific judgment about e and such
necessary dependencies should be taken into account.

The logic PDL allows us to do this, capturing a natural condition that sepa-

3“Holism” does not refer here to any universal totality of everything, settling all particular
issues in a final way. We do not deny its possibility but neither know where to find it nor
attempt to do it. Locally meaningful, relative totalities, on the other hand, appear every
time we conduct a conversation and our holism relies only on such relative totalities of actual
interest. Its essential aspect is possible lack of compositionality: a series of meaningful and
consistent statements may yield a paradoxical totality.

rates the coherent, acceptable subdiscourses from the others. Loosely expressed,
the condition says that a subdiscourse is an acceptable totality only if one can
make a consistent assertion about the truth of its statements that cannot be dis-
proven by extending it. Such a subdiscourse admits a complete evaluation of its
statements — a proof, if you like, of its admissibility. The condition expresses its
robustness — whatever happens to the rest of the discourse does not affect the
truth-values within the subdiscourse. “Hard facts”, statements accepted as true
independently from the rest of the discourse, provide a basic example. Much
more involved examples, involving circular and even ungrounded subdiscourses,
will be given once we have defined precisely the necessary notions.

2 Formalization

A discourse, over a set of propositional variables ¥, is a finite propositional
theory consisting of a series of equivalences

x> /\ -y (2.1)
y€ly

where each I, C ¥ is finite and each & € ¥ occurs exactly once on the left of
such an equivalence.* We use the convention that the right-hand side is 1 when
I, = @. Rendered in this pattern, discourse (1.1) becomes:

a < -b d <+ -—e
b+ - e < -d (2.2)
d < —aA-d ffe —en—f

The variable on the left of each equivalence acts as the unique identifier of the
actually pronounced statement, occurring on its right. The intuitive incoherence
of a discourse, the impossibility of assigning truth-values to all its statements
(variables on the left), corresponds exactly to the inconsistency of such a theory.
Variants of this format were implicit in [7, 20], and elaborated in [30]. As we
will see in Corollary 3.22, it does not limit the expressive power, providing a
normal form for propositional theories.®

The consistency of discourses turns out to be equivalent to two other prob-
lems: the existence of stable extensions in argumentation networks and the
existence of kernels in digraphs.

4Many results that will be presented hold also for infinite discourses (theories) and infinitary
logic (allowing infinite I;’s), but we are addressing primarily the finite and finitary case.

50ne can think of a propositional letter appearing on the left of an equivalence as naming
the complex formula that appears on the right. The equivalences become then instances of
Tarski’s T-schema, formulated in propositional logic

2.1 Argumentation networks

Consider the discourse (1.1) with all statements claiming falsity or truth of
others replaced by arguments contesting validity of other arguments.

a ...The next argument is wrong... 71 L]?7]0]0 L

b The next argument is wrong... 7 L]7]1]1 L

¢ The first argument (a) is wrong ... €

c’ . and, by the way, so is the next one... ?7/0|10 L (2.3)
d The next argument is wrong... 1/10 '

e The previous argument is wrong... 001

f The previous argument is wrong... 1

f7 ... and so is this one... 10

One seldom encounters arguments like f’ in practice, but a — b — ¢ is quite
possible.® Argumentation theory, at least in its AI version arising from [16],
addresses coherence of such argumentation networks. The analogy between the
two examples is obvious and it illustrates the general equivalence between the
argumentative and discursive networks. Claims of falsity of other statements
act exactly as the arguments attacking other arguments: if a claims falsity of b,
and b turns out to be true, then a is false; while if an argument a attacks b and
b turns out to be valid/accepted then a becomes defeated/invalidated. We can
therefore conflate these two scenarios and represent the fact that a claims falsity
of (respectively, attacks) b by an edge in a directed graph a — b. Discourses
(1.1) and (2.3) become thus the graph D': 7

T (2.4)

AN
b——c¢ f'S"

The discourse immediately after ¢, and before ¢/, is the triangle a —b— ¢ without
other nodes nor the edge (¢, d), while after f, but just before f’, is D’ without
the loop at f’, which we will denote D.

Formally, an argumentation network is a directed graph, G = (G, E), with
E : G — P(G) determining the out-neighbours of each node. (All functional
notation is extended pointwise to sets, e.g., for X € G : E(X) = J,cx E(z).
We consider only directed graphs, so “graph” means digraph unless explicitly

D’ :

d=——=e¢e

~

6In [25], p.238, the authors note disappointingly little attention paid to the self-defeating
arguments in the argumentation literature. Although psychologically very different from inco-
herent totalities of arguments, like a—b— ¢, their formal role and effects are entirely analogous.

"Direction of the edges may be reversed, provided that it is done consistently throughout
the whole development. Argumentation networks, or various derivative concepts, may be
formulated in the literature with edges going in the opposite direction.

A particular consequence of the representation (2.1) and this graphical counterpart is that
statements, the actual carriers of truth-values, correspond to the sentence tokens and not
types. Saying the same sentence (type) at two different points may turn it into different
statements. A token, or a statement, is in this context just a point in a network of cross-
references, a node of the discourse graph.

stated otherwise.) A solution is an assignment o € {0, 1} of boolean values 1
(true, accepted) or 0 (false, defeated), respecting the following rules:
(1) Vzedom(a):alz)=1 & VyeE():a(y)=0
(2) Vzedom(a):alz)=0 < FyeE@x):alz)=1
The rules are equivalent in the context of consistent, classical theories, but we
record them both for further use. The set of solutions for a graph is denoted
s0l(G). In argumentation theory, a solution « corresponds to a stable extension,
given by the set ol = {z € G | a(z) = 1} ([16], Definition 13, Lemma 14).
In terms of discourses, it gives a consistent assignment of truth-values to all
statements, i.e., a model of the respective theory (2.1). Non-existence of a
solution indicates an anomaly, an incoherent set of arguments or a paradoxical
element in the discourse. A trivial example is the liar, an argument defeating
itself — the graph «) has no solution. A more elaborate example is D’ in
(2.4). Its lack of coherence can be seen trying, for instance, first to make d = 1.
This forces e = 0 and leaves the liar node f’ with its loop without any possible
assignment. Trying instead d = 0, leaves the triangle a — b — ¢, which can not
be assigned any value. D, on the other hand, is not problematic, since assigning
d=b=f=1and a=c =e =0, respects (2.5). Informal verification of the
dialogues confirms the intuitive correctness of the conclusion that sol(D’) = @.
Any discourse T, in the form (2.1), gives a graph G(T), by taking all propo-
sitional variables of T as the nodes, and defining the out-neighbours E(z) = I,
for every variable z. In particular, variables which occur on the left-hand side
of the equivalences x <> 1 become the sinks of G(T). Conversely, a digraph
G gives a discourse D(G) by taking its nodes G as variables and forming the
equivalence © <> A\ cp(,) Y for each z € G. For the graph D' in (2.4), D(D’)
gives the discourse (2.2), while G(D(D’)) = D’. These transformations yield
easily the following fact. It only specializes a particular case of Theorem 3.21,
but gives here the first indication of the equivalence of the logical and graphical
formulations of the problem.

Fact 2.6 For every graph G and discourse T (mod(T) denotes all models of T):
s0l(G) = mod(D(G)), and
mod(T) = sol(G(T)).

Argumentation theory was worth mentioning both because it is a field of wide
interest ([25] gives a good overview, [18] shows newer developments), and be-
cause the plain equivalence to the problem of paradox makes the transfer of our
results straightforward. But we neither assume familiarity with its details nor
intend to present them. We will only parenthetically mention relations to the
concepts from argumentation theory. The connections to graphs, on the other
hand, are of central importance, as suggested by the above fact and explained
further below.

(2.5)

2.2 Kernels of digraphs

A kernel of a digraph G = (G, E) is a subset K C G which is independent (no
edges between nodes in K) and absorbing (every node outside K has an edge

to some node in K):

G\ K 2D E*(K) (independent)
and G\ K CE7(K) (absorbing) (2.7)
ie, G\ K =F"(K),

where E denotes the converse of E, i.e., E-(y) = {x € G | y € E(x)}. One
checks easily that K is a kernel iff the assignment ax = (K x 1)U ((G\ K) x 0)
is a solution, i.e., satisfies conditions (2.5). For instance, D from (2.4) has a
unique kernel, containing nodes assigned 1 at point f in (1.1)-(2.3); while D/,
i.e., D with the additional loop at f’, has no kernel, representing paradoxical
discourse, the whole a — f'.

The main semantic notion associated with our graphical representation, gen-
eralizing the notion of a kernel, is a local kernel, [24]. It is an independent subset
L which absorbs its out-neighbours, i.e., an L C G satisfying:

E(L) C EX(L) C G\ L. (2.8)

One verifies easily that a kernel is a local kernel, while a local kernel need not be
a kernel. Lk(G) denotes the set of local kernels in G. In argumentation theory,
a local kernel is called an admissible extension, and an argument is acceptable if
it can be added to it, resulting in a new admissible extension. Iterating such a
process leads to a complete extension L — the unique, maximal extension that
extends the admissible set L. In terms of graphs, for any local kernel L € Lk(G)
one obtains inductively its completion, L, defined as follows:

Definition 2.9 The completion L of an L € Lk(G) is defined inductively:

Lo = L
Li+1 = SZ’rlk'S(G\EV(Ll))

Fized-point, L = L; 1 = L;, is reached no later than at i = |G)|.

For alli : L; € Lk(G) and G\ (LUE™-(L)) has no sinks. Of special interest will be
the completion of the empty local kernel, &, representing the values necessarily
induced from the “facts”, sinks of the graph. We then let G° be the subgraph of
G induced by G° = G\ (& U E~(2)). It represents the sinkless residuum of G,
remaining after removal of all nodes with values induced from the sinks. Since
for any L € Lk(G) : sinks(G) C sinks(G\ E~(L)), @ is obviously contained in
the completion of every local kernel:

For every L € Lk(G) : @ C L. (2.10)
Now, for any local kernel L € Lk(G), the assignment
ap = (L x1)U(E7(L) x0) (2.11)

is, so to speak, “justified”: each node assigned 0 has an out-neighbour assigned
1, while all out-neighbours of a node assigned 1 are assigned 0. Interestingly,
this is equivalent to satisfaction of (2.5), as ensured by the following fact (recall
that for an a € {0,1}¢, we denote o' = {z € dom(a) | a(z) = 1}).

Fact 2.12 For any graph G, subset H C G and o € {0,1}7 :
«a satisfies both conditions (2.5) iff o' is a local kernel of G and o = a1 .

PRrOOF. The condition (1) implies that o' must be independent, so E~(a') C
G\ o' and, moreover, that E(a') be assigned 0. But then (2) requires for any
xr € E(a') to have an edge back to ot, i.e., E(al) C E-(al). The equality
a = a1 i then obvious.

Conversely, making ar,(L) = 1 for a local kernel L ensures (1) when also
ar(E~(L)) = 0. The latter ensures then trivially (2), since for each x € E~(L) :
E(x)NL# 2. 0

In particular, for a total o € {0,1}%, o' is a kernel of G iff « is its solution

which, by Fact 2.6, is equivalent to a being a model of the discourse D(G).®

Example 2.13 (1) Sinks of a graph, sinks(G) = {z € G | E(x) = @}, can be
seen as “external facts”, accepted as true. A statement directly negating such
a fact is a node pointing at it. FEvery collection L C sinks(G) is a local kernel
(since E(L) = @), inducing the assignment of 0 to all nodes in E~(L).
(2) Consider the subdiscourse F of D' from (2.4) induced by d —e — f':°

d : The next statement is false.

e : The previous statement is false. F:r'd=—=—=e~<~——1Ff

f': The previous statement is false, and so is this one.
This subdiscourse arises from the local kernel E = {e}, as dom(ag) according
to (2.11). The local kernel {d} induces even smaller subdiscourse d = e of F. In
either case, the induced assignment respects (2.5) independently from the values
(or their lack) assigned to the rest of D'.

D)
<~/

In terms of discourses, a local kernel gives a consistent — possibly partial — eval-
uation, which can be seen as internally justified: all its statements can be made
simultaneously true, while all statements they claim to be false, are made false.
A local kernel L gives thus a general concept of a “coherent subdiscourse”, in
the sense of a subset of statements, namely dom(ayr), which can be consistently
assigned truth-values, obeying the rules (2.5), irrespectively of the assignment
to all other statements. For instance, the graph D’ from (2.4) has no kernel,
but {d, b} is its local kernel, and so is {e} (the latter inducing the subdiscourse
F from Example 2.13.(2).) The lack of any kernel suggests some anomaly, as
we can see considering the triangle a — b — ¢ or the whole graph D’. But an
anomaly does not mean meaninglessness — the discourse may still possess a lot
of information, which can be recovered from its local kernels. These provide the
semantic basis for the logic PDL which is introduced in the following section.

8The equivalence of kernels and non-paradoxical discourses was first noted in [7], while of
kernels and stable extensions of argumentation networks in [13].

9We speak about a subdiscourse of G = (G, E) induced by a set of statements H C G, in the
sense of the induced subgraph, i.e., H = (H, EN (H x H)), and likewise about a subdiscourse
induced by a local kernel L C G, namely, the subgraph induced by L U E~(L). The meaning
should be clear from the context.

10

3 The Propositional Discourse Logic

The logic PDL allows to establish facts about possible truth or falsity of state-
ments in any finite propositional discourse. Semantics of a discourse is deter-
mined by the assignments induced, according to (2.11), from the local kernels
of the network of its cross-references, represented by the digraph, as exemplified
by (2.4).

Given a graph G = (G, E), we let wffg be the set of all propositional formulae
over the alphabet G, formed using the set of connectives {—=,A}.19 T' C wffg
denotes any finite set of such formulae. The basic formulae of the language £
have the format [I' : G] and are understood as saying that all formulae in T’
can be made simultaneously true over the graph G by some (possibly partial)
assignment respecting (2.5), i.e., induced by a local kernel according to (2.11).
Just as any actual totality of a natural discourse limits the range of possible
distributions of truth-values between its statements, so the graph acts as a
restriction on the relevant assignments to its nodes, the tokens of the discourse.

A basic formula [T : G] is atomic if T’ contains only literals (positive, T't,
or negated variables, I'"). Atomic formulae appear in the first point of the
following definition.

Definition 3.1 The relation = C Lk(G) x basic(L) is defined inductively:

e LEI:Giff T={a|laeTT CGIU{-b|beT™ CG} and
It CLand T~ C E-(L)

o LET,ANB:Gliff L=[I',A B:G|
o L=, -(AAB): Gl iff LE=[I',-A:G] or L}=[I',=B:G]
o L=, —-—A:G]iff L=I',A:G]

It is easy to see that |= is monotone with respect to the first argument — if
L,M € Lk(G), LC M and L |= [F : G] then M |= [F : G] for any I € wffg.

The full language L is given by composite formulae, namely, propositional
combinations of the basic formulae, again, using only — and A. Their finite sets
0, ® form sequents, © - &, using notational conventions of sequent calculi.

Definition 3.2 The true formulae of L, = C L, are defined as follows:
o = [[': G] iff there is some L € Lk(G) such that L = [I": G]
o E-diff o
e EoNOiffl=d and =0

The logical consequence is defined in the standard way, for ©,® C L:

10 All other connectives can be defined from {=, A} in the classical manner. This choice does
not in any way limit the expressivity of the language, and is made only for establishing an
easy connection to graphs.

11

o O |= @ iff there is 0 € O such that = 6 or there is ¢ € & such that |= ¢.

Two points should be noticed. The first is that truth is defined relatively to a
discourse, the [... : G]. Furthermore, the definition requires only the existence of
local kernels, without requiring the relation L |=_ to hold for alllocal kernels L.
A basic formula [I" : G] is true if it is satisfied by some local kernel L € Lk(G).
Hence, = [’ : G] can be read as “possibly I" in G”. (This generalizes the
notion of admissibility of arguments in argumentation theory, which considers
only I' consisting of a single propositional variable.) Truth of a basic negation,
E —[[: G], denotes thus non-existence of any local kernel satisfying I', which
can be read as “impossibly I' in G”.

Example 3.3 The following lists some examples of (in)valid statements in the
discourse F from Example 2.13.(2). The only two local kernels are D = {d} and
E = {e}, where the latter is also a kernel of F.

1. = [d:F] since D = [d : F] F: <:>e<—f’3
2. | [~d : F] since E |= [~d : F]
3. E[d:F]A[~d:F] since = [d: F] and = [~d : F]
4. W [dA—d : F] since for any L € Lk(F) if d € L then d & E-(L)
5. | [ne: F] since D = [-e : F] (since e € EZ({d}))
6. = [e: F] since E |=[e : F]
7. b~ [d Ae: F] since there is no L € Lk(F) such that {d,e} C L
8. W [: F] since there is no L € Lk(F) such that f' € L
9. E[e,~f,~d : F] since E = [e,~f',—~d : F]
10. ¥ [dA—(=f' A f') < F] since for each L € Lk(F): d ¢ L or f' ¢ LUE(L)

In 9, T contains a literal for each variable from F', so this validity means that
{e} is actually a kernel of the graph F. Validity of 3 and invalidity of 4 corre-
sponds to the non-distributivity of the existential quantifier (or diamond) over
conjunction. The former says that there is a local kernel making d = 1 and
there is one making d = 0. The latter claims the existence of a local kernel
making both simultaneously. Its justification shows that a contradiction, like
dA—d, is not satisfied in any discourse. But as suggested by 10, also its negation
may fail. Such a failure, amounting to the impossibility of assigning either 0
or 1 to a node, means that the statement does not appear in any acceptable,
coherent (sub)discourse. Such statements deserve special attention.

Definition 3.4 In a graph G, z € G is a paradox iff E —=[~(-z A z) : G]

12

The definition provides means to move from the meta-level, where paradox is a
property — inconsistency — of discourses, to the object-level, where we would like
to identify particular statements as paradoxical. Familiar examples turn out as
expected. The liar, for instance, must be a paradox, E —[-(z A —z) : @ 3],
for the simple reason that the graph has no local kernels at all. In the more
complex discourse H : 2, <575 == 25 —» . —> s, {s} is (the only) local kernel,
and all z; are paradoxical: = —[=(x; A =x;) : HJ.

Note that [z A -z : G] does not hold in any graph so, in particular, a paradox
does not come out here as any dialetheia. According to the above definition,
it is a statement which can not possibly witness to the negation of such a
contradiction.

The definition captures only statements which are necessarily paradoxical,
failing to function in all acceptable subdiscourses.'’ Contingent paradoxes are
statements © € G which are paradoxical only under specific circumstances,
expressed by some formula F' € wffg, i.e., such that:

E-[FA=(zA-x): G (3.5)

This validity means the impossibility of satisfying both conjuncts simultane-
ously in G: whenever F' is satisfied, then x necessarily becomes paradoxical. In
Example 3.3, for instance, 10 confirms the intuition that whenever d = 1 in
F, then f’ becomes paradoxical. To capture the real possibility of z being a
paradox, however, the above does not suffice. (3.5) is satisfied, for instance, for
any contradiction F. One should, in addition, verify that F' indeed can be true,
i.e., extend (3.5) with the conjunct expressing the factual possibility of F :

= [F: G (3.6)

For 3.3.10, for instance, the additional verification of |= [d : F] in 3.3.1, shows
that in fact there is an acceptable subdiscourse making f’ paradoxical.

Paradox, being a necessary consequence of a discourse, has thus a different
status than merely possible truth or falsehood. Trying to bring all three on equal
footing would lead to a three-valued logic and involve replacing our existential
truth by the universal one (i.e., the existential quantifier in the first point of
Definition 3.2 by the universal one.) Some consequences of such a move can be
obtained from the following fact.

Fact 3.7 For any I' C wffg and L € Lk(G), if @ = [: G] then L = [T : GJ.

PROOF. By structural induction on T'. Since @ C L for all L € LE(G), so the
basis for atomic formula (T containing only literals) follows from the monotonic-
ity of |=. The inductive steps for ==, A and (... A ...) are all trivial. d

Since @ is a local kernel in which no atom is true, defining a statement as true
only if it is satisfied in every local kernel would render all atoms neither true

' The corresponding idea in Kripke’s theory of truth from [23] would be to take as paradox
only those sentences which are neither true nor false in any fixed-point. We do not claim that
this is appropriate for a general theory of truth, which is not our object.

13

nor false. One might therefore try taking as true the formulae holding in the
completion of every local kernel. But then, by the above fact, what is true is
simply all that is true in &. Before presenting a complete and adequate rea-
soning system for PDL, we note first that this notion of truth — as validity in a
discourse — is captured exactly by Lukasiewicz’s logic L3.

3.1 Lukasiewicz’s logic 1.3

We first show that just like the classical models of D(G) determine kernels of
G, so the models of D(G), viewed now as a theory in L3, determine the local
kernels of G. Recall the L3-tables for the relevant connectives:

all Alr]L]o of1]L]o
10 1[1[L]0 1[1[L]o0 (3.8)
0|1 LfL|L]o LfLf1|L
L L oflo|o]o offo|L]1

Because <+ occurs only as the main connective forming the equivalences (2.1),
their right hand sides are evaluated as in strong Kleene logic, which shares the
tables for — and A with £.3. One can therefore introduce there other connectives,
disjunction and implication in particular, using classical definitions as in strong
Kleene logic. Our restricted use of Lukasiewicz’s biconditional captures the
difference between treating paradox as a third logical value, where all three
appear with the same “necessary character” — and treating it only as a limiting
case, the impossibility of classically meeting the intuitive meta-requirement that
statements have the same semantic value as the content of what they say.

The semantics of <+ in L3 captures this identity, leading to the following
characterization of local kernels. =y, denotes satisfaction defined by tables (3.8),
with 1 as the only designated value. In this context, an assignment «, induced
from a local kernel according to (2.11), is treated as a total 3-valued assignment
with ar(x) = L forall 2 ¢ LU E~(L).

Proposition 3.9 For a graph G, we have:
a) if L € Lk(G) then af =¢ D(G), and
b) for any a € {1,0, L}¢, if a |=1, D(G) then @ C al € Lk(G).

This allows us to replace local kernels by |=y in the formulation of the semantics
of PDL.

Theorem 3.10 For I' C wffg :
= [[': G iff there is some o € {1,0, 1L }& such that o =5 D(G) and a =1 T.

Consequently, any reasoning system for L3 can be used to establish validity or
contradiction of a formula F' in a discourse given by a graph G. The logical
consequence D(G) =g F means that F is true in the completion of every local
kernel of G. In particular, D(G) =g z <> - (with L3 biconditional) iff z = L
in every model of D(G). This is certainly an elegant, logical characterization of
necessarily paradoxical statements. Definition 3.4 may be less appealing but, in

14

this respect, PDL coincides with £3. One verifies easily that | —[=(z A —z) : G]
iff D(G) =g, « <> —~z. The former states the non-existence of any local kernel of
G assigning a truth-value to x, while the latter that every local kernel induces
the assignment z = 1.

Our initial intuitions suggested the importance of the undetermined char-
acter of typical statements, whose truth is a mere possibility. Unlike 1.3 and
most other non-modal logics, PDL captures the possible truth/falsehood as the
natural dual to the impossible truth and falsehood of paradoxes. To achieve this
in 1.3 one must take an indirect meta-route, for instance, using Theorem 3.10 or
the following corollary. The possibility (satisfiability) of a formula F' is equiva-
lent to the non-validity of its “negation”: it is satisfiable iff =F V (F' <> =F) is
not valid (with E3 biconditional, and z Vy = =(—z A —y).) Let ="'V (T’ +» —I)
denote the disjunction of all respective formulae \/{-F V (F < —F) | F € T'}.

Corollary 3.11 ForI' C wffg : = [[': G] iff D(G) =, -I' V (T <> —I).

PROOF. =) If = ' : G] then Theorem 3.10 gives an a € {1,0, L }¢ such that
a g D(G) and « =g . In particular, for every F € T': a fep - FV (F <> —F).
<) Since D(G) £z =T V (I «» —T'), so there is some « € {0,1, L }¢ such that
a |=; D(G) and a e -I'V (I’ <+ =T'). That is, for every F € I' : o(—F) €
{0, 1}, e, a(F) € {1,L} and o(F < —=F) € {0, L}. But if o(F) = L then
a(F < =F) =1, hence a(F) =1 for all F €T. So a =1 T, yielding = [[" : G
by Theorem 3.10, as desired. d

For instance, for any cycle X, L3 does not establish anything about the truth
of any node z; € X: D(X) [£L x; V —x;, since in the absence of sinks, the empty
local kernel provides a model of D(X) with L at all nodes. For an odd cycle,
e.g., a 3-cycle A = a; — ay — as, L3 establishes the paradoxicality of all three
nodes, D(A) =z a; < —a;. An even cycle, e.g., a 2-cycle B = by < by, does
not satisfy such a formula, D(B) £z b; <> —b;, but there is no L3-consequence
of D(B) which would witness to the absence of paradox. The possibility of any
b; being true follows only by indirect analysis, e.g., using the above corollary
D(B) %L _\bl \Y (bl <~ _\bl) \Y _‘bg V (b2 — _‘bg).

Relevance of such merely possible truth/falsehood has been noted, for in-
stance, in Example 3.3.10. Here, consider the following discourse G:

(T2 Ty)
NI A N
In L3, we have the entailment D(G) | —y — (z +> —x) (L3 arrows), expressing
the intuition that if y is false then x is paradoxical. Although correct, this is
not very informative since y cannot possibly be false, which is captured in PDL
by = —[-y : G]. In addition, PDL also gives the possibility of y being true:
E [y : G, i.e., y can be true and can not be false. L3 gives only conditional
dependencies, like the one above. In particular, it does not establish the truth
of y, since L at all nodes is a possible L3-model.
This shortcoming results from the fact that L3 addresses only the semantic
information that is already present in the completion @ — the truths and false-
hoods induced from sinks, the undisputed facts. Although every local kernel

15

provides a model of the discourse, the L3-consequences of a discourse can be
determined by looking only at the truths in &.

Theorem 3.12 For F € wffg, we have D(G) |=¢ F iff @ = [F : G].

PROOF. =) For any graph G, @ is a local kernel, so agz =, D(G) by Proposition
3.9.a) and oz =5 F by assumption. Since F' is formed using {—, A} it is not
hard to see, consulting Definition 3.1 and tables (3.8), that & = [F : G].

<) For any a with o =7 D(G), @ C o' by Lemma 3.9.b), so o = [F : G] by
the monotonicity of |, and hence o =, F' (since F' is formed using {—,A}). O

As the mere consequences of undisputed facts, these truths from & seem unprob-
lematic. The problematic and more interesting things happen in the sinkless
residuum, G° = G\ (@ U E(2)), as will be further illustrated in Section 4.2.
If needed, one can therefore use L3 for analyzing statements which are true in
every acceptable subdiscourse. This novel application of L3, although poten-
tially useful, seems however to rest on all too strong a concept, as witnessed
by Theorem 3.12 (so called sceptical semantics in argumentation theory). The
inquiry into the alternatives actually present in the acceptable subdiscourses,
on the other hand, brings us outside this usual scope of universal truth, away
from L3 and towards PDL.

3.2 Reasoning in PDL

Consider the 3-cycle, as a — b — ¢ in the introductory example (2.4). Informally,
one analyses it by assuming, say, a = 1, which requires b = 0 and, in turn,
¢ = 1. But ¢ can not be true when a is true, so this possibility is excluded.
Alternatively, trying a = 0 makes b = 1 which, in turn, requires ¢ = 0. But
this, again, gives a conflict since falsity of ¢ means that a is true. In short,
and quite generally, we follow the chain of cross-references (to truth of other
statements) and assign values, observing the rules (2.5). At the same time, we
also decompose the discourse, in the sense that starting with a = 1, we never
revise this trial but only check “at the end” if the resulting assignment conforms
to (2.5). Paradox amounts to the impossibility of assigning either value to some
nodes. Informal analysis of the whole discourse G’ from (2.4) will be more
complex, but along the same lines. Its paradoxical character can be confirmed
by observing that the only two possible assignments to d — e, make it impossible
to assign any values to either the cycle a — b — ¢ or the loop at f.

The reasoning system PDL, given below in Figure 1, reflects this informal
procedure. The composite and basic formula are handled by the standard se-
quent rules. The non-standard elements are axioms and the first four rules,
which address only literals in I'’'s. Unlike the standard rules, these decompose
both the considered formulae and the discourse in which it is evaluated. In this
way, and just as the informal analysis sketched above, it is trivially finite and
decidable, avoiding any non-terminating revisions of attempted assignments.

A closer look at the rule (Fa) should explain the connections to the intuitive
procedure above. To establish a possibility of a (being true) in G, F [a : G],

16

the rule’s premise requires establishing the possibility of all a’s out-neighbours
being simultaneously false. This is just (2.5).(1). But the premise is verified
in the reduced graph G \ out(a), where out(a) = {{a,b) | b € E(a)} denotes all
edges going out of a. In so reduced graph, a becomes a sink. This is exactly the
informal move of assuming a true and checking what happens “at the end”, as
this value is propagated through the discourse. If such a check “returns to” a
without making any of its out-neighbours true, one concludes the possibility of
a. This is what happens at the axioms, which require that all things assumed
true, end up among the sinks of the resulting, reduced graph.

AtoMIC FORMULAE (literals a, —a in T):

Axioms: [[',-a: G],0F @ if a € sinks(G) OF &, [[: Gif T C sinks(G)
[TU{—a;|a; € E(a)}: G\ out(a)],OF & .
(aF) T,a:G,OF @ if Bla) # 2
(a) OF®,[TU{~a;]|a; € E(a)}: G\ out(a))
@ Or®,[T,a: G|
C,a1:G,0F® ; ...; [[a,:G,0F®

if {a1,..,a,} =F(a) # 2

OF [l a;:Gl,..., [T a,: G
OF®,[I'—a:G]

=h) [[,-a:Gl,OF &

(F-)

The side conditions on E(a) apply to both rules between which they appear.

BASIC FORMULAE (one-sided sequent rules):

[A, B:GF .. .F[[,AB:G,..
W) T AnB G N T asB .
DA Gl L . HA:G ..
(==F) I, —A: Gk ... (F==) [T, —=—A:Gl,..
(=AF) 0, -AGlE L D, 2B Gl E

,~(AAB):GF ..

(-an) = F[,-A:G],[I,-B:Gl,..

F[O,~(AAB):G,...

COMPOSITE FORMULAE (two-sided sequent rules):

OFd,¢ $,OF
6,,0 1 ® OFd,¢ ; OF®,1

(=A)

(AF) OANY,OF @ OF @, oA

Figure 1: The reasoning system PDL.

17

Example 3.13 In a 4-cycle, a —b—c—d, a (or any other node) can be true:

a € sinks(b>c d—=a

Fla: b>c d—=a

)
] (=)

Fl-d: b=>c d—=a]
(Fe)

l—[c: b»c»d»a]
. (=)

[—\b: b»c»d»a]
] (Fa

Fla: b=c>d=a

Proofs of paradoxicality use the same graph reductions, but involve two sub-
proofs, showing the impossibility of being true and of being false.

Example 3.14 z with the liar loop is paradozical — it can be neither true (the
left branch) nor false (the right branch): 12

x € sinks(x) x € sinks(x)
[~z :x] [~z :z] b
o Tl el ()
[~z (z,)] F ([-z: (z,z)] F (- =A)

[~(mzAx): (z,z)] F
Fola(mzAx): (x,x)]

(=)

The following proof shows that a, in the triangle a-b-c, is impossibly true (left
branch) and impossibly false (right branch; the same holds also for b and c):

b € sinks(b,a, (c,a))

a € sinks(a,c, (b,c)) [ﬁb :b,a,(c,a)] (ak)

(ch) [-a:a,c, (bc)F [a: b, {a,b),{c,a)] F (=H)

(=h) [c:a,(bc),{c,a)F [-c: b, {a,b),{(c,a)] F (bF)
(ah) [-b:a,(b,c),{c,a)] [b: (a,b),(b,c),{c,a)] - (=h)
(=) [a : (a,b), (b,c), {c,a)] [-a : {a,b), (b, c), (c,a)] F ()
Fola:{a,b),(bc) (c,a)] F=[na:{a,b), (bc){c,a) (1)

F=las(a,b), (b;c), (e,)] A =[ma(a,b), (b;c), (¢, a)]

The second proof suggests that there may be other characterizations of a para-
dox, besides Definition 3.4. Indeed, inspecting the rules, we see the equivalence
of the provability of the following formulae:

Fal-(zA—-z):G < F=[-2z:GA-[z: G (3.15)

Hence, the second proof in Example 3.14 does show that a is paradoxical accord-
ing to Definition 3.4 (assuming soundness of PDL, which is proven in Appendix).

12For displaying proofs, it is convenient to write a graph as a list of sinks and edges, e.g.,
(z,z) is the liar graph, while « the same graph with the loop removed. Some redundancy in
notation may ease readability, e.g., a, (b,a) and (b, a) denote the same graph b — a.

18

This is a special case of the general equivalence, corresponding to the dis-
tributivity of universal quantifier (or box) over conjunction:

F-[(AAB):G] & F-[~A4:GA-[-B:G

As noted before, we have thus a logic of possible truth and falsehood, in the
context where tertium datur, namely, the paradox. However, a paradoxical
statement is not a functional consequence of the contingent values assigned to
its substatements. It is not a mere possibility but occurs only as the impossi-
bility of truth and of falsehood. It is always necessary and appears only as an
unavoidable consequence of the discourse.

An interesting phenomenon is that when paradox, as a property of state-
ments, is understood in this way, then a discourse can be paradoxical without
having any paradoxical statements. It may be namely undetermined which part
of the discourse is paradoxical. In the discourse (2.4), depending on the choice
of the local kernel for d—e, either a —b— ¢’ becomes paradoxical, or else only f”.
In this way, a network of contingent paradoxes, captured using pattern (3.5),
might be, as a whole, a necessary paradox. Holism strikes back, as it where,
and rightly so, since our judgment about the paradoxicality of particular state-
ments is derived from the discourse. Traditionally simple examples, like the liar,
do not contradict this in any way. They provide only examples of very simple
discourses, but not any argument for restricting paradox to single statements.

Provability of the following conditional paradoxes in D’ from (2.4) is left as
a simple exercise to the interested reader:

F=ldA=(f A=f") : F], ie., when d = 1 then f’ is paradoxical, and

F =[=d A=(cd A=) F], ie., when d = 0 then ¢ is paradoxical.
PDL is sound and complete with respect to the semantics from Definition 3.2.
(The proof is in the appendix. Inspecting the rules, in particular, for literals in
T', one verifies easily decidability of PDL.)

Theorem 3.16 For all finite sets ©,8 C L: O =P < O F ©.

3.3 Classical logic

Semantically, PDL generalizes classical logic by considering not only assignments
induced, according to (2.11), from kernels of a graph G, but also those induced
from local kernels. By Fact 2.12, the former correspond exactly to the classical
models of the respective theory D(G), while the latter correspond to partial
L3-models, Theorem 3.10, which exist also when the theory is classically incon-
sistent. Partiality might seem a significant departure from the classical logic
— after all, the latter does not admit any truth-gaps. But since the failure to
evaluate classically is the phenomenon under investigation, there is only the
question of approaching it in a more or less classical way. Concerning its effects
at the level of discourse, strong Kleene logic is generally viewed as a minimal
departure, preserving the classical intuitions as far as possible by respecting
(2.5). This is the logic used to represent statements of discourses on the right

19

of the equivalences. (The only used element of L3, different from Kleene, is the
main equivalence, which yields smooth transitions between logic and graphs,
like Proposition 3.9 and Theorem 3.10.)

Most significantly, even if classical strictures were directed against these par-
tial assignments and evaluations of the analyzed discourses, PDL itself, which is
the meta-logic of such assignments and evaluations, is classical. On the reason-
ing side, note first that the standard axioms of sequent calculus (*) ©,¢ + ¢, ®
are not needed. For any basic formula ¢ = [I" : G], we either have = ¢ or = —¢.
Consequently, every instance of the standard axiom (*) becomes provable, since
either - ¢ or ¢ . This bivalence is a genuinely classical feature of PDL. The
classical character is further confirmed by the rules for composite expressions in
" and the rules ((-)) being the classical sequent rules (for one-sided and two-sided
sequent calculus, respectively), which reflect the classical semantic definitions
of the connectives in Definitions 3.1 and 3.2.)

The only difference is that discourses in PDL — the basic formulae — can
be evaluated over general graphs and not only, as in classical logic, over well-
founded syntax graphs. At this level, classical logic can be obtained, for instance,
by ignoring the graph and leaving only, for any given formula A, the collection
of disjoint 2-cycles a < @, one for each variable a occurring in A. If A denotes
such a graph, then a proof I [A : A] establishes the consistency of A, while a
proof - =[-A : A] shows that A is a tautology (a proof - —[A : A] shows that
A is a contradiction.)

An equivalent representation results from taking as the graph for a given
formula A, essentially its syntax tree, where edges of the tree represent negation.
All leaves with the same label a are identified, and a fresh node @ is added, with
a 2-cycle, a = @. If a occurs positively in some conjunction, it is first replaced
by ——a. We call the resulting graph syntaz dag of A (disregarding the 2-cycles
at its leafs), denote it by sd(A) and its root by r4. More precisely, sd(A) is
defined recursively:

sd(A\;c; ¢i) consists of a fresh node n, sd(—¢;) for all i € I, and edges
from n to the roots of all sd(—¢;),
sd(—¢) consists of a fresh node r, sd(¢), and an edge from 7 to the
root 4 of sd(¢),
sd(a) for a variable a, is a two cycle a & @, with a treated as the

For instance, forrz(zloi —(—a A a), the syntax dag is obtained as follows:
sd(4) = ra=>sd(-aNa)
= TA——>n m sd(—a)
= Ta n /7\ sd(—a)
= ra n /r,\; r" — sd(a)
= a4 N a==a

Some simplifications can be made like, for instance, contracting a path of 3 edges
with no outgoing edges to a single edge, or replacing sd(—a) by sd(@). After such

20

simplifications, we might use instead of the above graph the following one:
sd(A)= T4 —>n">, —Sg=>=ua (3.17)

A is consistent iff there is a kernel of sd(A) containing its root ry4, i.e., if there
is a proof - [r4 : sd(A4)]. A proof - =[-r4 : sd(A)] shows that A is a tautology.
We register this fact (=¢ denotes the classical satisfaction).

Fact 3.18 The following equivalences hold for every A € wffg:
Wef0,1}9:VEcA & E[A:A & [ra:sd(A)]
YWe{0,1}¢:VEcA & =-[-A: 4] & E-[-r,:sd(A)

Example 3.19 Tautology of the non-contradiction principle, A = —(aA—a), is
shown, to the left, using the full formula and 2-cycles A and, to the right, using
its syntax dag (3.17) and atomic labels for all subformulae:

ac€ sinks(ra—n ¢ —>a-<a)

[~a,—a: TA—>n ¢ —>a=<—a]t

ak

a € sinks(a < @) [@-a: Tma—n ¢ —=a=alkF E))

— ~F

[_‘(17—\(1.61/:@]:: (ﬁl—) [—\’r‘/7—\ai TA—n 70’—)626]}— (n}_)
[a,ﬁa a:g] (/\l—) [n: TA%HQEE?(I];_

[aN—a:aSa] k- (~ah) ——— (=)
- [_‘TAZ ’I‘A*>n—>7n’*>a<:>a]}—

Fo[-ra: ra—=n">; =g==a]

The difference between proving [A : A] and [r4 : sd(A)] is that in the former the
complex element is the formula A, which is decomposed using the logical rules
until only literals are left. In the latter, all intermediary subformulae appear
as atomic names representing the nodes of the respective graph, which is the
complex object being decomposed as the proof proceeds.

A bit loosely, one might say that classical logic is a logic without any circu-
larity, where everything can be expressed using only well-founded syntax dags.
This guarantees that every formulae obtains a unique value for every assign-
ment to its variables, a special case of the fact that every well-founded dag has
a unique kernel.'3

Arbitrary digraphs introduce circularity in the form of loops and cycles and,
as a consequence, subformulae (nodes in the graph) possibly lacking any truth-
value. The non-contradiction formula A from Example 3.19, for instance, ceases
to be a tautology and becomes unprovable over the liar graph a). Even if
this were damaging for the actual discourse, it is not for PDL. Such a situation,
when the discourse graph G has no local kernel, can be likened to the classical
inconsistency — no involved formula has any possible truth-value. No explosion

I3For finite dags, this is the first result in kernel theory from [29]. The general statement
appears, for instance, in [3], but also in the context of argumentation theory, as Theorem 30
in [16].

21

results, however, but on the contrary, no positive basic formula is satisfied. For
any I' C wffg, we obtain [~ [: G], i.e., = —=[[' : G]. Such rare discourses are
indeed ones where nothing positive can be stated about any subformula, each
being an unavoidable paradox.

That truth-value gaps, or inconsistency of a discourse, are indeed conse-
quences of circularity, and even of a special kind of circularity, follows from
Richardson’s theorem, [27]. We will see it by logical analysis in Subsection 3.5,
and then in precise, graph-theoretical terms in Subsection 4.1.

3.4 Paradox and inconsistency

As remarked in the introduction, inconsistency may sometimes refer to proposi-
tional theories, and sometimes to the paradoxicality of discourses. Blurring the
distinction is justified by their formal equivalence, whose preliminary version
was given in Fact 2.6. Here, we give the general statement. The equivalence of
the problem of kernel existence, KER, and propositional consistency, SAT, has
been observed earlier [9]. But the graphical representation as the syntax dags
gives it a new and very simple proof.

Given a digraph G, one forms the corresponding propositional theory D(G),
obtaining the identity sol(G) = mod(D(G)), cf. Fact 2.6. On the other hand,
given a theory T (with formulae using only — and A, but not necessarily in
the discourse form (2.1)), the relevant graph G(T) is obtained by collecting the
syntax dags of all formulae {sd(A) | A € T}, adding to each dag sd(A) a new
node x4 with the loop (z4,24) and an edge (z4,74) to the root r4 of sd(A)
and, finally, identifying the leafs (e < @) with the same labels across all different
subgraphs. For the formula A = =(—a A a) and its syntax dag from (3.17), this
yields the graph

G(A) = CxA%rA%nqgaza (3.20)

Two models of A, a = 0 and a = 1, give two kernels of G(A), {a,ra} and
{a,r',ra}. Extending the theory A with the formula B = —a, would result in
the graph G(A, B) extending the above one with ... Sa <+ rp+ B).

According to Fact 3.18, a formula A is satisfiable iff |= [r4 : sd(ﬁﬁ holds,
i.e., iff there is a kernel of sd(A) including its root 74, which induces 0 to the
“loopy” nodes x 4. Filling in trivial details, this gives:

Theorem 3.21 For every propositional theory T and digraph G:
a) kernels of G and models of D(G) are in bijective correspondence,
b) models of T and kernels of G(T) are in bijective correspondence.

In particular, for every theory T, the theory GNF(T) = D(G(T)) is equisatisfiable
with T: both have essentially the same models."* Moreover, this theory has the
graph normal form, as given in (2.1).

4 The only additional variables in GNF(T) arise from the naming of all subformulae — as the
additional nodes in the syntax dag sd(A), in comparison to the mere collection of 2-cycles A.
They obtain induced values whenever the theory is consistent, while a model of GNF(T) gives
a model of T by just forgetting such additional variables.

22

Corollary 3.22 For every propositional theory T, there is an equisatisfiable
theory GNF(T) in the graph normal form (2.1).

Now, inconsistency in propositional logic is certainly a different concept from
paradoxical discourses. But intuitively, the two coincide for the discourses in this
special graph form. The intuitive paradoxicality of a discourse, the impossibility
of assigning truth-values to all its statements, results from the conflict between
every attempted truth-values and the one which results from evaluating some
statements. This is exactly inconsistency of the equivalences which determine
the value of each variable on the left-hand side, as a result of the evaluation of its
right-hand side. The intuitive impossibility means simply that every assignment
violates some of the equivalences.

The overall consistency seems one of the meta-assumptions of the declar-
ative discourse, giving rise to the feeling of unease when it fails and, at least
sometimes, its designation as paradox. A plain contradiction does not cause
similar trouble. Hearing a A —a, we give it a new identifier (usually only im-
plicitly), say nq, and note n, <> a A ~a. No inconsistency results, only false
statement n,. However, inconsistency of a collection of such equivalences is
a different matter, meaning exactly the impossibility of all its statements n,
having a truth-value. The format (2.1) was discussed in more detail in [30].
But only in [3] one finds the observation, expressed in Corollary 3.22, that it
gives a normal form for propositional theories. Consequently, not only every
paradox, when represented in classical logic, gives an inconsistent theory, but
also every inconsistent theory, when formulated in a graph normal form, pro-
duces a discourse which, intuitively, will be classified as paradoxical, violating
the meta-principle of bivalence or contravalence. The crux of this construction,
formalized by D(G(-)), is to form, given an inconsistent formula F, a contingent
liar z <» -z A —F. E.g., taking F' = a A —a instead of A in (3.20), will give the
graph without the node r 4, but with a direct edge from zg to n.

r&

T T
G(F) = {\/$F‘>n‘>7«/‘>a<:>a

Since n is a contradiction, g is a non-contingent paradox.

3.5 A structure of paradox

PDL provides a tool for detailed investigation of the paradoxical character of
particular discourses but, as we saw in Section 3.1, also L3 could be used for
this purpose. PDL’s ability to handle merely possible truth was mentioned as
its advantage over L3. Another advantage is PDL’s sequent calculus. Analysis
of the proofs of paradoxicality provides an insight into the general structure of
paradox as we will now show.'® Let’s keep in mind here that out-neighbours of
a node x represent the statements directly negated by x.

15T is not clear whether the sequent calculus for L3 presented in [4] could be used in a
similar way. This seems rather unlikely, in particular, as it has multiple rules with the same
principal formula.

23

The equivalence (3.15) gives a simple example stating that a node necessarily
violates the law of excluded middle if and only if it can not possibly be made
false and can not possibly be made true. This is hardly unexpected, but correct
and simple expression of basic intuitions is as reassuring as it may be non-trivial.

More interestingly, the fact that x is paradoxical, i.e., impossibly true and im-
possibly false, can be expressed equivalently as both x and all its out-neighbours
being impossibly true. Indeed, impossibility of assigning 0 to a node amounts
to the non-existence of any local kernel containing some of its out-neighbours,
and provability in PDL satisfies the equivalence

Folz:GA—[2:G < ((I— —[z: G]) and (F —y; : G] for all y; € E(as)))

This follows immediately from the rule (—F), which is the only one yielding the
impossibility of = being false, [-x : G] I, and requiring for this the premises
stating impossibility of y; being true, [y; : G] F, for every y; € E(x) :

[y1:GlF 5 s [yn = G F
[x: G+ [-z: Gl F
F =z : Gl A =[x : G

(=F)
(F=)
(FA)

Another characterization of paradox can be read from further analysis of the
proof of the first conjunct. It is established according to the rule (zt), only
when some 2’s out-neighbour y; € E(x) can’t be false, [...—y;... : G] k. The
two subproofs together mean that if = is paradoxical (under any circumstances
F, which may affect which node y; it actually is) then it has a paradoxical
out-neighbour y;:

FoFA=(xA-z): G = F [FA=(y; A—w;) : G] for some y; € E(x). (3.23)

The implication can not be reversed, as illustrated by the following example:
{ Y1 < x — ys. Although x has a paradoxical out-neighbour y1, it is not itself
paradoxical since the sink ys is a local kernel, making x = 0. A bit imprecisely,
we can claim the equivalence of x being paradoxical with all its out-neighbours
being impossibly true and at least one of them being impossibly false. In the
following discourse P, x has a possibly paradoxical out-neighbour y;, but for
this to make z paradoxical, also y» can not be true.

A

Y2 —=a—=q

The general schema of the proof of paradoxicality of =, with E(z) = {y1, ..., Yn},
shows the sufficiency and necessity of the following two assumptions:

24

[F, =Yty ey 7Y = G\ out(z)] F
[F,z: G| F [Fyoy1: Gl F ;. [Foyn : G F
[F,——z: G|+ [F,—z: G|k
[F,~(—x Ax):yG]+
) FalF, —(—zAx): Gl

(zh)

(+=F)
(-AF)

(=F)

The premise in the right branch demands, as noted before, the impossibility of
any y; being true, while the left one the impossibility of all y; being simulta-
neously false. Thus, there must exist at least one y; which can be neither true
nor false, while all the remaining ones can not be true. In P, both y; can be
false and so can ys. In particular, y; is not necessarily paradoxical. But they
can not be false simultaneously. When a = 1, then « is paradoxical, but when
a = 0 then the graph has a kernel, i.e.: F —[a,~(x A —z) : P] and [@,y2 : P].
The latter says that {a@,y2} is a local kernel of P and it can be extended to the
provable claim F [a, y2, ~a, 7z, ~y; : P]. Since now each node of P figures in one
literal of the claim, this shows that {@,y2} is actually a kernel of P.

Implication (3.23) shows that circularity is indispensable for obtaining a
finitary paradox. A paradox must negate a paradox.'® In case of the liar,
such a paradoxical out-neighbour is the liar itself while in general, it requires
its own paradoxical out-neighbour, etc.. Hence, in a finite graph, a paradox
requires a cycle. (The only alternative would be an infinite chain of paradoxical
statements, but this requires moving to infinite and, as we will see in the next
section, infinitary discourses.) Although this has always been a basic intuition
about (finitary) paradoxes, we are not aware of any other, general and strictly
formal expression of this idea.'”

Instead of continuing this logical analysis, we switch now to a graphical one.
It captures evil circularity in a more direct and more precise way, providing also
a series of general results useful for the diagnosis of discursive anomalies.

16Curry’s paradox may be negation-free only if z <+ (z — y) does not abbreviate x <>
—(z A —y). In our case, it is exactly what it does, as the arrow — on the right is defined as in
strong Kleene logic.

7This may require a qualification. On the one hand, purely logical means are inherently
inadequate, since the language of classical logic is designed exactly so as to prevent any direct
self-reference. One is forced to step beyond first-order logic and apply intricate Goédelizations
in order to express something as simple as the liar (as a matter of fact, only something which
merely reminds of the liar). On the other hand, one may take a more semantic approach. A
good example is the use of non-well-founded sets, that is, eventually arbitrary graphs in [1],
as the semantic basis for modeling circularity of discourses. Accepting the anti-foundation
axiom is, however, a dramatic step, bringing us out of classical set theory. It may happen
that a general solution to paradoxes of all kinds might require such a fundamental departure.
‘We prefer to avoid it as long as possible, in particular, when it suffices to represent circularity
in classical set theory and analyze it using essentially classical logic.

25

4 Some applications of kernel theory

The kernel-theoretic approach provides new means and several results for the
analysis of discourses which are often easier and more intuitive than those offered
by classical logic. It informs and extends accepted intuitions in a formally
precise, yet intuitively appealing way. This section illustrates applicability of
kernel theorems for diagnosing paradoxical character of discourses.

The development so far indicates that the truth-operator (or truth-predicate)
plays no essential role for the appearance of paradoxes — object-level negation
suffices. As long as we are working with essentially classical, two-valued seman-
tics, truth-operator can be plausibly taken as the identity and represented by
double negation. This may not reflect all intentions and intuitions about it,
but does not affect the correctness of the diagnosis of (non)paradoxicality. In a
consistent discourse, the truth-operator applied to any statement should leave
its value unchanged. When applied to paradox in an inconsistent discourse, it
might be asked to act differently. But this poses the questions about the nature
of the truth-operator, which are different than the questions about paradox.
The latter can be addressed fruitfully without settling the former.

With these reservations, all particular claims about (non)paradoxical char-
acter of specific, finitary discourses in the following examples can be proven in
PDL. But the presentation should benefit from dispensing with such detailed
formalities and keeping it at a more intuitive level.

Occasionally, we address also infinite cases, possibly even in infinitary logic
(admitting infinite conjunctions in equivalences (2.1)). Although PDL would re-
quire extensions (to infinitary formulae and rules), the basic semantic facts hold
unchanged: transformations D, G and Fact 2.6, definitions in Section 2.2 with
Fact 2.12, as well as Fact 3.18 (with satisfaction in infinitary logic replacing
=c¢) and Theorem 3.21 — all these retain their validity when passing to infini-
tary logic. Graphically, infinitary logic corresponds to digraphs with infinite
branching, and the main difference is that such discourses, unlike the finitary
ones, may be inconsistent without involving any circularity.

4.1 Circularity

Circularity seems inherently difficult to capture by logical means alone. Some
cases are vicious, others are not and although it has always seemed the key to
paradox, not only its nature but even its very occurrence may be disputed. The
amount of implicit agreement, underlying most of its discussions, fails in the face
of more complex examples or, perhaps, of more involved notions of circularity.
For instance, although Yablo’s paradox appears at first sight uncontroversially
non-circular, this has been challenged and disputed by a series of authors, e.g.,
[26, 28, 2, 8], some claiming it to possess a sort of circularity. One can construe
circularity so that it applies to Yablo’s paradox, but this is then a different notion
from the simple one, which does not apply to it. The graphical representation
offers the standard notion of a cycle which is hardly disputable. A finite path in a
graph is a sequence of nodes xox1xs...2,, where for all 0 < i < n: ;41 € E(z;).

26

A path is simple when it has no repeating vertices. A cycle is a path xgxz123...2,,
which is simple except for =, = xy. The cycle is odd/even when n is. A special
case is an odd cycle of length 1, i.e., a loop zx, when = € E(z).18

4.1.1 Only cycles are vicious

According to the theorem from [29], which appears to be the first result in kernel
theory, every finite, directed acyclic graph (dag) has a unique kernel. By the
equivalence with the propositional theories and the compactness theorem, this
extends to finitely branching, infinite dags, [3]. As long as statements refer only
to finitely many other statements, paradoxicality will only arise from circularity,
and this holds even when one considers infinitely many statements. The infinite
path of statements xgx1xaxs..., each saying: “The next 3 statements are false.”
is not paradoxical. Its theory, for all i € N : x; <> —xip1 A “Zipo A i3,
is consistent, corresponding to a finitely branching dag. No matter what the
statements say, as long as each claims something only about finitely many of its
followers, the discourse is not paradoxical.

Thus, only cycles can become vicious in finitary discourses and examples
abound. A chordless odd cycle has no kernel. This obvious fact subsumes the
simplest paradoxes. The liar, z < -z, is a loop,) and “I am not true” or
“I am not non-false”, x > =——x, is a 3-cycle, t ——=>Y ——==z.

A more general statement is that a non-empty, finite, sinkless graph, which
has no even cycle has no kernels, [31]. For instance, an odd number n of persons
standing in a ring, with every z; claiming that his successor x;; is lying and
so does the predecessor of his predecessor, x;_» (with addition and subtraction
modulo n — 1), forms a paradox. For n = 3 this is just a 3-cycle, but for larger

18 This excludes any “infinite cycle” and makes Yablo’s paradox non-circular. (Infinite cycles
can be introduced into infinite graphs, by topological means, using completions of infinite rays.
They seem to have no relation to infinitary paradoxes, though, and Yablo remains acyclic also
when such cycles are allowed.) Yablo’s circularity, suggested in [26], concerned its finitary
formulation but not its actual referential structure. This is the relevant structure, captured
by our graphs. On the other hand, since every person in the Yablo’s path says (*) “All my
followers are lying”, Priests suggests that “one individuates the thought in such a way that all
the people are thinking the same thought”. This is certainly possible, but asks us to ignore
the crucial structure of the reference involved: the thought of the n-th person includes the
(n+1)-th person, while the thought of the (n+1)-th person does not. As observed in footnote
7, one can plausibly ask also here to individuate the thought (*) — if one wants to insist on
the singular form — at the level of tokens and not of its type. The isomorphism of every tail
of the Yablo graph with the whole graph does not mean that they are identical.

27

n this involves chords, as shown for such a paradoxical discourse with n = 7: 1°

1/0\

Y

4.1.2 Vicious cycles are odd

Although circularity is necessary for finitary paradoxes, it remains innocent
as long as it does not result in any self-negation. The standard example is
the truth-teller, which can be formulated in different ways, all giving the same
graphical representation:
(1) “This statement is true.” or
(2) “This statement is not false.” or
(3) “The next statement is false.” and “The previous statement is false.”
The corresponding theory — x <+ =T and T <> —x — gives a 2-cycle z &= T with
two solutions, each assigning complementary values to both statements.2°
The informal intuition that circularity may be vicious only when it involves
some sort of self-negation, is captured precisely by the central result of kernel
theory, Richardson’s theorem from the early 50-ties, [27], stating that every
finitely branching graph with no odd cycles has a kernel. Solvability of finitely
branching dags is its special case.As a more complex example, consider the
infinite T with the statements, for all integers i € Z, of the form:
To; > 21 A\ TT2i41
T2i41 > Y241
Y2i < T2
Y2it1 S Y2 N Y242

Its finitely branching graph G(T) has the form
< Y 7 Y2 Yz 7 Ya
T i T i

— T1 < T — T3 & Tg4 —

Since G(T) has no odd cycles, T is not paradoxical.

ncidentally, this form of discourse (a ring of size n > 3 where each z; claims falsity of
zi+1 and z;_2) is paradoxical even when the ring is even, but this follows from a particular
argument concerning the impossibility of breaking the involved odd 3-cycles. (To see this,
assume a solution, pick a node x; that is 1 and look for any 1-successor of its 0-successor ;41
on the ring. No such can exist, since all successors of x;41 are in- or out-neighbours of z;.)

200ne can propose finer criteria for distinguishing statements, so that (1)-(3) come out as
different, even to the point where (3) becomes a No-No paradox. But as far as their truth-
conditions under the classical semantics are concerned, there is as little problem with their
equivalence — and the absence of paradox — as with the fact that among two persons accusing
each other of lying, only one is telling the truth, the symmetry of appearances notwithstanding.
‘Which one it is, may vary between various tokens of truth-teller.

28

4.1.3 Not all odd cycles are vicious

Richardson’s theorem has been generalized in various ways by giving conditions
on the odd cycles ensuring the existence of a kernel. For instance, a finite G has
a kernel if each of its odd cycles C = xgxy....x9541 has at least:

a) two reversed edges (riy1 € E(x;) is reversed if also x; € E(xi41)), [14],
b) two crossing consecutive chords, [15], or

¢) two chords whose targets are two consecutive nodes of the cycle, [22].

Five persons in a ring, each accusing his right neighbour of lying, form an odd
cycle and a paradoxical discourse. By a), if two persons accuse, in addition, also
the person to their left, the paradox is resolved. Incidentally, for an isolated odd
cycle it is sufficient for only one person to make such an additional claim, but
the general result, for arbitrary finite graphs, requires two.

The conditions become more complex as one tries to cover more cases left open
by the elegant theorem of Richardson ([5] lists some more results.) As in the
case of finite satisfiability, the intractability of the problem of kernel existence,
[6, 9], leaves little hope for any compositional criteria for deciding if odd cycles
in a given discourse are vicious or not.

4.2 Ungroundedness

Ungroundedness, as introduced by Kripke in [23], subsumes circularity and re-
lates to the issue of contingency. According to Kripke’s terminology a statement
x is grounded, modulo some monotone operator on partial semantic assignments,
if starting from some collection of true atomic statements, the truth/falsity of
x is determined by the semantic assignment that is the least fixed-point of the
operator in question. (The typical operator used is obtained from the inductive
step in the definition of satisfaction in strong Kleene logic.) The construction
has a natural expression in terms of graphs. According to definition (2.7), sinks
belong to every kernel, encoding true atomic statements, z <> 1. Now, as sinks
belong to every kernel, their predecessors do not belong to any, so we can des-
ignate all sinks true and all predecessors of sinks false. Iterating this process
leads to the assignment az, obtained as in (2.11), where & is the completion
of the trivial local kernel &, cf. Definition 2.9. In argumentation theory, the
induced assignment ag gives the so called sceptical (or grounded) semantics.
The following fact, originating from [27] and stated generally in [3], gives sub-
stance to our claim that, for the general purposes, it is of very limited value.
Paradoxical anomalies occur only after such grounded truths have been taken
into account. At the center of the problem of solvability are sinkless graphs:
every solution for any graph G consists of the uniquely induced (grounded) az
composed with a solution for the ungrounded, sinkless residuum G° (recall that
G° is the subgraph induced by G° = G \ (g U E7(2))).

Fact 4.1 For any G:
1. sinks(G°) = @, and

29

2. 50l(G) ={aUag | a € s0l(G°)}, hence also: s0l(G) # @ < sol(G°) # @.

So, although empirical contingency may influence the (non)paradoxical charac-
ter of the actual discourse, eventually, it is always the ungrounded, non-empirical
residuum of the discourse which determines such a character. In case of a “fully
grounded” discourse, a dag with no infinite paths, G° is empty and the induced
o is the unique solution. But G° may also be empty when the graph contains
cycles. In the example a) below, all statements obtain induced values as indi-
cated; b) is paradoxical, as inducing leaves the unresolved liar, while ¢) is not
paradoxical, having a truth-teller as the ungrounded residuum.

a) This sentence is false and the Earth isn’t round.

01

b) This sentence is false and the Earth is round.

(_b—0—1

¢) This sentence is true and the Earth is round.
c==c—0—1
Groundedness is sometimes taken to provide the source of definite and unavoid-
able truth-values. However, we have already seen several examples of discourses
where statements that are not grounded still have truth-values that can be, in-
tuitively, ascertained. A further example may be the statement x claiming both
falsity and truth of the truth-teller z:

T g(m

Tz ANy r——2_——=7Z
Y >z

Z 4>z

Z <z Y

Accepting propositional logic only, such a statement is false, even if ungrounded.
Indeed, T is consistent and proves classically —z. In our case, unlike in Kripke’s
least fixed-point, this conclusion is obtained by noting that no kernel of the
solvable G(T) contains x, or by proving in PDL the possibility of z = 0, b [z :
G(T)], and the impossibility of z =1, F =[x : G(T)].

Shortcomings of the least fixed-point approach have been addressed by propos-
ing various other fixed-points as alternatives or as additions. But like every
proliferation disease, this too poses the question where to stop. Possibilities
suggested by Kripke were revised by the revision theory which, along with its
own notion of stability, introduced a new plethora of different notions of valid-
ity and truth. This may possess some merit, and the comparison of different
solutions is worthwhile, provided that it leads to a more definitive understand-
ing and more definite theory of the phenomenon under question. In our case
such problems do not arise — a discourse is paradoxical iff it corresponds to an
inconsistent theory iff its graph has no kernel. All these questions are decided
by PDL for the finitary discourses, and settled unambiguously by the general
semantic results for the infinitary ones.

30

4.2.1 Non-empirical inducing

Groundedness is related to empirical contingency. As for the contingent liar a
in (4.2), groundedness allows to dissolve the paradox, since Earth is round. But
contingency need not be empirical. Consider F from Example 2.13.(2) of the
liar f’ contingent on the truth-teller e. If one stipulates that e is false then this
discourse is paradoxical, if e is true it is not. This warrants the conclusion that
not only the truth-teller e could be true but that it must be true in order for the
discourse as a whole to function properly — T has a unique model, e = 1. This
is a general phenomenon, illustrating again the holistic character of discourses:
contingent paradoxes can give rise to definite truth-values of the ungrounded
statements on which they depend. In light of the plausible meta-assumption
that discourses which need not be paradoxical should not be designated as
such, the presence of a potential paradox becomes a fact which, like empirical
facts captured by &, may force the truth-values of other statements.

There is, to our knowledge, no formal account of the semantical paradoxes
that provides for this kind of reasoning. Note that although it may be referred to
the holistic meta-imperative of avoiding paradoxes, it is simply a sound classical
inference, concluding e (and —f’) from f’ <> —f’ A —e. If the goal is to avoid
paradox whenever possible then such inferences are appropriate. The example
also seems to provide a counterargument against viewing the truth-teller itself
as pathological because its truth-value is arbitrary, depending only on itself.
Apparently — and classically! — the truth-value of a truth-teller may depend on
other statements not because it refers to them, but because they refer to the
truth-teller.

Since this claim invokes a meta-principle (of global consistency), it creates a
tension with the possibility of viewing the truth-teller d — e as an isolated and
independent subdiscourse, which has two local kernels. Limiting one’s view to
one’s own business, without any consideration for larger issues, is a psychological
possibility and it is not for logic to exclude it. The role of logic may be to
describe such phenomena accurately and derive their unavoidable consequences.
The provability F [—e : F] in PDL demonstrates only the possible falsity of e.
But also necessary consequences of this option are provable, for instance, that
it entails paradoxicality of f’: F —[-e A =(=f" A f') : F].

4.2.2 No discourse of truth-tellers is paradoxical

More can be said about the communities of truth-tellers, irrespectively of their
(un)groundedness. Buridan’s early solution to the liar and other paradoxes
claimed that every statement, saying whatever it might be saying, says also
“..and I am true.” In terms of a graph, such a community X of truth-tellers
involves, in addition to the actual edges between the nodes X, their copies X =
{Z | z € X}, with a two cycle x 5 7 for every x € X. Every kernel of the original
graph, determines also a kernel of the new one (inducing T = —z). But one
obtains also the kernel X, which means that all 2 € X can be 0, irrespectively
of any connections between them. This makes any discourse almost void since,

31

no matter the values of various (sub)statements, every statement can always be
0. No matter what various truth-tellers say about each other, they never become
paradoxical, but they never become tautological either. This applies equally to
any single truth-teller involved in any discourse: it is never paradoxical, because
it can always be false. An argument asserting it’s own truthfulness does not add
any weight but, inadvertently, gives others the possibility to consider it false,
irrespectively of any other circumstances.

Truth-teller appears also in the statement “This sentence is a paradox”, with
paradox understood dialetheically, i.e., = : “This sentence is true and false”. The
graph contains the truth-teller z claiming also its own falsity: T = «). Its
only solution makes x false. (The statement is false also when the paradox is
taken as a gap, neither true nor false, though this is no longer a truth-tellers
community. Its graph becomes then 7 ==2 %= 22 =21 and has the only
solution making x false.)

4.2.3 Every discourse of liars is paradoxical.

Unlike a truth-teller graph, with a 2-cycle at each vertex, a reflexive graph has
no kernel since a node with a loop, € E(z), can not belong to any kernel.
In such a liar community everybody claims, in addition to whatever he may
be claiming about others, also its own falsity. Every such a liar community
is paradoxical, for instance, each of the following discourses, where X is an
arbitrary set with |X| > 1 and every z € X says:

(i) “I am lying.” — this is just a collection of unrelated liars,

(ii) “Everybody, including me, is lying.” or

(iii) “Everybody else is speaking truth but I am lying.” or

)

)

(iv) “Every person with my eye-colour is lying.” or

(v) “My right neighbour and both his neighbours are lying” (standing in a

ring or an infinite line).

4.2.4 Accusations breed guilt

A graph G is weakly complete when its underlying, undirected graph G is com-
plete, i.e., when for each pair of distinct nodes x # y in G, either z € E(y) or
y € E(x). As is easy to see, any kernel of a weakly complete graph — if it exists
- is a single node x satisfying the kernel equation (2.7): E~(x) = G \ {z}, [3].

For instance, any company in which, for every two persons at least one
accuses the other of lying, is a paradox, unless there is a person accused of lying
by everybody except himself. Exactly one such person is telling the truth.

As a special case, for any set X with |X| > 1, let every x € X accuse
everybody else (except himself) of lying. This gives a strongly (and hence also
weakly) complete graph without loops, where each node satisfies the equation
(2.7), and hence gives a possible kernel. Exactly one z is speaking the truth
but it can be chosen arbitrarily, as can be the value for the truth-teller (which
is the special case with | X| = 2.)

32

Also Yablo’s graph, with the natural numbers N as nodes and the edge
relation E(z) = {y € N |y > z}, is weakly complete. Its unsolvability follows,
since for every x € N: EY(z) = {y e N|y <z} # N\ {z}.

The same argument shows paradox in any generalization of Yablo where,
instead of N, one takes integers, rationals, reals, or any other total order without
greatest element.

5 Related work and concluding remarks

Before concluding the paper, it seems appropriate to comment briefly relation
to modal logic.

Our existentially quantified truth carries some modal element. Indeed, one
can view it as a dialect of S5, since all assignments, determined by local kernels,
are “equally accessible” from each other. However, viewing modality of PDL
in this way, cripples it instead of clarifying. What is essential for the involved
notion of possibility are the available assignments. These are determined by the
(graphical) structure of the discourse. The fact that they all are mutually and
“equally accessible” is of marginal importance. This, so to say “material” or
“extensional” character of the modality, excluding also any nesting of modalities
(in a different way but with similar effects as in S5), seem to make it a close
relative of the informal, minimal modality of natural discourse.

This modal element, as the concern with mere consistency and not validity,
may capture most informal intuitions but is not what logicians understand by
modality. Since modal logic with Kripke semantics can be seen as a logic of
graphs (or of movements along directed edges of graphs), our use of graphs
might suggest turning to some existing modal logic. However, since each among
typical modal logics corresponds only to some subclass of graphs, a new variant
would be needed, allowing to model arbitrary referential structures. Such a
modal foundation has been proposed for argumentation networks in [17]. The
basic form of the modal formula for a graph constructed there, p(G), bears
close similarities to our graph normal form, GNF(G). Its advantage arises in
argumentation theory, since it allows to characterize logically various kinds of
extensions.?! The expressive power, however, comes at a price. First, in spite
of the same basic form, u(G) is significantly more complex than GNF(G). More
importantly, the semantic view involves at least three values and a level of detail
that eventually leads to very fine-grained distinctions, for instance, between the
following two discourses:

N N

If the goal is to capture logically the exact structure of a graph, this is certainly
an advantage. But along with each discourse, its graph is given, so there seems

21Tt can also be seen as a successful continuation of the attempts to determine where to
place the third value in pointer semantics for circular discourses, arising from [19].

33

to be little need to duplicate its representation. Logic serves rather to obtain
some more abstract view of it. One can, for instance, view logic as a way of
capturing the elements of the discourse which are relevant for the truth-values
of its statements. In such a context, distinguishing between a discourse A, where
all statements are paradoxical, and B, where all statements are paradoxical, may
be more than what is actually called for.

Theorems 3.10 and 3.12 established a tight relation between the local kernel
semantics of graphs, which underlies 1(G), and the well-known logic £.3. The
applicability of L.3 to the analysis of local kernels provides a novel perspective
on this logic. (As a curiosity, let us note how Lukasiewicz’s third semantic value
returns thus, through graphs, to the modal applications, which motivated its
introduction.) More importantly, the essentially classical character of PDL and
the orderliness of sequent calculus, allow to draw some conclusions about the
structure of paradox from the properties of proofs of paradoxicality, as we saw
in Section 3.5. It is not impossible that similar results might be obtained in
the modal scenario from [17]. But since it is a strong modal logic (extending
K4 with Lob’s axiom and more), one should expect problems with forming any
elegant and informative proof theory for it.

KRk

Hopefully, all other elements, besides the modal one, mentioned informally in
the introduction are easily discernible in the logical system PDL. The holistic
character of the discourse is reflected in that kernels can not be obtained by any
straightforward, compositional rules. Consistency is not a compositional prop-
erty. At the same time, local kernels represent subdiscourses where (elements
of) compositionality can be regained and from which meaningful information
can be extracted even when other parts, or the totality of the discourse, are in-
consistent. The logic is paraconsistent in the sense that it handles meaningfully
inconsistent discourses without any deductive explosion. But, at the same time,
it is essentially classical, using only boolean truth-values and classical evalua-
tion of connectives, with paradox (or lack of truth-value) appearing only as a
non-functional consequence of the inconsistency of the discourse.

PDL can be seen as a formalization and completion of the project of logic
of statements from [30], which asked exactly for such a propositional logic of
discourses, represented as graphs in the same way as is done here.?? Having
now observed also the equivalence between a series of different problems, which
so far have been considered in isolation, PDL can serve for addressing instances
of each such separate problem: consistency of discourses, existence of kernels in
digraphs, presence of semantic paradoxes, coherence of argumentation networks
and even propositional satisfiability. (Applications to non-monotonic reasoning
or logic programming were not considered here, but they are possible, too,
as shown initially in [16], and later, for instance, in [10, 11, 12].) On the other
hand, the equivalence of different problems helps understanding each single one,

22The only exception is the lack of the explicit truth-operator in PDL. Possibility of including
such an operator remains to be investigated.

34

in the light of its relations to others. In this respect, kernel theory has proved
particularly enlightening, clarifying and making precise many intuitions about
the nature of circularity.

On a more philosophical note, we saw that in practice there is no necessary
opposition between the correspondence and coherence view of truth. The two
can function in unison. External facts, sinks, induce values to some statements
but, typically, do not cover the whole discourse. Once such inducing has taken
place, there remains the problem of potential paradoxicality of the remaining
part. For this ungrounded residuum, no sufficient, external criteria of truth are
available and there remain only necessary, negative criteria demanding exclu-
sion of undesirable effects, primarily, of inconsistency. Paradoxes appear only in
this inner circle. Fact 4.1 captures precisely the intuition that while empirical
contingency may contribute to dissolving them, it never creates any new para-
doxes — in a finitary discourse, a paradox arises only due to some self-negation,
a vicious circle. Furthermore, the problem of distinguishing between evil and
innocent circularity has been extensively addressed in kernel theory. Applicabil-
ity of its results to the anomalies of natural discourse seems a valuable insight,
providing both precise results and an enhanced general understanding of the
phenomenon.

Finally, defining PDL by the essentially classical conditions (2.5), we have
avoided the problematic issue of the behaviour of logical connectives in the
presence of paradox. Intuitively, saying that the liar is false, seems false, just
as saying that it is true, seems false (unless one turns dialetheic). Yet from
(3.23) we see that every paradox is a statement negating a paradox — the obvi-
ous example being the liar. So, sometimes, negation of a paradox is a paradox
and other times, it is false? It might be possible to impose such a distinction
between the statements of a discourse, resulting in a new, non-classical seman-
tics, as the one given and elaborated by Gaifman in [19, 21, 20]. Its intuitive
appeal seems to rest in large part on viewing paradox as a property of individ-
ual statements. If one insists on this, then it is only reasonable to let L result
in a functional, compositional propagation of semantic values. However, the
long lasting difficulties with agreeing on a single, stable set of rules determining
such a functional propagation, let alone appearance, of paradox, should be very
discouraging for this approach. The difficulties and proliferation of alternatives
become more understandable, if paradox does not arise from any property of
individual statements, but is a holistic effect of the totality of the discourse.
Then it seems more appropriate to start with a logic that treats it as such and
does not try to pin it down to particular statements. Also, although positive
description of a paradox might be easy to ask for, it has proven notoriously
difficult to obtain. It then seems more prudent to designate paradox negatively,
as the limit (of consistency), found when we reach the point where classical
intuitions, despite our best efforts, fail to provide any definitive answers.

Appendix: Proofs

Proposition 3.9 Given a graph G, we have:

35

a) If L € Lk(G) then af =g D(G) and;
b) If a =, D(G) for a: G — {1,0, L} then & C ot € Lk(G)

PROOF. a) Assume L € Lk(G) and consider arbitrary <> A cp(,) —y € D(G).
Assume towards contradiction that oz [z & <+ A\ cp(,) 7y We let a7 denote
the evaluation of complex formulae obtained from oz according to tables (3.8).
Then we have az(z) # ap(Ayep)) If ag(z) = 1 this inequality means
that there is one y € E(x) such that az(y) € {1, L}, impossible by the fact that
L is a local kernel (which requires, for all y € E(z), y € E7(L), i.e. az(y) = 0).
If az(z) = 0 we must then have, for every y € E(z), ap(y) € {0, L} but this
is also ruled out by the fact that L is a local kernel (which requires existence
of some y € E(z) such that ap(y) = 1). The last possibility is that ap(z) = L
in which case there are two possibilities. 1) We have some y € E(x) such that
at(y) = 1. This contradicts « ¢ E(L) (required since we have ap(z) = 1). 2)
For all y € E(x) we have az(y) = 0. This means = € sinks(G\ (L U E~(L)),
impossible by Definition 2.9 of L.

b) Assume « =g D(G). We show that o is a local kernel. We show first that
ol is independent. Assume towards contradiction that it is not. Then there
are r,y € o' with y € E(z). So we have a(z) = a(y) = 1 and from inspect-
ing the tables (3.8) we see that @(A\,cp(,)~w) = 0. In particular, we have
a(x) # A\ ep(r)), contrary to hypothesis. Assume towards contradiction
that a! is not locally absorbing. Then there is some z € o' with y € E(zx) such
that E(y) Nal = @. Since a(z) # 1 for all z € E(z), by a! being independent,
this means that a(y) = L and that a(/\,c p(,)) = L # a(z) = 1, contrary to
hypothesis. To show that @ C a! is a simple proof by induction over definition
2.9. For the basis, if © € sinks(G), i.e. © € &1, then z <+ 1 € D(G). Then is is
clear that = € a!. The inductive step is also trivial. a

Theorem 3.10 = [: G] iff there is some o : G — {1,0, L} such that a =y,
D(G) and a =1 T.

PROOF. =) Assume that |= [I" : G]. Then by Definition 3.2 there is some local
kernel L € Lk(G) such that L = [I' : G]. We have from Proposition 3.9.a) that
ot =g D(G). We show ag = T’ by induction on the complexity of I'. We take
its complexity to be the sum of the complexity of its formulae divided by |T'|.
The basis is for I' a collection of literals. Then I't C L and '~ C E~(L), so for
all z € I't we have ap(z) = 1 and for all y € I'~ we have az(y) = 0 (remember
that L C L). It follows from inspecting tables (3.8) that ag =1T". The inductive
steps are easy. For instance, if = [I" : G] and there is =—A € T" that has maximal
complexity among formulae of T', then we form IV which is like I except that A
replaces —=—A. I" has lower complexity than I and, obviously from Definitions
3.1 and 3.2, = [I" : G]. So by IH we get |=£ I". Consulting tables (3.8) we see
that this gives us =y I" so we are done. The cases for =(A A B) and A A B are
equally easy.

<) Assume a =z D(G) and a =z I'. We have a! € Lk(G) from 3.9.b) and
obtain ! = [I' : G] by induction on the complexity of I, measured as in the

36

proof of =). From this |= [I" : G] follows by Definition 3.2. The basis is for I" a
collection of literals. Consulting tables (3.8), we see that for all z € I'", we have
a(z) =1sox € ar. For all y € I'", on the other hand, we have a(y) = 0. Since
a Fr D(G), we have o =r, y < A, cp(,) 2 meaning a(y) = @(A,cp(,) 2)
(where @ is the evaluation of « according to tables 3.8). From tables (3.8)
we see that there must then be some z € E(y) such that a(z) = 1, meaning
y € B (at). Tt follows from Definition 3.1 that o' = [I' : G]. The inductive
steps are straightforward. For instance, if there is some A A B € T' that has
maximal complexity among formulae of I', we form IV which is like T" except
that we replace AA B by A and B. Then = IV and I has smaller complexity
than I" so by IH ot |= [IV : G]. It follows immediately from Definition 3.1 that
ol = [: G] and we are done. The cases of ~—A and ~(A A B) are equally easy.

]

Soundness and completeness of PDL

Soundness and completeness follow easily from the following simple lemma giv-
ing us the compositionality we need with respect to admissibility in graphs.

Lemma 5.1 For any graph G and a € G we have:

) EMa:G iff =L, {-b|bec E(a)}: G\ out(a)]
(2) =[I',—a: G| iff for some b€ E(a), =[I',b: G]

PROOF. (1) =) Assume I, a is admissible in G and let L C G be a local kernel
witnessing to I' and containing a. Clearly, L is a local kernel also in G\ out(a).
Now, since a € L it follows that E(a) C E~(L), soTU{=b|b € E(a)} is indeed
admissible (in both G and G\ out(a))

<) Assume TU {=b | b € E(a)} is admissible in G\ out(a) and let L C G be
an arbitrary local kernel in G \ out(a) witnessing to this fact. Then for every
b € E(a) we have E(b)N L # @ so LU {a} is a local kernel in G (as well as in
G\ out(a))

(2) =) Let L C G be a local kernel witnessing to the admissibility of I', —~a in
G. Then, for some b € E(a), we have b € L. So I', b is admissible in G.

<) Assume that there is some b € E(a) such that I', b is admissible. Let L C G
be a witness. Then L also witness to the admissibility of I', —a in G. g

This lemma establishes soundness and invertibility of the only rules from PDL
that are not essentially classical. The rest is easily verified, yielding

Theorem 5.2 PDL is sound and all its rules are invertible.

PrOOF. The standard sequent rules for the composite formulae in © + ® are
trivially invertible, as are the rules for non-atomic basic [I' : G] (which form
a one-sided sequent system for propositional logic). Lemma 5.1 established
soundness and invertibility of the four rules for literals in I'. We only have to

37

show that the two axiom schemata are valid:
(1) ©,[',—a : G + ® for some a € sinks(G).

To show O, [I', —a : G] = @, it suffices to show that [~ [-a : G], by Definition
3.2. By Definition 3.1, this amounts to the nonexistence of a local kernel L of
G containing a successor of a. But since a is a sink in G, no such L exists.

(2) ©F[I': G],® for some I' C sinks(G).

To show © = [I": G|, ®, it suffices to show |= [[' : G]. Since I is a collection
of atomic expressions this amounts to showing that there is a local kernel L in
G such that I' C L. But sinks(G) is such a local kernel in G so the claim follows.

d

Completeness of PDL follows now by the standard line of reasoning, demonstrat-
ing invalidity of any unprovable sequent. We say that a sequent © + ® is reduced
when © and ® contain only atomic formulae, i.e., every [I' : G] € © U® contains
only literals and, moreover, literals over sinks of G, i.e.,

I'={a|acT" Csinks(G)}U{-b|beTl" C sinks(G)}.

We first argue that, for any sequent, the rules suffice to create a proof-tree with
all leafs reduced.

Trivially, the top level rules and rules for composite I' suffice to create a
proof-tree where all leafs have the form © - ® with © and ® being collections
of atomic expressions [I' : G|, i.e., each I" being a collection of literals. Now,
we employ the rules for literals, as long as there is some a € T" or —a € T' with
E(a) # @, i.e. as long as the sequent is not reduced. For any finite graph G,
it is clear that by employing these rules we will eventually reach a stage where
all sequents have been reduced. If (i) a € T is not a sink, an application of the
rule (Fa), resp., (al), makes it a sink. If (ii) —a € I" is not a sink, then an
application of the rule (F-), resp., (=F), replaces it by all its out-neighbours
with positive polarity, for which case (i) applies in the next round.

Theorem 3.16 System PDL is sound and complete: © F ® iff © |= .

ProOOF. We show that reduced, non-axiomatic © F &, is invalid. We have:

)Vl :Grle®©: I =@ and (2) V[I'p:Gpl € ®: ', # 2.

(1) follows since © & is reduced, so for all [I'r : Gr] € © : THUT, C
sinks(Gr). Since the sequent is not axiomatic, we must have I'; = @. Conse-
quently, I'r C sinks(Gr) and, since sinks(Gr) € Lk(Gr), so | [I'r : Gr].

(2) follows since, as before, ' U, C sinks(Gr) and, since the sequent is
not axiomatic, I'r € sinks(Gr). Consequently, I'z # & (since atoms from this
set are negated in I'p). So there is some a € T'y, C sinks(Gp), i.e. ma € T'p
while a € sinks(Gp). It follows that = ['r : Gp].

Having obtained |= [I'r : Gr] for all [['r : Gp] € © and [[I'p : G| for all
[Cr : Gp] € @, we conclude by Definition 3.2 that © & ®. Invertibility of all
the rules ensures that if such a reduced sequent is obtained as a leaf in a proof
tree from some initial sequent S, then also S is invalid. Invertibility was shown
in Theorem 5.2 and here we also established soundness of the system. a

38

References

[1]

2]

[10]

[11]

[12]

Jon Barwise and Lawrence Moss. Vicious Circles: On the Mathematics of
Non-Wellfounded Phenomena. CSLI, Stanford, 1996.

J. C. Beall. Is Yablo’s paradox non-circular? Analysis, 63(1):176-187,
2001.

Marc Bezem, Clemens Grabmayer, and Michat Walicki. Expressive power
of digraph solvability. Annals of Pure and Applied Logic, 163(2):200-212,
2012.

Jean-Yves Béziau. A sequent calculus for Lukasiewicz’s three-valued logic
based on suszko’s bivalent semantics. Bulletin of the Section of Logic,
28(2):89-97, 1998.

Endre Boros and Vladimir Gurvich. Perfect graphs, kernels and cooperative
games. Discrete Mathematics, 306:2336-2354, 2006.

Vasek Chvatal. On the computational complexity of finding a kernel. Tech-
nical Report CRM-300, Centre de Recherches Mathématiques, Univeristé
de Montréal, 1973. http://users.encs.concordia.ca/~chvatal.

Roy Cook. Patterns of paradox. The Journal of Symbolic Logic, 69(3):767—
774, 2004.

Roy Cook. There are non-circular paradoxes (but Yablo’s isn’t one of
them). The Monist, 89:118-149, 2006.

Nadia Creignou. The class of problems that are linearly equivalent to
satisfiability or a uniform method for proving np-completeness. Theoretical
Computer Science, 145:111-145, 1995.

Yannis Dimopoulos and Vangelis Magirou. A graph theoretic approach to
default logic. Information and Computation, 112:239-256, 1994.

Yannis Dimopoulos, Vangelis Magirou, and Christos H. Papadimitriou. On
kernels, defaults and even graphs. Annals of Mathematics and Artificial
Intelligence, 20:1-12, 1997.

Yannis Dimopoulos and Alberto Torres. Graph theoretical structures in
logic programs and default theories. Theoretical Computer Science, 170(1-
2):209-244, 1996.

Sylvie Doutre. Autour de la sématique préférée des systéemes d’argumenta-
tion. PhD thesis, Université Paul Sabatier, Toulouse, 2002.

Pierre Duchet. Graphes noyau-parfaits, II. Annals of Discrete Mathematics,
9:93-101, 1980.

39

[15]

[16]

Pierre Duchet and Henry Meyniel. Une généralisation du théoreme de
Richardson sur 'existence de noyaux dans les graphes orientés. Discrete
Mathematics, 43(1):21-27, 1983.

Phan Minh Dung. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artificial Intelligence, 77:321-357, 1995.

Dov Gabbay. Modal provability foundations for argumentation networks.
Studia Logica, 93(2-3):181-198, 2009.

Dov Gabbay and Leendert van der Torre, editors. New Ideas in Argumen-
tation Theory: Special Issue, volume 93 (2-3). Studia Logica, 2009.

Haim Gaifman. Operational pointer semantics: solution to self-referential
puzzles. In Moshe Vardi, editor, Theoretical Aspects of Reasoning about
Knowledge, pages 43-59. Morgan Kauffman, 1988.

Haim Gaifman. Pointers to truth. The Journal of Philosophy, 89(5):223—
261, 1992.

Haim Gaifman. Pointers to propositions. In Andre Chapuis and Anil
Gupta, editors, Circularity, Definition and Truth, pages 79-121. Indian
Council of Philosophical Research, 2000.

Hortensia Galeana-Séanchez and Victor Neumann-Lara. On kernels and
semikernels of digraphs. Discrete Mathematics, 48(1):67-76, 1984.

Saul Kripke. Outline of a theory of truth. The Journal of Philosophy,
72(19):690-716, 1975.

Victor Neumann-Lara. Semintcleos de una digrafica. Technical report,
Anales del Instituto de Mateméticas II, Universidad Nacional Auténoma
México, 1971.

H. Prakken and G. Vreeswijk. Logics for deafeasible argumentation. In
Dov Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic,
volume 4, pages 219-318. Kluwer Academic Publishers, 2002.

Graham Priest. Yablo’s paradox. Analysis, 57:236—242, 1997.

Moses Richardson. Solutions of irreflexive relations. The Annals of Math-
ematics, Second Series, 58(3):573-590, 1953.

Roy Sorensen. Yablo’s paradox and kindred infinite liars. Mind, 107:137—
155, 1998.

John von Neumann and Oscar Morgenstern. Theory of Games and Eco-
nomic Behavior. Princeton University Press, 1944 (1947).

40

[30] Michat Walicki. Reference, paradoxes and truth. Synthese, 171:195-226,
2009.

[31] Michat Walicki and Sjur Dyrkolbotn. Finding kernels or solving SAT. 2010.
http://www.ii.uib.no/~michal/KernelSAT.pdf.

[32] Stephen Yablo. Paradox without self-reference. Analysis, 53(4):251-252,
1993.

41

128 CHAPTER 5. PAPER C: PROPOSITIONAL DISCOURSE LOGIC

Chapter 6

Paper D: Equivalence
Relations for Abstract
Argumentation

This paper was accepted at BNC@QECAI 2012, Montpellier France. We remark
that the two digraphs in Figure 3 have been replaced in the version of the paper
included here. The original digraphs we used did not illustrate what they were
supposed to.

129

Equivalence Relations for Abstract
Argumentation

Sjur K Dyrkolbotn
Department of Informatics
University of Bergen, Norway

Abstract

We study equivalence relations between argumentation frameworks,
taking a relation to be an equivalence with respect to some semantics if
it preserves and reflects the extensions of that semantics. We argue that
this notion of equivalence is useful and should be considered in abstract
argumentation. We go on to consider what conditions can be placed on
arbitrary relations to ensure that they behave nicely with respect to equiv-
alence. This leads us to consider bisimulations, and we show that while
they do not ensure equivalence, equivalences that are also bisimulations
have some nice properties with respect to semantic agreement. Then we
introduce bisimulations that we call finitely collapsing. They satisfy an
additional, non-local condition, and we show that they are equivalence
relations with respect to all the semantics for argumentation that we con-
sider.

1 Introduction

In abstract argumentation following Dung [8], the notion of equivalence usually
adopted states that two frameworks are equivalent with respect to a semantics
if they have syntactically identical sets of extensions under that semantics, see
e.g., [13]. This is problematic for a number of reasons. First of all, it involves
a peculiar attachment to the names of arguments - out of place, we think, in
the study of abstract argumentation. This objection is typically countered by
a statement to the effect that it is both well known and trivial that you can
rename arguments without affecting their semantical status. While true, this is
hardly satisfactory. The question immediately becomes how we should rename
arguments so that two argumentation frameworks admit the same extensions.
This, it seems, is the most interesting question, far more significant then try-
ing to describe circumstances when the relation of identity happens to be an
equivalence.

Secondly, we do not in general wish to restrict attention only to bijective
functional relations that can be thought of as renamings. In fact, what seems
more interesting and useful is to introduce congruences, grouping arguments

together whenever they display the same behavior with respect to some seman-
tics. The natural way to do this, we think, is to introduce a more general notion
of equivalence, saying that two frameworks are equivalent with respect to a se-
mantics if there is a relation between their arguments that both preserves and
reflects extensions of that semantics. Then we must ask: when is a relation an
equivalence? What structural properties does it need to preserve? This is the
question we address in this paper.

To motivate the general notion of equivalence we adopt, we remark that
relations which preserve and reflect extensions preserve and reflect what we will
call consistency: the ability of a semantics to provide any answers about the
status of an argument as either accepted or defeated. In general, semantics for
argumentation can only provide a partial answer. Some arguments have no clear
status, the paradigmatic example being that of a single self-attacking argument.
Such an argument is inconsistent in the sense that it cannot be accepted without
being defeated, and cannot be defeated without being accepted. This, it seems
to us, is the general property that arguments that can neither be accepted nor
defeated always share (although in general, such a picture might arise only when
we consider a chain of dependencies, e.g., an attack-cycle of odd length).

This notion of consistency, while non-standard, seems like a very natural and
suggestive way to talk about arguments that do not have a clear status, and
for semantics based on admissible sets, a formal connection to consistency in
classical logic can also be established, c.f., the discussion in Section 2. Moreover,
we hope that the general notion of equivalence presented in this paper can be
used to shed light on two questions that seem to be of great importance to
abstract argumentation: why do inconsistencies sometimes arise, and how do
we deal with them? Apart from the case of the grounded semantics, these
two questions, albeit phrased in a different manner, seem to both motivate and
confound most of the usual semantics adopted for argumentation frameworks.

We think that a very interesting direction of research is to attempt at ex-
ploiting the graph-theoretical structure of argumentation frameworks in order
to see if some combinatorial account of inconsistency can be given. Under the
stable semantics, this question is particularly critical: an argument is incon-
sistent (can be neither defeated nor accepted) precisely when all arguments
are inconsistent. This happens iff the framework does not admit a stable set,
and the result that a finite framework admits a stable extension as long as it
does not contains attack-cycles of odd length can therefore be seen as the first
non-trivial result concerning consistency in argumentation. This results was
established by Dung in his original paper [8], and by Richardson, with respect
to a different (but equivalent) formalism, already in the 1950s [14]. The result
is very satisfying, and we find it somewhat strange that this general direction of
research has received so little attention from the community. We find it strange,
in particular, that not more work has been devoted to the question of estab-
lishing structural conditions on frameworks that ensure the existence of stable
sets (or, more generally, the existence of non-empty admissible sets). Hopefully,
this paper can generate some renewed interest. We show, in particular, that it
is possible to arrive at non-trivial structural conditions ensuring that a relation

between frameworks is an equivalence (which preserves and reflects consistency).
This, we believe, suggests that the general notion of equivalence deserves atten-
tion, especially from the point of view of trying to arrive at a graph-theoretical
account of the semantic behavior of argumentation frameworks, and especially
with regards to questions regarding inconsistency.

2 Background

An argumentation framework, framework for short, is a digraph, F = (A, R),
with A a set of vertices, called arguments, and R C A x A a set of directed
edges, called the attack relation. Unless stated otherwise, we also consider
argumentation frameworks that are infinite. For (a,b) € R we say that the
argument a attacks the argument b. We use the notation R~ (z) = {y | (y,z) €
R} and RT(z) = {y | (z,y) € R}, extended pointwise to sets, such that, for
instance, R*(X) = J,cx R (x). For general relations « C X x Y, we drop +
as a superscript and use a(z) = {y | (z,y) € a} and o (y) = {z | (z,y) € a}.
This notation also extends pointwise to sets.

A framework F = (A, R) is a subframework of a framework Fy = (A3, Ro)
iff A C Ay and R € Ry. A subset of arguments X C A gives rise to the
induced subframework X = (X, Rx) with Rx = {(z,y) e R|z,y € X}. F\ X
denotes the subframework of F induced by A\ X. A backwards infinite walk is
a sequence X\ = x129%3 ... such that z;41 € R~ (z;) for all ¢ > 1. Notice that
in finite argumentation frameworks, there can be backwards infinite walks, but
they must involve one or more arguments twice, i.e., they involve cycles.

The most well-known semantics for argumentation, first introduced in [8]
and [3] (semi-stable semantics), are given in the following definition.!

Definition 2.1 Given any argumentation framework F = (A, R) and a subset
A C A, we define D(A) = {z € A | R (z) € RT(A)}, the set of vertices
defended by A. We say that

o A is conflict-free if RT(A) C A\ A, i.e., if there are no two arguments in
A that attack each other.

A is admissible if it is conflict free and A C D(A). The set of all admis-
sible sets in F is denoted a(F).

A is complete if it is conflict free and A = D(A). The set of all complete
sets in F is denoted c(F).

A is the grounded set if it is complete and there is no complete set B C A
such that B C A, it is the unique member of g(F).

A is preferred if it is admissible and not strictly contained in any admis-
sible set. The set of all preferred sets in F is denoted p(F).

1The formulation used here is not always identical to the one originally given, but is easily
seen to be equivalent to it

o A is stable if RT(A) = A\ A. The set of all stable sets in F is denoted
s(F)

e A is semi-stable if it is admissible and there is no admissible set B such
that AURT(A) € BURT(B). The set of all semi-stable sets in F is
denoted by ss(F).

For any S € {a,c,g,p,s,ss}, one also says that A € S(F) is an extension
(of the type prescribed by §). For an argument x € A, one says that x is
credulously accepted with respect to S € {a,c, g,p, s, ss} if there is some S €
S(F) such that € S. One says that x is sceptically accepted with respect to
Se{a,c g,p, 8,88} if v € (S(F).

Before we embark on the question of equivalence, we briefly survey some
links between argumentation, graph theory and logic. We start with graph
theory. Given a directed graph (digraph) D = (D, N) with N C D x D, a set
K C D is said to be a kernel in D if:

N~ (K)=D\ K

Kernels were introduced by Von Neumann and Morgenstern in the 1940s [15] in
the context of cooperative game theory and they have later attracted a fair bit
of interest from graph-theorists, see [2] for a recent overview. The connection

to argumentation should be apparent. If we let S denote the digraph obtained
by reversing all edges in D, then it is not hard to verify that a kernel in D is a
stable set in D and vice versa.
In kernel theory, one also considers semikernels [12], which are sets L C D
such that
N*(L)S N (L)S D\ L

It is easy to verify that a semikernel in D is an admissible set in S and vice
versa. In the context of graph theory, several interesting results and techniques
have been found, especially concerning the question of finding structural condi-
tions that ensure the existence of kernels, see e.g., [11, 6, 7]. In our view, the
connection to argumentation has not received the attention it deserves, although
it has been mentioned, for instance in [5]

The second link we wish to present is with classical logic and classical con-
sistency. This link is implicit already in much work done on argumentation, but
as far as we are aware, it has only recently been pointed out that argumentation
frameworks and the stable actually provide an equivalent formulation of classi-
cal propositional logic [10]. We would like to stress this point a little, since it
shows that when we study structural conditions that ensure preservation of ex-
tensions based on admissible sets under mappings between frameworks, we are
also studying - from a novel point of view - conditions that ensure preservation
of classical consistency of theories.

For a formal account of the connection we have in mind, we refer to [1]. There
the authors show that digraphs provide a normal form for propositional theories
such that an assignment is satisfying for a theory iff it gives rise to a kernel in

the corresponding digraph [1]. They introduce, in particular, a new normal
form for propositional logic, called the graph normal form, where a formula ¢
is said to be in graph normal form iff ¢ = z < /\yeX -y for propositional
letters {x} U X. Tt is shown that it is indeed a normal form for propositional
logic - every propositional theory has an equisatisfiable one containing only
formulas of this form.2 The connection between theories in graph normal form
and argumentation frameworks is quite obvious, and obtaining a theory from an
argumentation framework is particularly easy; given a framework F, we simply
form the following set of equivalences:

TF={z + /\ -y |x e A} (2.2)

yER™ (z)

We adopt the convention that = < A is a tautology, and then it is easy
to see that an assignment I' : 4 — {0,1} is a satisfying assignment for TF iff
Sr ={xz € A|T'(x) =1} is a stable set in F. Going the other way, from theories
in graph normal form to argumentation frameworks, is also straightforward,
but for the details we refer to [1] (the construction is presented with respect to
directed graphs, so edges must be reversed for argumentation).

So we have an immediate formal expression of the conceptual link between
stable sets in argumentation and classical consistency. The difference is only
a matter of perspective, and it is our belief that both the combinatorial per-
spective offered by directed graphs, and the procedural, somewhat pragmatic,
perspective offered by argumentation, can serve to enhance our understanding of
classical intuitions. Also, while the stable semantics expresses full classical con-
sistency, i.e., consistency of the theory corresponding to the whole framework,
other semantics based on admissible sets can be seen as identifying consistent
subparts of a framework/theory that satisfy certain additional properties. To
see this, it is enough to note that if A € a(F) is an admissible set in F, then it is
a stable set in the subframework of F induced by AURT(S), so it corresponds to
a satisfying assignment to the theory which represents this subframework. The
upshot is that all semantic notions expressed in Definition 2.1 are based on, and
expand upon, a notion of consistency that is essentially classical. This provide
a fresh point of view, and we think it is particularly interesting to ask about
preservation of various forms of consistency under relations between frameworks,
not only because it is relevant for abstract argumentation, but also because it
addresses consistency in classical logical from a new perspective.

3 A General Notion of Equivalence

Consider two arbitrary attack-cycles of even length, say F and Fs depicted in
Figure 1. How do we reason semantically about an even length attack-cycle?
Well, suppose that the argument z; from F has some proponent. Then this

2Equisatisfiable means that for every satisfying assignment to one there is a satisfying
assignment to the other, i.e., the assignments are not necessarily the same (new propositional
letter might need to be introduced)

F Fs

T <=— T2 Tl <=— Ty <——1T3
Ty — T3 e — T5 — T4

Figure 1: Two even cycles

proponent will probably recognize that his argument is attacked by the argu-
ment x3, and, most likely, he will then become a proponent of argument xj,
recognizing that this argument attacks x5 and therefore defends x;. In F, this
is when the story stops, since the proponent notices at this point that although
x4 attacks xg, it is in turn attacked by x1. In Fo, the story is basically the same;
a proponent of z; realizes he should also support x3, but now, since the cycle
is longer, he also comes to support zs.

The observation we want to make is that while the length of cycles F and Fq
differ, they are still similar. So similar, in fact, that it seems completely natural
- at this level of abstraction - to say that they are semantically the same. More
generally, it seems that whatever an even length cycle has to tell us with respect
to any semantical notion from Definition 2.1 has been told already by this one:

x C Y . Essentially, all even cycles behave the same way; they are different
manifestations of exactly the same argumentation scenario. Unfortunately, the
notion of equivalence adopted in the literature on argumentation does not allow
us to conclude this; even cycles of different length do not have the same set of
extensions under any reasonable semantics.

The case of even cycles seems to illustrate in a very simple way why the
current notion of equivalence used in argumentation is too restrictive. It relies
on a crude syntactic criterion requiring extension - semantic in nature - to be
syntactically the same. In light of this, we believe that the following notion of
equivalence should be investigated. It seems completely natural and is deter-
mined not by looking for syntactic identity between sets of arguments, but by
looking for sets of arguments that can be grouped together upon noting that
they have the same semantic status.

Definition 3.1 Given two arqumentation frameworks F and Fo, we say that
they are equivalent with respect to S € {a,c,g,p, s, ss}, and we write F =S Fy,
if there is a relation o C A X As such that

o If A e S(F), then a(A) € S(Fa) - the relation preserves extensions

o If Ay € S(F3) then a= (A2) € S(F) - the relation reflects extensions

If « € A x A witnesses to the equivalence of F and Fy, we say that « is
an equivalence relation. For the case of even cycles, it is easy to see that this
definition is adequate. It allows us to state formally what our intuition told
us to be the case, namely F =% F, for all S € {a,c,g,p,s,ss}. The relation

a = {(z1,21), (x1,23), (T2, 22), (T2, 24), (T3, 25), (T4, 76)}, for instance, is eas-
ily seen to be an equivalence relation with respect to all S € {a,c,g,p, s, ss}.
Indeed, for arbitrary even cycles xzj...x9;x1, it is easy to see that for all
S € {a,c,g,p,s,ss} they are all equivalent to each other. In particular, they
are equivalent to the even cycle xizsx1, witnessed by the equivalence relation

o= Ulgign{(xla T2i-1), (T2, T2i) }.

3.1 First Observation: Skeptical and Credulous Accep-
tance

The first observation we would like to make regarding Definition 3.1 is that -
unsurprisingly - equivalences preserve and reflect skeptical and credulous accep-
tance of arguments. It is clear, in particular, that if F =5 Fyand S C Ais a set
of skeptically accepted arguments from F, then «(S) is a sceptically accepted
set of arguments in Fy (and similarly for the inverse a~). Also, if C C A is a
set of credulously accepted arguments, then for each x € C, we have S, € S(F)
such that z € S,, and since a(S,,) € S(F2) by « being an equivalence, it follows
that «(C) is a set of credulously accepted arguments in Fy as well. More is
true, however, and what our definition of equivalence ensures is that the logi-
cal properties of frameworks are preserved. For instance, if one of the logical
properties of F is that all extension under S containing « € 4 must also contain
y € A, the same relationship obtains between all 2o € a(z) and all y5 € a(y).
We obtain, in particular, two collections of equivalent arguments in Fo such that
one logically implies the other. Then the benefit of having defined equivalence
as in Definition 3.1 becomes clear; since our notion of an equivalence does not
impose any restrictions on what the relation must look like, we can investigate
logical properties of complex frameworks by looking for equivalences with more
simple frameworks that have already been analyzed.

3.2 Second Observation: Collapse with respect to the Single-
Status Semantics

The second observation we will make is almost as trivial as the first, but might
make the notion of equivalence introduced in Definition 3.1 somewhat controver-
sial to the argumentation community. Consider, in particular, two frameworks
F and Fy and a semantics S € {a,c,g,p, s, ss} such that both F and Fy have
a unique extension {S} = S(F),{S2} = S(F2). If we assume both S, S to be
non-empty, it is obvious that we can always construct a relation @ C A x A,
such that a(S) = Sp and a~(S;) = S, allowing us to conclude that F =5 Fs.
With respect to the grounded extension, which always gives rise to a unique
extension, this means that all frameworks fall into one of two classes; those that
admit non-empty grounded extensions and those that do not. More is true, since
it is well known, see e.g., [8], that for any two non-empty finite acyclic frame-
works, all semantics from Definition 2.1 coincide and deliver a unique non-empty
extension - the grounded one. This means, in particular, that with equivalence
conceived of as in Definition 3.1, all finite, non-empty, acyclic frameworks are

equivalent. Also, we note that other semantics for argumentation have also been
proposed that always yield a unique extension - they are called single-status in
the literature. In light of this, the collapse of frameworks with respect to all such
semantics might disconcert some, but to us it signals only that we have arrived
at a notion of equivalence that is appropriate. It allows us to abstract away
from superficial syntactical differences and focus instead on genuine semantic
problems.

The grounded semantics for argumentation is particularly trivial; the grounded
extension can always be computed in linear time (iterate D() from Definition 2.1,
starting from the set, U, of unattacked arguments), and it contains arguments
that, intuitively speaking, cannot be disputed by any rational agent. Indeed, if
a semantics for argumentation was proposed that did not include the grounded
extension as a subset of all extensions, it would probably be dismissed without
further comment. But in some sense - and we believe it is the most relevant
sense - all single-status semantics are trivial. They leave no room for dispute,
no contingency, and, most critically, no interesting dependencies between argu-
ments. Such semantics simply pick a set, and it seems clear that the interesting
question, and the only possible source of non-triviality, lies in how the set is
chosen. Clearly, if this is something more than an arbitrary choice, it must
involve other notions, and it is these notions - which typically do involve inter-
esting dependencies - that are truly semantic in nature and deserve attention.
The point we are trying to make is beautifully illustrated by the so-called ideal
semantics [9]. The ideal set of arguments is the maximal set of arguments that
is contained in all preferred extensions. As such, the ideal semantics should, in
our opinion, not be seen as a separate semantics at all, but just as a new notion
of acceptance for preferred semantics, asking you to accept an argument only
if it is skeptically accepted and is also in an admissible set which contains only
skeptically accepted arguments (since defense is preserved under union and the
set of skeptically accepted arguments is conflict-free, the set of all such argu-
ments will obviously be the maximal admissible subset of skeptically accepted
arguments). It seems to us that the relevant notion of equivalence is still the
one which preserves and reflects preferred sets - there is nothing you can say
about the ideal set and what it captures unless you make reference to the notion
of a preferred set. 3

We remark that the collapse with respect to single-status semantics has an
obvious generalization, allowing us to conclude that any two frameworks with
exactly n € N disjoint extensions under some semantics are equivalent with
respect to that semantics. Any two such frameworks are equivalent, as they
should be, because there is a way to associate arguments such that a one-to-one
correspondence between the extensions of these frameworks will result.

Thinking of arguments as propositional formulas (remember the discussion
in Section 2), makes for a further argument in favor of the possibly controver-
sial point of view that we adopt here. What single-status approaches provide us

3We mention that we can impose the same restriction starting from semi-stable semantics,
leading to the eager set [4]

with is basically a set of tautologies - arguments that cannot be disputed. In a
logical sense, any two collections of tautologies are equivalent, and they should
be; no questions arise at all about how their semantic status is dependent on
that of other formulas, the point being precisely that no such dependencies in-
fluence their status as indisputable. It seems clear, therefore, that a collection
of arguments that cannot be disputed should be regarded as logically equivalent
to any other such collection, in exactly the same way as a collection of tautolo-
gies of some logical language is equivalent to any other such collection. What is
interesting about tautologies is how to locate them, and the general notion of
equivalence is potentially useful in this regard precisely because it does not care
what they look like. That way, it becomes possible to look for relations that al-
lows simplification of the framework under consideration, potentially simplifying
the search for tautologies. For the finite case and semantics based on admissible
sets, this is only a relevant consideration for cyclic frameworks, however, since
the search for tautologies in a finite acyclic frameworks is already completely
trivial.

3.3 Third Observation: Structural Conditions Needed

fWe have introduced a new semantic notion of equivalence between frameworks,
and argued that it is the appropriate notion that we want to work with when we
consider two frameworks and ask about the relationship between them. Some
might object that it is too abstract, referring to how it conflates frameworks with
respect to the grounded semantics and in any unique status situation. But as we
have tried to argue above, we actually believe that such a conflation is in order
when we work at a high level of abstraction. For the case of the grounded exten-
sion, in particular, it seems to us that there is not much more to be said about
it at the level of abstraction that we address. The grounded extension might
be very useful in applications, and it might be possible to focus on more inter-
mediate levels of abstraction where some, but not all implementation-specific
aspects are studied. But from the point of view of pure abstract argumentation,
as introduced by Dung, we are bold enough to suggest that the grounded exten-
sion is perhaps properly understood already. What is not understood, however,
not even at a high level of abstraction, is the notion of an admissible set; in
particular, we do not seem to have a clear understanding of when non-empty
such sets can be found, why they sometimes fail to exist, and how we best
should go about locating them. As discussed earlier, this question hinges on
the notion of consistency, in various forms and guises. If the question is simply
whether or not a framework admits a stable set, the question becomes that of
deciding classical consistency, as discussed above in Section 2. But when we
make the move to consider admissible sets, we are free to also reason about and
locate consistent sub-parts of a system that could, as a whole, be inconsistent.
However, since what - in terms of structural properties - leads to inconsistency
in argumentation frameworks is not properly understood, it is also difficult to
pin down where the problem lies, with repercussion also for what exactly the
non-stable semantics contribute in such cases. A fundamental, overreaching re-

search goal - as we see it - should be to attempt giving an account of this by
combinatorial means.

We think it is obvious that in this regard, the notion provided by Defini-
tion 3.1 is appropriate and should be considered. Still, it only states what an
equivalence is, not how to find one. Unless we can establish some structural
properties on relations that ensure that they are equivalences, it would be fairly
useless, pointing only to an unattainable ideal that would have to be replaced
by more pragmatic notions in practice. In the following section, however, we
present first results on this, exploring the notion of bisimulation.

4 Bisimulation and Equivalence in Argumenta-
tion

In this section, we first work with a standard notion of bisimulation, and show
that if equivalence with respect to admissible semantics is witnessed by a bisim-
ulation, we can conclude equivalence also for some (but not all) semantics based
on admissible sets. Then we add a further requirement to bisimulations - intro-
ducing finitely collapsing bisimulations - and we show that they are equivalences
with respect to all the semantics we consider in this paper.

Definition 4.1 Given argumentation frameworks F and Fo, a relation f C
A x Ay is said to be a bisimulation if we have:

forth: For every x € A, y € R™(x), for all xo € f(x) there is y2 € Ry (z2) N
Bly)

back: For every xo € Ag,y2 € Ry (x2), for all x € B~ (x2) there is y €
R™(x) N B~ (y2)

Notice that the definition asks for mutual simulation of incoming attacks.
For S € {a,¢,p, s,ss}, it is not hard to see that bisimulations are neither neces-
sary nor sufficient for equivalence. The problem is that a bisimulation ensures
only that attacks between arguments are preserved and reflected, but does not
ensure that attacks are absent when they need to be in order to ensure conflict-
freeness. It is easy to see, for instance, that an even cycle is bisimilar to a single
self-attacking argument, and these two frameworks are only equivalent under
the grounded semantics. We have the following easy fact, however, stating that
bisimulation behaves nicely when it comes to defense.

Fact 4.2 Assume we have frameworks F,Fy and some bisimulation 5 C Ax As.
Then we have

(1) For all AC A, B(D(A)) =D(B(A)) - B preserves defended arguments
(2) Forall As C Ay, 5~ (D(Az2)) = D(8~ (Az)) - B reflects defended arguments

10

PROOF. (1) We consider arbitrary A C A and prove the claim by showing both
inclusions.

(©) Consider arbitrary y € D(A), y2 € B(y) and z2 € R5 (y2). Then by g
being a bisimulation (back), it follows that there is some z € 87 (z3) such that
z € R™(y). Since y € D(A) it follows that there is x € A such that x € R™(2).
Then by § being a bisimulation (forth) it follows that there is some x2 € 8(x)
such that 3 € R (22), meaning z2 € R5 (8(A)). We conclude y2 € D(S5(A)) as
desired.

(2) Consider arbitrary ya € D(B(A)), y € 8 (y2) and z € R~ (y). Then by g
being a bisimulation (forth), it follows that there is some zo € §(z) such that
zo € R™(y2). Since yo € D(B(A)), it follows that there is some x5 € 5(A) such
that zo € R (22). From 8 being a bisimulation (back), it follows that there is
some x € 87 (x2) such that € R™(2). It follows that y € D(A), meaning that
y2 € B(D(A)) as desired.

(2) The argument is symmetric to that used to show (1). O

We note that a trivial corollary of this is that bisimulations are equivalences
with respect to the grounded semantics. The next result concerns the relation-
ship between various semantics. We ask, in particular, if equivalences that are
also bisimulations will automatically preserve and reflect extensions for more
than one type of semantics from Definition 2.1 at once. We show, in particu-
lar, that if an equivalence with respect to admissible sets is also a bisimulation,
then it is also an equivalence with respect to preferred, stable and semi-stable
semantics, yet not with respect to the complete semantics.

Theorem 4.3 Given frameworks F and Fo, if B C A X Ay is a bisimulation,
then if B preserves and reflects admissible sets, it also preserves and reflects
preferred, semi-stable and stable sets.

PRrROOF. For all semantics, we only show preservation. Reflection can be shown
symmetrically.

Stable: Assume that S C A is stable. We know §(95) is conflict-free and must
show A2\ B(S) = RS (B(S)). Consider arbitrary x5 € A\ (S). Then 8~ (x2) C
A\ S, so there is y € S such that y € R~ (8~ (z2)). By 8 being a bisimulation
("forth”), we have zo € Ry (8(S)) as desired.

Preferred: Assume that S C A is preferred. Then §(S) is admissible. Assume
towards contradiction that there is Ao D 5(S) which is admissible in F,. Then
B~ (As) is admissible in F and since 5(57(A42)) 2 A2 D B(59), we have 7 (A43) D
S, contradiction.

Semi-stable: Assume that S C A is semi-stable, i.e. that S is admissible, and
that there is no admissible A C A such that SURT(S) C AURT(A). Assume
towards contradiction that B(S) is not semi-stable. Then there is So C As such
that a) S URS (S2) D B(S) URS (B(S)). By B being a bisimulation ("forth”),
we have b) B(RT(S)) € RF(B(S)) and also ("back”) that c) B~ (Rg (S2)) C
RY(B7(S2)). We will show that 87 (S2 URS (S2)) = B7(S2) U B~ (RF(S:)) D

11

F: Fs :
e

—_—

)

o=

|

Figure 2: Frameworks F,Fy such that we have F = Fy for S € {g,qa,p, s, ss}
but F §éc F2

|

LT
-0

S URT(S), which is a contradiction since it allows us to conclude, by applying
¢), that 87 (S2) URT (87 (S2)) D SURT(S). We show inclusion first.

a

N2

B~ (S2 URS(S2))

I |U}

B~(B(S) URZ (B(S)))
BT(B(S8) UB™(R3 (B(S)))

b)
“SB(B(S)) U B (BRF(S)))
D SURT(9)

To show that the inclusion is strict, consider zo € (Sz URJ (S2)) \ (B(S) U
Ry (B(S)). For arbitrary x € 8~ (z2), observe first that since x5 € 3(5), we have
x & S. We also have x5 & R (8(S5)) and from b) it follows that xo & B(RT(S)).
Then we conclude that x € RT(S). O

Interestingly, a bisimulation that preserves and reflects admissible sets might
not preserve complete sets, as shown by the frameworks F and Fs in Figure 2.
Here, we have the bisimulation 5 = {(a, a), (e, a), (b,b), (d,b), (f,b), (c,c)} which
is also an equivalence with respect to the admissible semantics. We notice,
however, that {a} is a complete set in F while 8(a) = {a} is not complete in Fy
since d is defended by {a}.

As mentioned, the intuitive reason why bisimulations do not preserve exten-
sions is that they do not preserve conflict-freeness. Still, they fail to do so only
in specific circumstances. To see how this works, assume that you have two
arguments a, b in some framework F such that a and b are not in any conflict,
and that you then relate them by a bisimulation 8 to some as, by in Fo with
by € R~ (az). It then follows by /3 being a bisimulation (back), that there must
be some ¢ € 87 (bs) such that ¢ € R~ (a). So an attacker of a, the argument c,
was merged with a non-attacker of a, the argument b. So this type of collapse
has to occur when bisimulations fail to be equivalences. It makes sense, then,
to see what happens if we attempt to limit it by introducing a further require-
ment. In particular, we will investigate what happens when we do not allow the
collapse of any two disjoint infinite backwards walks.

12

F: F2 .
LT LT P s
a b c as b2
a——— S——7 aa—-

Figure 3: Two fc-bisimilar argumentation frameworks

Definition 4.4 Given two frameworks F and Fy, a bisimulation 5 C A X As is
finitely collapsing if the following holds:

global forth: For every backwards infinite walk A\ = xixoxs3... in Fo, there
exists some i € N such that |8~ (x;)] =1

global back: For every backwards infinite walk X\ = x1xox3 ... in F, there exists
some i € N such that |B(x;)| =1

For short we will call bisimulations that are finitely collapsing fc-bisimulations.
As an example, consider the frameworks in Figure 3. They are fc-bisimilar wit-
nessed by 8 C A x Az where S(a) = az, 8(b) = b2, 5(c) = as.

The main result in this paper now follows. It shows that fc-bisimulations
are equivalences with respect to all semantics in Definition 2.1. We remark that
it is sufficient to show that fc-bisimulations preserve and reflect admissible and
complete sets, from which it follows by Theorem 4.3 that they also preserve and
reflect preferred, stable and semi-stable sets.

Theorem 4.5 Given frameworks F and Fo, if there is an fe-bisimulation 8 C
A x Ay, then F =S Fy for all S € {s,a,p, ss,c}

PRrROOF. Admissible sets: Let 5 C A x Ay be an arbitrary fe-bisimulation.
We show that [preserves admissible sets. Then, by symmetry, 8 also reflects
them, since the inverse of 5, 5~ C A x A is clearly also an fc-bisimulation. Let
E C A be an admissible set in F and consider Ey = B(E). If 2 € R, (y2) for
Y2 € Es, then there is y € E such that y» € f(y), and by S being a bisimula-
tion ("back”), there is some x € R~ (y) such that zo € §(z). Since E defends
itself, it follows that there is z € R~ (x) N E. Then, by § being a bisimulation
("forth”), it follows that there is some zo € R5 (22) such that zo € 5(z), mean-
ing zo € FEy. This shows that Fy C D(FE3). To show that Es is conflict free,
assume towards contradiction that there is z2,d’ € Ey with zo € R (b'). Then,
by definition of Es, there is z,b € E with x5 € 8(z) and & € 8(b). Also, we
know that ¢ R~ (b) since FE is conflict-free. But by S being a bisimulation
("back”), there must be z € R~ () such that 25 € 5(2). Since E is conflict-free,
we know that z € R™(E) C A\ E Now we have xo € FE5 N () N B(z) such
that z attacks E, and this is the first step towards showing that there exists an
infinite backwards walk A\ = y1yoys ... in As such that for all ¢ > 1, we have
|6~ (y;)| > 2. This will contradict the assumption that § is an fc-bisimulation
("global forth”). We take y; = x2 and let w1 = z, v1 = z. Then for all i > 2,
we define y;, w;, v; inductively, assuming that y; 1, w;_1,v;_1 have been defined
such that w;_1 € E,v;_1 € R~ (FE) C A\ FE and y;_1 € B(w;—1) N B(vi—1). The

13

(FAANW AN)
X X

(S o S S8)

(— Y,y ——b')

Figure 4: Illustrating the construction of A = y1yoys . ..

construction is visualized in Figure 4. Since E defends itself against all attacks,
we can find w; € ENR ™ (v;—1). Since we have y;_1 € B(v;—1) it follows by
B being a bisimulation (”forth”) that we can find y; € 8(w;) "R~ (y;—1). But
we also have y;_1 € B(w;—1), so by 8 being a bisimulation ("back”), we find
v; € B (y;) "R (w;—1). Since w;—1 € E and E is conflict-free, it follows that
v; € R™(E) C A\ E. So y;,w;,v; can be found for all ¢ € N, proving existence
of A that contradicts ”global forth”.

Complete sets: We know that 3 preserves and reflects admissible sets, and
now we assume that S C A is complete. Consider arbitrary z € Ay \ (8(S) U
R (8(S))). By B being a bisimulation (*forth”), we get 3~ (x2) N R¥(S) = 0,
which implies 57 (z2) € A\ (SUR™(S)). Then, since S is complete, there is
y € A\ (SUR™(S)) such that y € R™(87 (x2)). Then, since S is a bisimulation
("forth”), it follows that there is yo € B(y) N R, (z2). Since xo ¢ R (B(9))
it follows that yo & 5(S). Assume towards contradiction that y, € RJ (22) for
some zo € B(S). Then there is z € SN B~ (22) and also, since § is a bisimulation
("back”), there is 2 € R~ (y) N B~ (22). Since y &€ RT(S), 2/ ¢ S. Since S is
a bisimulation ("forth”) and 2o € 3(S) and ((S) is conflict-free, 2’ & R*(S).
It follows that 2’ € A\ (S URT(S)). To contradict global forth, we prove
existence of a backwards infinite walk A\ = xyx9x3... in Fy such that for all
i > 1 we have |~ (z;)] > 2. We take 1 = 22, v1 = z/,w; = z and for all
i > 2, we assume that we have x;_1,v;_1,w;_1 with z;_1 € 3(S) URS(B(S))
and w;_1 € (SURT(S)) N B (x;_1), vie1 € (A\ (SURT(S))) N B (zi_1).
There are two cases.

I) ;-1 € B(S). Then since 3(S) is admissible and w;—1; € S~ (x;—1), we have
wi—1 & RY(S) by B being a bisimulation (”forth”). Since S is complete, we
find v; € R™(v;i—1) N (A\ (SURT(S))). Since 3 is a bisimulation (”forth”),
we find z; € R5 (x;_1) N B(v;), and since B(S) is admissible, z; € RT (B(9)).
Then, going back, we find w; € 87 (z;) N R~ (w;—1), and since w;_; € S and S
is admissible, w; € R*(9).

) ;-1 € RF(B(S)). Since w;—; € B~ (zi—1) N (S URF(S)) and B(9) is
admissible, we have w;_1; € RT(S). We choose w; € SNR™ (w;—1). By
being a bisimulation (”forth”), we find z; € B(w;) N Ry (z;—1) and ("back”)
v; € B7(xz;) "R (v;—1). Since v;_1 € RT(S), v; € S. Also, by 3 being a
bisimulation (”forth”) and z; € B(v;) N B(S) and B(S) being conflict-free, we
have v; € RT(9).

Having established the claim for § € {a,c}, the claim follows by Theorem 4.3

14

for all S € {a,c,p,ss, s}

5 Conclusion

We have addressed the notion of equivalence in abstract argumentation, argu-
ing for a general notion that allows us to consider arbitrary relations between
frameworks. We suggested that searching for maps between frameworks that
preserve and reflect extensions is worthwhile, and we established a first result
on this, introducing finitely collapsing bisimulations and proving that they are
equivalences with respect to all the semantics we consider. On a more gen-
eral note, we suggested that investigating equivalence should be conceived of as
part of a direction of research where one attempts to provide graph-theoretical
characterizations of various logical properties of argumentation frameworks. We
suggested that the notion of consistency, in particular, is interesting to look at
from a combinatorial point of view. For future work, we hope to be able to iden-
tify further structural requirements that ensure relations to be equivalences, and
we hope to arrive at a more complete understanding of what structures needs
to be present in frameworks in order for different semantics for argumentation
to actually disagree.

References

[1] Marc Bezem, Clemens Grabmayer, and Michat Walicki. Expressive power
of digraph solvability. Annals of Pure and Applied Logic, 163(2):200-212,
2012.

[2] Endre Boros and Vladimir Gurvich. Perfect graphs, kernels and cooperative
games. Discrete Mathematics, 306:2336—-2354, 2006.

[3] Martin Caminada. Semi-stable semantics. In Proceedings of the 2006 con-
ference on Computational Models of Argument: Proceedings of COMMA
2006, pages 121-130, Amsterdam, The Netherlands, The Netherlands,
2006. IOS Press.

[4] Martin Caminada. Comparing two unique extension semantics for formal
argumentation: Ideal and eager. In BNAIC 2007, pages 81-87, 2007.

[5] Sylvie Coste-marquis, Caroline Devred, and Pierre Marquis. Symmetric
argumentation frameworks. In Proc. 8th European Conf. on Symbolic and
Quantitative Approaches to Reasoning With Uncertainty (ECSQARU), vol-
ume 3571 of LNAI pages 317-328. Springer-Verlag, 2005.

[6] Pierre Duchet. Graphes noyau-parfaits, II. Annals of Discrete Mathematics,
9:93-101, 1980.

15

[7]

[10]

[11]

Pierre Duchet and Henry Meyniel. Une généralisation du théoreme de
Richardson sur l'existence de noyaux dans les graphes orientés. Discrete
Mathematics, 43(1):21-27, 1983.

Phan Minh Dung. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artificial Intelligence, 77:321-357, 1995.

P.M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argu-
mentation. Artificial Intelligence, 171(1015):642 — 674, 2007.

Sjur Dyrkolbotn and Michat Walicki. Propositional discourse logic. (sub-
mitted). www.ii.uib.no/ michal/graph-paradox.pdf.

Hortensia Galeana-Sanchez and Victor Neumann-Lara. On kernels and
semikernels of digraphs. Discrete Mathematics, 48(1):67-76, 1984.

Victor Neumann-Lara. Semintucleos de una digrafica. Technical report,
Anales del Instituto de Matematicas II, Universidad Nacional Auténoma
México, 1971.

Emilia Oikarinen and Stefan Woltran. Characterizing strong equivalence for
argumentation frameworks. Artificial Intelligence, 175(14-15):1985-2009,
2011.

Moses Richardson. Solutions of irreflexive relations. The Annals of Math-
ematics, Second Series, 58(3):573-590, 1953.

John von Neumann and Oscar Morgenstern. Theory of Games and FEco-
nomic Behavior. Princeton University Press, 1944 (1947).

16

