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RESOLVING INFINITARY PARADOXES

MICHAL WALICKI

Abstract. Graph normal form, GNF, [1], was used in [2, 3] for analysing paradoxes
in propositional discourses, with the semantics — equivalent to the classical one — defined
by kernels of digraphs. The paper presents infinitary, resolution-based reasoning with
GNF theories, which is refutationally complete for the classical semantics. Used for direct
(not refutational) deduction it is not explosive and allows to identify in an inconsistent
discourse, a maximal consistent subdiscourse with its classical consequences. Semikernels,
generalizing kernels, provide the semantic interpretation.

§1. Motivation and overview. An informal discourse, represented by just
writing its statements in some logical language, can be analyzed for consistency
or validity, but hardly for paradoxicality. For paradox does not amount to the in-
consistency of the discourse but of its truth-theory, which means here, roughly,
the collection of T-schemata for discourse’s statements, [3]. There is nothing
paradoxical about a A —a. Its propositional T-schema, f <+ (a A —a), is unprob-
lematic, classifying this statement, called now f, as false. When there are no
references between statements, the truth-theory becomes such a trivially satisfi-
able repetition of each statment in an equivalence to its unique identifier. When
statements refer to statements, identifiers become essential already for their rep-
resentation. The truth-teller becomes at once t <> t, the liar [ +» —l, and the
truth-theory may become inconsistent.

Classical provability of everything from such an inconsistent theory makes all
its statements, so to speak, equally paradoxical. This is easily found unsatisfac-
tory. The discourse D, to the left below, consists of Yablo’s paradox and three
statements (a)-(c). Its truth-theory T is given to the right:

(Y) Yablo’s paradox {yi © Njsiys |1 €N}
(a) All statements in (Y) are false. a < Nen Wi

(b)  All statements in (Y) and (c) are false. b (e A Njen i)

(¢) Earth is round. ce 1 ((c) is true)

Omne can accept that (a) is a paradox because of (Y), though even this could be
disputed. It is a bit harder to accept paradoxicality of (b) which, denying a true
claim (c), can be considered false, irrespectively of (Y). But even granting that
(b) is a (part of the) paradox, too, there seems to be no reason whatsoever why
Yablo’s paradox should affect also the indisputability of Earth’s roundness.
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The reasoning system RIP, presented in Section 3, works with clausal rep-
resentation of propositional theories like T, using a variation of (positive and
negative) hyper-resolution. It is sound and refutationally complete for the clas-
sical semantics of countable theories in infinitary logic, Section 4. Thus, each
discourse, having inconsistent truth-theory 7' expressible in this language, can
be proven paradoxical by deriving from 7T the empty clause, T F {}.

A surprising, paraconsistent effect is achieved by proving consequences in RIP
directly, instead of refutationally: to check if A follows from T, we try to prove
T+ A and not T,—-A F {}, Section 5. Consequently, weakening is no longer
admissible and, with it, neither is Ez Falso Quodlibet. The system remains
complete for nonredundant clauses, i.e., if T |= C, then T + B for some B C C.

Forour T: T+ {}, T+ cand T F —b, but neither T+ —¢ nor T + b. Only for
atoms invovled into paradox, like all y;, we have both T+ y; and T F+ —y,;. We
can then follow spreading of paradox through the discourse along such atoms,
whose both literals are provable, Section 5.2. In our 7', this happens only to a.

A paradox appears when truth seems to imply falsehood and vice versa. Iden-
tification of statements involved into a paradox by the classical provability of
both their truth and falsehood, seems therefore quite satsfactory. Importantly,
this does not lead to any semantic dialetheism. Paradox is a failure — inconsis-
tency — of discourse’s truth-theory. The statements involved into this failure are
characterized by the provability of both literals. Knowing the culprits, there is
no need for attaching to them any value — they are simply excluded from seman-
tic interpretation. RIP classifies a discourse as one of the three types and, in
case (3), draws the demarcation line:

1. The discourse is nonparadoxical, its truth-theory is consistent.
2. All statements of the discourse participate in the paradox.
3. Only a part of the discourse is involved into paradox, like (Y), (a) of D.

Following [1, 3], semantics, given in Section 2, uses digraph kernels and coincides
with the classical one in cases (1) and (2). In case (3), kernel semantics general-
izes to semikernels, which are kernels of subgraphs without the paradoxical part,
Section 5.1, and to which the same reasoning applies. Rendering the syntactic
theory as a digraph (and the semantics as its (semi)kernels), opened in [2, 3]
a fruitful way to investigate patterns of paradoxes, in particular, of circularity.
The present paper touches upon this but, primarily, introduces the reasoning
system RIP.

§2. Background. A propositional formula is in graph normal form, GNF,
when it has the form

(2.1) T+ /\ Wi,

icl,

where all z,y; are atoms (propositional variables). When I, = &, this is iden-
tified with z. A theory is in GNF when all its formulae are in GNF and every
atom occurs in such a formula exactly once unnegated, i.e., exactly once on the
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left of <. A discourse is a theory in GNF and paradoz is defined as an incon-
sistent discourse. Plausibility of this definition, implicit in [2], was argued and
exemplified in [3], so we give only one illustration.

EXAMPLE 2.2. Let ©; be the following discourse:

a. This and the next statement are false. a < —a A -b
b. The next statement is false. b+ —c
c. The previous statement is false. ¢+ b

Making b true and a and c false, gives a model, so that ©1 does not involve any
paradox. Adding the fourth statement:

d. This and the previous statement are false. d <+ —d A —c
gives the discourse ©2, where paradox is unavoidable.

GNF is indeed a normal form, [1]: every theory in (infinitary) propositional
logic £, has an equisatisfiable one in GNF.? Semantics is defined in the standard
way and thus, although focusing on the paradoxical character of discourses, we
address indirectly the consistency in infinitary logic in general.

The standard semantics has an equivalent formulation in terms of graph ker-
nels, [2, 3], which will enable a seamless transition between the classical and less
classical logic. A graph?® is a pair G = (G, N), where N C G x G is also viewed as
a set-valued function N(z) = {y € G | N(z,y)}. N (X)={y € G|z € N(x)} is
the converse relation to N, and all such set-valued functions are extended point-
wise to sets, i.e., N(X) = [J,cx N(z), etc. A kernel of a graph G is a subset
K C G which is independent (no edges between vertices in K) and dominating
(every vertex in G \ K has an edge to some vertex in K), namely, such that
N™(K)=G\ K. Ker(G) denotes kernels of G.

Theories and graphs can be transformed into each others, along with the
associated models and kernels. A theory I' in GNF gives rise to a graph G(T")
with all atoms as vertices and with edges from every x on the left-hand side of
a GNF formula in T', to each y; on its righ-hand side, i.e., N = {(z,4;) | = €
G,i € I,}. For instance, the discourse ©; from Example 2.2, has the graph
G(©1) :Ca»ch.

For a graph G = (G,N), its theory is 7(G) = {z <> A ey 7w | @ € G}
(When z is a sink, N(z) = @, this becomes = <+ T, i.e., x is included in T(G).)
The two are inverses, so we ignore usually the distinction between theories (in
GNF) and graphs, viewing them as alternative presentations. Typically, I' de-
notes such a theory or a graph, while G the corresponding set of atoms/vertices.

The presentations are equivalent also semantically: for corresponding graph
and theory, the kernels of the former and models of the latter are in bijection.
Kernel of a graph G can be defined equivalently as a partition « of G into two

IThe formula a <+ —b is in GNF but the theory {a <+ —=b} is not, due to the loose b. Such
cases can be treated as abbreviations for GNF theories, here, with a fresh atom b and two
additional formulae b <> —b and b <> —b.

2L, denotes propositional language with formulae of finite depth, formed over an arbitrary
set of atoms by unary negation and (possibly) infinite conjunctions of sets of formulae with
cardinality < k. Binary connectives, such as <+, are encoded (but could be added).

3In this paper, “graph” means always “directed graph”.
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disjoint subsets (o', a®) such that Vz € G :
a) real & VyeN@):yea®

(23) (b) zea® & FyeN@):yecat

Conditions (a) and (b) are equivalent for total o (with a® = G\ a'), so one
will suffice, until we consider partial structures. A total « satisfies (2.3) iff ol €
Ker(G). On the other hand, satisfaction of (2.3) at every x € G is equivalent to
the satisfaction of the respective GNF theory 7(G). So, for corresponding graph
and theory, we identify also kernels of the former and models of the latter.

EXAMPLE 2.4. The graphs for the discourses from Example 2.2 are:

GO1):( a—=b=c GO3):( a—=b=Zzc=d
In G(O©1), the partition oo = ({b},{a,c}) is the only one satisfying (2.3), i.e.,
al = {b} determines the only model of ©1 /kernel of G(O1).

In G(O©3), the same « satisfies (2.3) at {a,b,c}, but leaves no satisfying assign-
ment at d. Letting, on the other hand, Bt = {c} and B° = {b,d} satisfies (2.5)
at {b, c,d}, but leaves no possible assignment to a. The graph has no kernel, i.e.,
the discourse is paradoxical.

The inference system presented below is essentially (negative and positive)
hyper-resolution, handling infinitary clausal theories arising from GNF. The two
implications in (2.1) give two kinds of clauses for every = € G :

OR-clause: xV \/;c; yi, written as zy1y2...

NAND-clauses: —x V —y;, for every i € I, written with overbars, Z;7;.

In terms of a graph, the theory contains, for every x € G, the Or-clause N[z] =
{2} UN(z) and for every y € N(z), the NAND-clause Zy. For the graphs from
Example 2.4, the resulting clausal theories are:

O} = {ab,bc,ab,bc,at and O} = {ab,bec, cd, ab,be, cd,a,d}
We treat both kinds of clauses as sets of atoms, and overbars mark only that a
set is a NAND-clause. We can therefore write, e.g., Ty C Tgyzu. A C G denotes
(also) an OR-clause, A = {@ | a € A} a NAND-clause, while A either. Sets of
unary clauses are denoted A* = {{a} | a € A} and A~ = {{a} | a € A}. The
considered language contains no mixed, but only OrR and NAND, clauses.

Semantics is classical but we encounter also partial structures consisting of
two disjoint subsets of G, (P, N), with satisfaction defined for A C G :

(PN)EAf PNA# @ and (P,N) E Aiff NNA+#@.

For any M C G, the total structure aps = (M, G\ M) is a classical model iff it
satisfies all clauses (for a graph, (2.3)). It can be also seen as a s, where M C G

—is a transversal of OR (for every P € OR: M N P # @),

— not containing any NAND (for every N € NAND : N Z M).

Equivalently, a model can be given as ag\n for a subset N C G which is a
transversal of NAND, not containing any P € OR. We record this simple fact
(Tr(S) denotes the set of all transversals of S.)

Fact 2.5. For every I' = OR + NAND, the three sets are in bijection:
1. ModT)={M CG|{M,G\ M) =T}
2. {Pt € Tr(oR) | VN € NAND : N Z Pt}
3. {Nt € Tr(NAND) | VP € OR: P Z Nt}
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§3. Infinitary resolution. Of primary interest to us are graphs (GNF theo-
ries) but several results hold for theories with finite NAND-clauses. Saying “every
I'”, we mean such theories. The following system RIP is complete for such the-
ories with countable OR set, denoted C-F, while it is sound for arbitrary theories
(also with infinite NANDs, which we do not consider.)

(Az) THC, forCel
(Rneg) {THaA |iel} T+ {al|icl}
TF Uper Ai
A {TFBK;|iel} {Ttak|iclkekK,}
I (A\{ai |iel}) U B

(Rpos)

The rule (Rneg) derives a NAND from NANDs, using a single OR as a side formula,
while (Rpos) derives an OR from ORs, using NANDs as side formulae. In (Rneg),

a;A; denotes the NAND {a;} U A4;, where A; may be empty. These negative
premises are “joined” — into the union of all A; — by the oR-clause O, with each
a; € O belonging to one a;A4,.

In (Rpos), among the OR-premises there is the “main” clause A, containing a
subset {a; | i € I} such that for each a;, there is an OR-premise B; K; (B; U K;),
with side premises a;k for all & € K;. The conclusion joins the OR-clauses
removing the atoms from the negative premises. A special case of the rule has
only the main OR-premise A with the side premises I' - @;,7 € I, yielding the
conclusion A\ {a; | i € I}.

There are no cardinality restrictions on the index sets I, so finitary logic is an
obvious special case. Proofs are well-founded trees with (Ax) at the leafs, rule
applications at all internal nodes, and the conclusion at the root. In particular,
every branch of a proof is finite.

A pair of examples of diagnosing the paradox by proving the empty clause {},
may be in order. The side premises are written as side conditions.

In Yablo graph (N, <), Ors are O; = {j | j > i} for all i € N, and NANDs all
pairs ij, for i # j. For each i, starting with the axioms 4j for all j > i and using
0,11, yields 4, and from these {} follows using O :

23,24,25, ... Os .. {ij |z> i} Oir
2 7 Ol

{}
A “3-Yablo”, Fig. 1, with each edge ¢ — j from the Yablo graph, for j > i+ 1
(i.e., except those along the “main” ray), stretched to an odd path of, say, length
3: yi—>a§—>b§-—>yj.

12,73,14, ..

~ 0
T 2

Y1 a},) bzlallzs

171
azb
Y1Yys3 M

D1. for all ¢ < j : 335, e.g.:

272 71
agbi biya p2i4
T SUIRE
a 271
Yiay azbg

D2. for all i,k >i+2: ya, eg.: aiby

2
Yyray



6 MICHAL WALICKI

FI1GURE 1. “3-Yablo” graph

D1 D2 D2
V12 U3 g6l yial

D3. forall ¢ :y,;, e.g.:

yoys U{ai | k> 4}

Y1
___ D3
D4. for all j : @}, e.g.: a}jbil% biys
Dy D3 Di Di Di
ps, Y Yz aé{} @ yiya U {al | k> 3).

84. Soundness and completeness. RIP contains two independent sys-

tems: (Neg) consisting of (Ax) and (Rneg), and
(Pos) consisting of (Ax) and (Rpos).

Sections 4.1, 4.2 show that each system is refutationally complete on its own.
The unexpected, paraconsistent features of their combination are described in
§5. Notation identifies often one element set with the element, so that a denotes
the OR-clause {a}, while @ the NAND-clause {a}. I, A denotes I' U {A}.

4.1. The system (Neg). The following lemma gives auxiliary results about
the deductive closure Neg(T") of a theory T' extended with unary clauses.

LEMMA 4.1. For every I’ and A C G :

1. Neg(TUA™) = Neg(TU{P\B|P€or,BC A})UA",

2. for finite A: Neg(T UA') D Neg(T) U{X\B | X € Neg(T'), BCA} U AT,

for every A: Neg(T' U AT) C Neg(T')U{X\B | X €Neg(T'), BCA} U A™.

PRrROOF. 1. For C, any application of (Rneg) using B~, for B C A, has a
counterpart in the RHS: L

Bufa|ien B tadilicl) fadi[iey o ey
U4 U A
For D, conclusion of any application as in RHS with P\ B € OR, follows in LHS
by a corresponding application with P € or and B~ added to the premises.
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2. Since each B C A is finite, D follows by a finite number of applications of

(Rneg) to X € Neg(T') and, successively, each b € B. C holds for every A since

RHS is closed under (Neg). Explicitly, for some index sets i € I,k € K C J,

with X2 By € Neg(I'), Nyn; € Neg(I'), B = Uyecx Bx € Aand NinyNA = &,
the conclusion C = J;c; Ni U Upe g X of

(N liel) (e lkek)

Uie[ Ni UUkeK X '

is already in RHS. Namely, Neg(T') contains the conclusion D of the derivation

D = Uier Ni UUkex Xk Bk
and C = D\ B € RHS, since B C A. As Neg(I' U A") is the smallest set
containing I' U AT and closed under (Neg), its inclusion in RHS follows. n

|ieItU{zx | ke K} €0r

{ni|iel}U{xy | ke K} €OR

We list some consequences of the above lemma relevant for further use, with
point 2 being crucial in the proof of completeness.

LEMMA 4.2. For every I’

L. for finite A:TUAY by {} < T g, {}\/HBQA:FIWQQE,
for every A TUA 15 {} =Tl {}VIBCA: Ty, B

2. forevery PCG: (Ve€ P:Tchy,, 1}) =1, Py, {}

3. Ny} & 3K €orRVEE K Tig, k.

PROOF. 1. (<) is obvious since each B C A is finite. (=) If {} € Neg(T'U
AT)\ Neg(T) then, by Lemma 4.1.2, for some B C A and X € Neg(T) : {} =
X\ B,ie, X =B.

2. By point 1, the assumption implies I' by, {} VVc € P: 'ty €. In the latter
case, one application of (Rneg) to P and all ¢,c € P, gives {}.

7

3. («) is obvious, while (=) follows since any derivation of {} must end with:
{F|7Veg kiliel}
I e {3

(Neg) is sound (also for partial structures) and refutationally complete (for total,
classical semantics) for C-F theories.

{k;|i €I} €OR. =

THEOREM 4.3. For every C C G and

1. for everyF:F}jvegﬁiI‘ = C,

2. for c-F I': Modg) =2 =T, {}

3. forcrT:TEC&TUCT Hveg 1)

PrROOF. 1. (Ax) is obviously sound, and so is (Rneg) — for every partial
structure (P,N): when PN {a; | i € I} # &, then some a;, € P, and so
A,y NN # @&, since for every i : a;A; N N # @. Hence, |J, AiNN # @.

2. Enumerate OR = {P;,P,,...} and let I'; = NAND U {P; | j > i}. Assume
I' ey {}- Then, by 4.2.2, there is a ¢; € Py : ¢1,1'1 I, {}, and this follows by
induction for every i € w : c1,ca...¢i, I'i Ffrey {}. In the w-limit, for C,, = {¢; |
i € w}, we obtain C;f UNAND f£,, {}, because otherwise Mod(C} UNAND) = &,
by soundness of (Neg), i.e., C,, contains some N € NAND. As N is finite, so for
somei € w: N C {cy,...,¢;}. But then cg,...,¢;, Ty Heg {}. So C,, € Tr(or) and
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VN € NAND : N € C, i.e., C, gives a model of I', by Fact 2.5.
3.I'EC & Mod(TUCH) =2 <2 TUCT Iy, {}. .

COROLLARY 4.4. A countable graph T has a kernel iff
Ve e G IyeN() Iy, T=T R, 7

PRrROOF. (=) follows from soundness of (Neg). (<) If I" has no model then,
by Theorem 4.3, I t,, {}, i.e., for some N[z] € OR : T' Iy, Z for all 2 € N[z].
We thus have I' by, T and Vy € N(z) = N[z] \ {2} : [' 5, 7. o

An adaptation of the completeness proof, yields also the following fact.
Fact 4.5. A countable I' with all clauses infinite, has a model.

PRrROOF. Enumerate OR = {Py, Ps,...} and NAND = {Nj, Na, N3,...}. Using
AC, well-order each P; and N;, and let u(X) denote the least element of X wrt.
this well-ordering. Start with:

n1 = p(N1) and ¢1 = p(Pr\ {n1}),
and then, inductively, given {n;...n;} and {c;...c;}, let:

Ni+1 = M(Ni+1 \ {Cl...CZ‘}) and Ci+1 = ,u(Pi+1 \ {nl...ni,ni+1})

Since each P;, N; is infinite, such a choice is possible for every finite i € w.

The entire C* = {¢; | ¢ € w} is then a transversal of OrR and N* = {n; | i € w}
of NAND. Also N* N C* = @, for every ¢; € P;\ {ni..n;}, so ¢; # n; for all
j < 4, while for every k > i : ny, € Ni \ {...c;...}, so ¢; # ng. Since for every
N € NAND : N € C*, so C* gives a model of I' by Fact 2.5. -

4.2. The system (Pos). The argument for (Pos) follows the one for (Neg).

LEMMA 4.6. For every I’ and A C G:
1. Pos(TUA™)=Pos(T)U{X \P|X € Pos(T'),PC A} U A~
2. Pos(TUA"T) = Pos(T)UA U o
{X\UK; | X € Pos(I'),a; € B; C A,Vk € K, : a;k € NAND}.
PROOF. D are obvious. For C we show that the RHSs are closed under (Pos).
1. The only (Rpos) applications using A~ are of the form %, for some P C A,
and RHS is clearly closed under such applications. So consider an application
with X,C; € Pos(T') and P,P; C A:
X\P {CG\Plje T}

Z = (X\P\{c;|jeJHUUC\Pj)\C))
If all P, P; = @, then Z € Pos(I"). Otherwise, the following W € Pos(I') :
X {GlieJ}

W= (X\{¢[jeJHUuUC\C))
Thus Z = W\ P’ for some P/ C PUUP; C A, ie, Z € RHS, and so
IF'UA~ C Pos(RHS) C RHS. Since Pos(I'U A7) is the smallest set containing

I'U A~ and closed under (Pos), it follows that Pos(TUA™) C RHS.

2. The argument is the same as in 1, with each P, P; being now some (J, 5 Ka,

for various B C A such that |J,cz{ak | k € K,} C NAND. .

Point 3 of the following Lemma is used in the completeness proof.

(Rpos)

{cje| c € C}} € NaND

(Rpos) {cjc| c € C} S NAND
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LEMMA 4.7. For every I’ and A C G:

L. TUA b {} ©Th, {}VIBCA: T, B.
2 Tabp {} T h,{}VEBKCG:Tt,, K A{ak |k € K} C NAND)
3. (Va; € A:Tsa;tpo {}) = T Abpy, {}

PRrROOF. Implications to the left in 1-2 are obvious, while the opposite ones
use Lemma 4.6. If {} € Pos(I' U A7)\ Pos(T'), then {} = X \ A for some
X € Pos(T), by 4.6.1, so X = B for some B C A. Similarly, in 2, {} = X \ K
for some K with {ak | k € K} C NAND by 4.6.2.

3. follows from 2, which then implies that Va; € A 3K; : ' I,

{a;k | k € K;} C NAND, so that (Pos) ’{{}“E}

The argument from Theorem 4.3 gives also refutational completeness of (Pos).

-

os

THEOREM 4.8. For every C C G :

1. For everyI' : T =C«<T'hk,, C,

2. ForcFI': ModT)=2 =Tk, {},
3. ForcrI:TEC<TUC I, {}.

PrOOF. 1. The rule (Rpos) is sound: for every partial structure (P, N) sat-

isfying the premises, either Vi € I : a; ¢ P, in which case AN P # & implies
(A\{a; | i € I}) N P # @, giving that (P, N) satisfies the conclusion, or else
Ji : a; € P. Then also a; ¢ N and hence for all k € K; : k € N and since
B;K;NP+#+,s0o BiNP #d,ie., (P,N) satisfies the conclusion.
2. Enumerate OrR = {Py, P»,...}, and let I'y, = {P; | k¥ < i < w} U NAND.
If T' t4,, {}, then there is a ¢; € P : ¢1,I'1 b,y {} by 4.7.3. By induc-
tion, the same holds for every finite i : ¢1...¢;, I tf,s {}. In the w-limit, for
C, = {ci | i € w}, we obtain Cl UNAND b4, {}, for otherwise, by soundness of
(Pos), Mod(C} UNAND) = &, i.e., for some N € NAND : N C C,,. Since each
N € NAND is finite, for some k € w : N C {c1,...,cx}. But then eq...ci, Iy tp, {}-
So, VN € NAND : N € C,, € Tr(0OR), i.e C,, gives a model of T', by Fact 2.5.

3.TECe Mod(TUCT) =2 €5 TUC kg, {}- .
4.3. The whole system. Points 1 and 3 of the following corollary witness

to the conservativity of RIP over each subsystem. Still, it offers a new tool for
handling paradox, which arises from point 4.

COROLLARY 4.9. For c-r I':

L. Modl) =2 & T {} & Th, {} &TF{}

2Tz {}eTrFzVvIF{}) and T,z {} & (TFazVvIF{})

3. IfTW {} then T FT & Ty, @) and (' 2 & Ty 2)

4. TH{}e 3z :TFaATFT (denoted T+ L(x))

PrOOF. 1. The first two equivalences are Theorems 4.3 and 4.8, giving sound-
ness and refutational completeness of the whole system, i.e., the last equivalence.

2. When I' I/ {}, we have: FVE#F%,SQE% L2 i, {}éf,xlf{}
Conversely, if I' - T then also T,z + T, while ',z F x, so T,z - {}.

Similarly, if Tt {}: T2 =T, o 25 Tzt {} ST,21 {}.
Conversely, if T' -  then also T', T F z, while T',Z + Z, so I', T - {}.



10 MICHAL WALICKI

3. In both cases, the implication (<) is obvious. For (=) assume I' t/ {}:
_ 421

T ey T 25 Ty x by, (} S T2 {} THT.

[ifge ¢ 5 T, T, {} T, 7/ {} ETH 2.
4. («) follows by a single application of (Rneg) or (Rpos). (=) If T + {}
then, by 1, also I' t5;,, {}. Hence, by 4.2.3, there is a clause K € OR such that
Vki € K : T by, k;. Choosing then any ko € K, an application of (Rpos) yields

K (K \ko)~
ko

Provability of both x and T, not only comes closer to the informal understanding
of paradox than does provability of {}, but enables also its finer treatment.
Before describing it in the next section, let us close this one by observing that we
can hardly expect any complete and useful extension of the logic to uncountable
theories. Various distributivity laws, used typically for this purpose, have namely
semantic character, which reduces them to triviality for OR+NAND theories. For
instance, Chang’s law postulates that, for a language L,

Viacw(Nper Tap) is an axiom iff VO € £%3z : {z, 2} C {240 | @ < K},
or, equivalently:

Nacie(Vpep Tap) is an axiom iff 3C € x"Va : {z, -2} ¢ {20 | @ < K}
The formula on the left corresponds to a set of clauses, while the right-hand
side claims the existence of a choice C selecting, for every a < k, an element
Tq0(a) from the a-th clause V, <x Tab, S0 that the selection from all < x clauses
contains no complementary pair x,-x. In OR+NAND theories, complementary
pairs, selected from distinct clauses, correspond to NAND-pairs. We can therefore
rewrite this last formulation as:

OR = {P, | a < k} is axiomatic iff 3C € Tr(0R) : VN € NAND: N ¢ C.
But this is definition of a model, as in Fact 2.5. Having it as an axiom, to obtain
completeness for £ > wj, makes reasoning unnecessary.

witnessing to the claim. B

85. Nonexplosiveness. We now use RIP only for direct, not refutational,
reasoning, i.e., for A C G, we are asking simply if I' - A. Completeness becomes
then limited, missing some redundant clauses. (Occurrences of ~ are, in a given
context, either all positive or all negative.)

COROLLARY 5.1. ForcFT and ACG:TEAs3IBCA:THB.

PrOOF. If Mod(I') = @, then I' = {} by 4.9.1 and {} C A. Conversely, if
'+ {}, then Mod(T') = @ soI' = A for every A D {}. This special case is the

same for both cases below, which are considered assuming I' I/ {}:
- 4.3.1

X=X.3BCA:TFB=5T} B=T E A, while the opposite: ' = 4 <
Mod(TUAY) =g 2 TUA K, {(} 25 3BC AT, B=>TFB.

X =X. HBQA:I‘}—B%F|:B:>1"|:A,Whiletheopposite: '=eAs
ModTUA )=z ¢ TUuA h, (&2 3IBCA:TH, B=TFB. s

The resulting logic does not have weakening — hence neither Ex Falso Quodlibet.
Its nonexplosiveness gives a paraconsistent ability to contain paradox and reason
— classically — about the subdiscourse unaffected by it.
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EXAMPLE 5.2. The closure of y =2z —x 3 contains, besides {}, all literals.
Provability of both x and T, i.e., the paradox at x, pollutes the whole discourse.

In the discourse {yz,yz, zxs,zT,Z8, ¢, T, S}, i.e., S Y=z ) we still
have paradozx at x and {} is still provable, but neither is § nor z. The closure
contains only the literals {x,T, s,Z,y}, showing that x is the only problem, which
does not affect the rest of the discourse.

To identify semantic counterpart of this nonexplosiveness, we first register a
form of monotonicity of reasoning. For I' C P(Y) and X C Y we denote the
result of removing all atoms X from all clauses of T' (removing also the empty
clause, if it appears in the process):

PA\X={C\X|CeT}\{{}}.

This operation corresponds roughly to taking the theory of the subgraph induced
by G\ X.* We return to this in connection with its application.

LEMMA 5.3. For everyT:THAZ X =3BCA\X: T\ X+ B.

PROOF. By induction on the well-founded structure of the proof I' - A, with
axioms introducing A \ X instead of A. Let IV = '\ X. If " F {}, the claim
follows, so we assume (especially in TH) nonemptiness of all I'-provable clauses.
For the induction step

{T+a;A; |i€l} Fl—{al|zel}
N UZEI
where | J;c; Ai \ X # 9, there are also some a;4; \ X # & and we consider only
these. If for some i : I' = B; C A; \ X, the B; gives the claim. Otherwise, IH
gives for every i : IV b a;B;, where B; C A; \ X, while for the side premise,
I"F {a; | ieI'y C{a; | i€ I}\X. Appplying (Rneg) to the respective
I'"'F a;B;,i € I' yields the claim with (J;c; Bi € U;¢; 4i \ X.
Induction step for the proof ending with (Rpos), where Vi € I : K; C A;:

A {THA|iel} {TFak|ielkelkK;}
L (A\A{a; [ i€ T}) UU,;e, (A \ Ks)

By IH, I - BC A\ X and I' F B; C A;\ X, with B, B; # {}, for all i € I.
If all a; € X, then IV = B gives the claim. Likewise, if for some i : K; C X,
then TV + B; C A; \ X C A; \ K; gives the claim. Otherwise, consider only
J={iel]|a; ¢ X}. Foreveryic J:

(1) 3k: ke K;NX, and then I+ @; (by IHIV - C C a;k \ k, and I I/ {}), or
(2) K; N X = @ and then either

a)Vke K; :T"Fk, or

b) I @, or

) Ki=LiWR,ANL,#ONVk: (k€ Ly > T'Fak)A (k€ R —T'+ k).

)

(Rneg)

(Rpos)

2.
2.
2.
' B {I'bFR|keK)
I'F B; \ K;

)
)
(
(
(
If (2.a) holds for an i € J, the claim follows by

4For H C G, the subgraph of (G, N) induced by H is (H,Ng) with Ng = NN (H x H).



12 MICHAL WALICKI

Otherwise, for all ¢ satisfying (2.b) or (1), apply first (Rpos) to I + B
obtaining IV - B’ = B\ {a; | I"  @;}. There remain ¢’s from (2.c), i.e.,
I'={ieJ|I"Va AL, # 2}

: I'e-B; {I'Fk|keR}, . : .
B { F’{}—B\;% }|ZEI’}{FI|_' . |Z€I/7k€Li}
[ 7 a;

" (B \{ai | i € I'}) UU;ep (Bi \ Ki)

The conclusion of this derivation gives the claim. -
The condition like A Z X is needed because the transition to I'\\ X neither
preserves nor reflects provability of {}. For instance, I'; = {s,z, 7} F {}, but
Ly \{z} = {s} / {}, while T's = {s,xs,Z,Ts} I/ {}, but Do \{s} = {z, 7T} F {}.

5.1. The paradoxical and the consistent subdiscourses. Turning now
to paradoxical discourses, let I' - {} and denote:

Gt={ze€G|TFHaATF T}

[P =T\Gt ={C\G*[CeT}\{{}}

Gok — G\GL — UFOk.
G contains all statements involved in the paradox and the story ends here when
it covers the whole G. But otherwise I'°* remains consistent alongside G=.

Fact 5.4. For c-F T with G # &:

1. VIZEF‘)’“:F}—[), and so T - C =T+ C, for any C C G°F.
2. TR/ {}.

3. Ve e G . T roTkzandl* -2 T 7.

4

5

. Jx € GF :T°F i/ T, hence also T I/ .
Vo € GOF " /T = N(2) NG+ = @ (when T is a graph).

PROOF. 1. VD € T*\T 3C € ': D = C\ (CNGL). Two cases:
'-C {I'k¢lceCnNGt} I'-C T'kec(ceCnNGh)
I'=C\(CNGH) r'C\{c
C € NAND C T is finite, so finitely many applications of (Rneg) suffice to get

D =C\(CNGL) eI in the later case.

2. Tk (3228 30 € GF Tk g AT* 2 ST AT T = a & GO,

3. (=) follow from point 1, while (<) by Lemma 5.3 and point 2.

4. If Vo € G : T°F - T then Vy € G : '+ 7. But then also Vy € G : T' F y,
contradicting G°F # @.

5. fx€GP* hasayeN@)NGL, then THy =T+ 7= I 7. s

For a graph T, T'° is almost the theory of its subgraph induced by G°*, except
for some differences at its border vertices brd(G°%) = {x € G°F | N(z) € G°F}.

(Rpos) (Rneg)

EXAMPLE 5.5. Consider the following I' : y — z =z s =t.

T = {yz,yz,z2xs,%Z%,Z8, st, st, x, T}
G+ = {«}

GF = {pest)

Lok = {yz,yz,2s,%, 725, st, st}

brd(GF) = {z}
The theory of the subgraph induced by G is T(L°%) = {yz,7z7, s, %3, st, st},
while T°F contains, in addition, Z.
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Border vertices enter as such negative clauses into I°* = 7/(L°*)U(brd(G°%))~,
so we can view I'°F as the subgraph '°% induced by G°F, with a new loop at each
border vertex. It is not paradoxical, Fact 5.4.2, and its models are kernels of ['*F
excluding border vertices: Mod(I'°*) = {K € Ker(I°") | brd(G°*) C N~ (K)}.?
In the above example, I'°F has two kernels {t, 2z} and {s,y}, but only the latter
gives a model of I'°% which requires Z.

The relation between paradoxical graph I' and I'°* can be specified further in
more semantic terms. Models of I'°% are namely semikernels of I'. A semikernel
is a subset L C G such that N(L) € N™ (L) C G\ L. It determines the sub-
discourse induced by L UN™ (L), with the partial structure a; = (L,N~ (L)).6
Actually, L is a semikernel iff «; satisfies both conditions of (2.3), [3], so this
subdiscourse, when torn apart from I', does not involve paradox. For instance,
- :Cl»ti‘ser has no kernel (and O3 = @), but {t} and {s} are
semikernels, giving partial structures a{vt} = ({t},{l,s}) and a{vs} = ({s}, {r,t})
satisfying (2.3). Semikernels provide thus the possibility of ignoring part of the
context and were used in [3] as the semantics of nonparadoxical subdiscourses.
Mod(T°%) specialize this general concept. (SK(I') denotes all semikernels of T'.)

FACT 5.6. For a countable graph T': Mod(I'°F) C SK ().

PROOF. Assume K € Mod(I'°%). For every k € K, I'°* I/ k by soundness,
so by 5.4.5, N(k) € G°%, and hence N(k) = Npox(k), since % is subgraph
of T induced by G°*. K € Ker(I°") gives the first inclusion and the second
equality: N(K) = Npor(K) € G\ K = N[, (K) € N (K). We also have

EOk
N7 (K) C G\ K, for K is independent in T, being independent in the induced
subgraph I°*. Thus N(K) C N~ (K) C G\ K, ie., K € SK(I). .

The soundness arguments in Theorems 4.3 and 4.8 apply to the partial structures
and not only to the classical ones. For a graph T', a partial structure (P, N) =T
is in fact a classical model, which exists if I' = I'°*. But when I" has no model, yet
has a subdiscourse I'°% I/ {}, the models of I'°*, induced from some semikernels
of I', are partial structures for I'. Semantic situation is one of the three kinds,
depending on the relation between G°F and G:

[TE{|TE L(a) |

G* =G no | nozx Mod(T°F) = Mod(T) # @
G+GFCG|| yes |weGt | Mod(T°F) # @ = Mod(T')
G*=g || yes |alz Mod(I'"F) = @ = Mod(T)

The semantics Mod(I'°%) — of I' — explains the nonexplosive behavior: reasoning
from T' is sound also for these partial structures. Besides contrarieties L(z),
provable when G+ # @, RIP proves neither simply facts true in all kernels of T’
(as does classical logic), nor simply facts implied by all its semikernels (as does
L3, [3]), but facts true in maximal semikernels which are not infected by paradox,
namely, Mod(I'°%) C Ker(I'°*)NSK(I'). For literals (in countable graphs), this
is Fact 5.4.3, while the following implies the general case for arbitrary graphs.

5This makes sense as Vb € brd(L°*) : b ¢ sinks(L°F), since @ # N(b) C G+ 2peat.
61t coincides with ai;, = (L, G \ L) only when L is a kernel. Subdiscourse corresponds to an
induced subgraph, rather than to a subtheory.
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THEOREM 5.7. For any I', denote Th(T')| 0. = {CCG*|TFCY:
1. Mod(T°F) € Mod(Th(T)|,u.) — for every T';
2. Mod(T°%) D Mod(Th(L)| o) — for T with all N € NAND finite.

PROOF. The nontrivial case is when @ # G°% # G. (1) If T' + C C Gk
then, by Lemma 5.3, T°* - B C C (B # {} since G°* # @). For every
M € Mod(I°*) : M = B, so M | C, i.e., M € Mod(Th(I)| ;o). (2) follows
since " C Th(I')| ;.. by Fact 5.4.1 (which does not require countable OR.)

5.2. Propagation of paradox. Paradox need not pollute the whole dis-
course, but it spreads to G+ and we specify closer the pattern of this spreading.

Fact 5.8. For any x in any graph T :T'F L(z) = Vy e N*(z) : T+ L(y).

PRrROOF. T' I z gives the side formula for obtaining Vy € N(z) : I' F g, which
then, together with I' F 7, yield Vy € N(z) : T' F y:

(Rueg) 2 and (Rpos) " (Niz] \ ()~
Induction gives this for all y € N™(x), for all n € N, i.e., for all y € N*(x). -
So, N(G+) € G+ and, dually, N~ (G°F) C G°*. This may seem surprising, since
reading a path from x to y as = “referring to” or “depending on” y, a paradox
pollutes thus everything on which it depends. For instance, in “This statement
is false and the sun is a star”, i.e., f—1y—=s, f “refers to” the sink s. One
could say: since s is true (y is false and) f is paradoxical. But this paradox
spreads then from f to y and s, neither of which “depends” on it. All literals are
provable and the true fact s is also provably false. Contributing to the occurrence
of a paradox, which “depends” on it, it is a part of the paradoxical whole.”

Paradox can also spread upwards, along N, as in T <— z , where provabil-
ity of L(x) leads to provability of 1(z). But such upward propagation can be
interrupted. In Example 5.5, G°* = {y, z,s,t} — both z and y “depend” on the
paradox at x, but are not affected by it.

A sufficient condition for an upward propagation of paradox is that all paths
from a given statement reach, eventually, a paradox. A complete path is a path
(ie., m € G with I € w™ and m;; € N(m;) for all i + 1 € I) which is infinite or
terminates with a sink. paths(z) denotes all paths starting from x.

Facrt 5.9. For an x in any graph T', if every complete m € paths(x) contains
a paradozical 7;, i.e., T+ L(m;), then T F L(x).

PROOF. Assume z is as stated and I' I/ L(x). For every complete m €
paths(zx), let , € 7 be the first vertex on 7 for which '+ L(z,) and X | = {z |
7 € paths(z)}. Then Vz € Xg = (N*(z) N (N7 )*(X1)) \ XL : Tt/ L(2). The
claim is that 3z € Xy : N(z) € X, . For if not, i.e., Vz € XoJy € N(z)\ X, then
let zp be any such and z; € N(z0)\ X . Given z; we can choose z;11 € N(z;)\ X1,
obtaining an infinite path from z to (zo and then) (2, 21, 22, ...) with no element
L (zi), contrary to the assumption. So, a claimed z exists. But since N(z) C X |,
so '+ L(z), contradicting T' I/ L (2). -

"This is not to suggest that “The sun is a star” is paradoxical but only that combined
with the contingen liar as above, it gives the paradoxical whole. Like consistency, paradox is
genuinely holistic. To “repair” it, removing the loop at f is as good as removing s.
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I' from Example 5.5 illustrates thus the only possibility of preventing the prop-
agation of paradox upwards by some path which, exiting from a border vertex,
like z € brd(I'°*), meets no paradox and forces z to be false.

86. Concluding remark. Like in logics with internal truth-predicate, para-
dox formulated in GNF becomes a special case of inconsistency: a discourse
is paradoxical when the T-schemata of its statements, expressed in GNF, are
inconsistent. The graphical representation gives a precise grasp of vicious cir-
cularities. It confirms, for instance, the intuition that for obtaining a finitary
paradox, negative self-reference is necessary (and not only sufficient): according
to Richardson’s theorem, [4], a finitary graph without odd cycle has a kernel.

Even if some satisfactory logical language, adopting paradox, becomes agreed
upon, it will hardly remove the need to identify occurrences of paradox by di-
agnosing its general patterns and by detailed analysis of the actual cases. For
classical logic, kernel theory provides a rich source of such patterns, explored
initially in [2, 3]. The analysis enabled by RIP can, besides diagnosing paradox,
identify the nonparadoxical subdiscourse and its classical concequences, which
are not affected by the surrounding inconsistency. This paraconsistent effect is
obtained by nonrefutational use of hyper-resolution, which deviates from classi-
cal reasoning only by the exclusion of weakening.
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