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Abstract

We give an equivalent formulation of topological algebras, interpreting S4, as
boolean algebras equipped with intuitionistic negation. The intuitionistic substruc-
ture — Heyting algebra — of such an algebra can be then seen as an “epistemic sub-
universe”, and modalities arise from the interaction between the intuitionistic and
classical negations or, we might perhaps say, between the epistemic and the onto-
logical aspects: they are not relations between arbitrary alternatives but between
intuitionistic substructures and one common world governed by the classical (propo-
sitional) logic. As an example of the generality of the obtained view, we apply it
also to S5. We give a sound, complete and decidable sequent calculus, extending a
classical system with the rules for handling the intuitionistic negation, in which one
can prove all classical, intuitionistic and S4 valid sequents.

1 Introduction

To make the paper self-contained, we begin in section 2 by recalling the topological
algebra semantics for propositional S4. Relations of topological algebras to Heyting
algebras motivate an equivalent formulation of topological algebras as ZC-algebras,
which are presented in section 3. The only difference consists in replacing the clo-
sure/interior operation of topological algebras with intuitionistic negation. The cat-
egories of topological and ZC algebras are isomorphic, but the reformulation makes
explicit the relationships between the intuitionistic and classical propositional logics
which, together, constitute S4. A technical advantage of this formulation, exempli-
fied in subsection 3.2, is that proofs of embeddings and dependencies between these
three logics, performed traditionally at the metalevel and typically by the analy-
sis of the respective proof systems, become internalized in the common language of
ZC-algebras. Section 4 shows how the new formulation adapts to extensions of S4,
exemplified by S5. In section 5, we augment the sequent calculus for classical logic
with two rules for handling the intuitionistic negation, and prove its soundness and
completeness with respect to the class of all ZC-algebras. A simple argument for the



decidability of the calculus is given. The proofs and technical results of the paper are
relatively straightforward (details omitted here can be found in [10]) and a reader
familiar with the algebraic semantics of modalities can consult directly definition 3.4
in section 3 and the calculus in section 5. However, the emerging observation that
modalities arise as combinations of classical and intuitionistic negation is novel and
the concluding section 6 lists some philosophical implications of this fact.

2 Background

Definition 2.1 A toplogical algebra T = (T;N,U, —, ¢) is a boolean algebra (T;N,U

with a closure operator ¢ : T — T (or, equivalently, interior i(z) = —c(—x)), satis-
fying the equations:

cl. z Cc(x) il. z Di(z)

c2. c(c(z)) = c(z) i2. i(i(z)) = i(x)

3. c(zUy) = c(z) Uc(y) i3. iz y) i(z) Ni(y)

c4. c(0)=0 i4. i(1) =

An element x € T is open/closed iff x = i(z)/z = c(z).

Closure, resp. interior, interprets the modality <, resp. O, and S4 logic is sound and
complete with respect to the class of all topological algebras.
Such an algebra contains a Heyting algebra of open elements, namely, I(T) =
(O;N,U, <, 0), where
I1. O={z €T |z =i(x)}
I2. U,N and O are inherited from T
I3. Vz,y € O:z = y=i(—zUy)

One verifies easily that I can be extended to a functor from the category T.A of
topological algebras (with homomorpisms respecting N, U, —, ¢ as morphisms) to the
category H.A of Heyting algebras (with homomorphisms respecting N,U,<,0 as
morphisms).

On the other hand, any Heyting algebra, H, can be extended in a canonical way
to a topological algebra, T = C(H).

Theorem 2.2 There is a functor C : HA — TA, such that C;1 = IDy 4.

ProOF. That every Heyting algebra can be obtained as algebra of open elements of
a toplogical algebra is the theorem 1.15 from [6] (formulated dually in terms of closed
elements), or IV.3.1 from [7]. We only sketch the main aspects of the construction.
Given H = (H;M,U,—,0), we consider it first as a bounded distributive lat-

tice (H,M,U,0,1). By [4], H can be extended uniquely to a boolean algebra T =
(T';N,U, —) where

1. H is a sublattice of T (i.e,, Vz,y € H:zUy=zUyand x Ny =z MNy)

2. every element b € T is of the form (] —a; U b; for some finite set of a;,b; € H.
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Using the fact that a <— b C —a U b, one shows that the choice of representatives in
2 is inessential for the definition of the interior/closure operator. Va;,b;, a;,b; € H :

n m n m
m—aiubi:ﬂ—ajubj = ﬂai%bi:ﬂaj‘—ﬂ)j (2.3)
1 1 1 1

So, for every element of T' (of the form 2), interior can be defined as:
n

i(ﬁ —a; U bz) = ﬂ a; <= b;. (24.)

1
Letting C(H) = T gives I(C(H)) = H.

Verification of functoriality is based on the above representation but its technicalities
do not contribute to the present paper. Details can be found in [10]. O

The canonicity of the extension mentioned above refers to the fact that the functors
are adjoint, C' - I, [10]. For the following considerations, the crucial observation is
that in any T.A-algebra one can define, according to I3, the operation corresponding
to the intuitionistic negation by +z = i(—z). On the other hand, according to (2.4),
this equation holds in the topological extension C(H) of a Heyting algebra H, i.e.,
the intuitionistic negation “survives” this extension, albeit it gets “hidden within” i.

3 1(C-algebras

For every Heyting algebra H and z € H, we obtain in the extension T = C(H) :

2.4
c(z) = —i(-z) = —i(~zU0) % _z < 0) = — =z, (3.1)
This fact that the closure/interior operation of any topological algebra T contains an
aspect of intuitionistic negation is what makes the straightforward reduction of such
algebras to Heyting algebras possible when defininig the object part of the functor
I, I1-13. (3.1) gives also the dual fact:

i(z)=+—-1z (3.2)

The equations (3.1), (3.2) might look suspicious since =+ is defined only over H. But
as observed at the end of the previous section, + (as well as the relative pseudo-
complement <) can be introduced in any 7.A-algebra:

i) +z=1i(—x) i)z >y=1i(-zUy)=+—(—zUy). (3.3)

This suggests the possibility of combining in one structure the classical and intuition-
istic elements according to the following definition.

Definition 3.4 An ZC-algebra (“intuitionistic-classical”) is a tuple (C;U,N, —,+)
where (C;U,N, =) is a boolean algebra, and a unary operation + (intuitionistic nega-
tion) satisfies the following azioms:

sl. =~z C —x

s2. *x =+ —+x

s3. ~(zUy)=+zN-+y



s4. -0=1

The formulations of s1, s2 are equivalent to those in il and i2 (see 11, 12 below). s4
is equivalent to i4, and s3 to i3. Hence, every T.A-algebra can be converted into such
an ZC-algebra using (3.3).i), while an ZC-algebra can be converted into a T.A-algebra
using (3.2). For instance, every topological space, being a T.A-algebra, can be now
seen also as an ZC-algebra, where the operation +z gives, according to (3.3), the
interior of the complement of .

Given the mutual interdefinability of + and i in the presence of the boolean
operations, one verifies easily that also 7A and ZC homomorphisms coincide: the
categories of ZC and of TA algebras are isomorphic. We have thus not changed
anything in the semantics, but merely given a different language for describing it.

3.1 Some tautologies

The change of the language gives, however, a different perspective with which we will
be concerned in the rest of the paper. In particular, it brings forth the interaction
between the classical and intuitionistic negations hidden under O and <. The fol-
lowing tautologies provide some examples. On the right we give more familiar (and
sometimes more specific) formulations in one of the sublanguages.

11. sl e il,ie, +2C —T <= +—2ZC T . ioviiriiiiiiiiiianann. Oz — x
12. s2 ¢ i2)ie, T2 =+ — 42 <= T —T =+ — 5+ =T ceiieuii... Oz +» OOz
13. 1=

., 2 C Y= 8 D Y e (z = y) = (+y — +x)
15, + —(s2zU=sy) ==2U3Y oo i(i(z) Ui(y)) =i(z) Ui(y)
16. +z = = — 0, using (3.3).ii) as the definition of —

17. zN+z =0

18. anz Cb<=aCzx—b
19. aNnz Cb=a Cxz—b, when (*) a = +a

110. z C++x,when (F) z==32' ..o T
L G Or — OOz
112, 22U Y C (2 NY) oo +V+y = +(zAy)
118, - = T e T+

114. =2 =1=2=0
115. =2 =041z =

3.2 Relating tautologies

The above lemmata give only a few examples of a vast variety of tautologies. We
can easily conclude that the following hold in ZC-algebras (the respective restriction
of the language is given to the right):

B) any classical (boolean) tautology Bu=z|pNB|LUB| L]0
u) any topological/S4 tautology pr=z|pNp|pUp|—p|+—p|0
¢) any intuitionistic tautology ve=+—z|eNeeUe]|+—(—Ue) |0



We let v denote the grammar of the whole language. (In S and p, we added 0O
merely to ease comparison.) The restriction on the variables in ¢ ensures that all
intuitionistic formulae address only the intuitionistic/open elements of the algebras.
(Equivalently, we might only require +z.) For instance, 113 would be formulated
intuitionistically with one + less. In our case, it acquires this additional < as the
intuitionistic tautology, +x = + + <=z, holds for the open, but not necessarily for
other elements. Similarly, the intuitionistic tautology 110 may fail when z is not
open. On the other hand, some intuitionistic tautologies survive unchanged and can
be applied to all elements, not only the open ones, e.g., 18, 112. Note also that,
although L(u) # L(7), so for every ¢ € L(vy) there is an equivalent formula ¢ < ¢
with 1 € L(u), because + is definable in L(p) as +x = + — (—x).

Validity of all (instances of) classical tautologies follows since ZC-algebras are
boolean algebras, and validity of all topological tautologies since they are also topo-
logical algebras. Validity of all intuitionistic tautologies follows since, by the restric-
tion on the variables which must be preceded by +—, they address only open elements
of an ZC-algebra, that is, only and all elements of its substructure which is Heyting
algebra. By theorem 2.2, every Heyting algebra is a substructure of some ZC-algebra.

In addition, we have tautologies, e.g., s1 or s2, which do not belong to any of
these sublanguages but, so to speak, express “connections” between them. They
allow us to formulate and verify some of the classical results relating the different
logics in the internal language of ZC.

3.2.1. An example of such a result is McKinsey-Tarski embedding of IL into S4:

IL — S4
a€X:tr(a) = Oa
tr(¢1 Ng2) = tr(d1) Atr(de)
tr(¢1Vga) = tr(d1)Vir(sz)
tr(¢r — ¢2) = DO(tr(d1) — tr(ge))

In the present formulation, this embedding of syntax becomes simply an inclusion
tr(0) : L(t) C L(p). The statement I' | ¢ <= tr(I') = tr(¢) becomes now a
consequence of the fact that functor I is surjective on the objects, i.e., that every
Heyting algebra can be obtained as an algebra of opens of some topological algebra.

3.2.2. The intuitionistic logic emerges as a syntactic subset of ZC-logic. Specificity
of its connectives, in particular, disjunction, can be thus seen as a consequence of
restricting the domain of interpretation, which is reflected in the basic case of its
grammar: it addresses only the open elements. (One checks easily (using s2, s3 and
15) that elements interpreting L(¢)-formulae are open.)

As an example illustrating that we obtain “intuitionistic” connectives by restrict-
ing attention to the “intuitionistic” elements, we show the disjunction property:

Lemma 3.5 The following implications hold (x may be a sequence of variables):
1. If IC = — + ¢1(z) N — + ¢o(x) = 0 then IC |= ¢1(z) = 0 or IC |= ¢2(xz) = 0
2. fIC E +¢1(x) U +do(z) =1 then IC = +d1(z) =1 or IC | +¢ho(z) = 1



PROOF. 1 is the theorem 4.12 from [5] (— + z = ¢(z)). It holds here because each
ZC-algebra can be seen as a toplogical algebra (used in that theorem) and vice versa.

The disjunction property 2 follows from 1. The assumption is equivalent to
IC = (—+¢1(z))N(—+¢2(x)) = 0. Then either ZC = ¢1(z) = 0 or ZC |= ¢a(z) = 0,
by 1. In either case, ~¢;(z) = 1 by s4. O

3.2.3. Since =+ is the “switch” which brings an element over into the “intuitionistic

subuniverse”, some classical results, like those involving negative translations, obtain
. . . 13 s4 .

an internal expression. For instance, a = 1 — +a = 0 = <+ +a = 1, gives the

general statement:

ICEHz)=1 = ICE + + é(z) = 1. (3.6)

In a sense, this is stronger than the classical result, since ¢ can now contain both
classical and intuitionistic connectives. But for this reason it gives a weaker relation
between the respective logics.

A series of classical metatheorems arise from ZC-tautologies, and we give only
one example. As a consequence of (3.6), when ¢ is an intuitionistic tautology, so is

+ <+ ¢. But our + =+ ¢ may involve non-intuitionistic expressions. One direction of
Glivenko’s theorem will have the following form.! When ¢(z) € L(3) then:
ICE¢(z)=1 = ICE++¢(+—2)=1 (3.7)

where ¢’ is ¢ with all —/— replaced by +/<>.
Assume first ¢ to be in CNF, i.e., [;(U; Zi;) where each Z is z or —z. We conduct
the proof for an arbitrary ZC-algebra T = ¢ = 1:

NU;Tiy) =1 = U;Ti; =1 for all 1
= +-U;zy5=1 i(z) Cz &i(l)=1
= = (Uijn —2ijn YUy zip) = 1
= = (Nijn @ijn NNijp —Tijp) =1
(subst) L. o o
- T(nijn = = Tijn N nijp - Tsz’jp) =1 T+
113 . e e e .« .
sl,14 . L. . .
— _(nijn T T Tijn N nijp +Tip) =1 rC—+=x
3
<S:> - (Uz]n — T Tn U Uijp .Tijp) =1
(subst) . L. . .
— __(Uzgn_____xZ]nUUz]p__xljp):1 e e
113 .. .
— T35 (Uijn++—2iin UUjp + —zip) = 1
. . ool / ’ .
= - Uij T = 1 for all ¢
= N++U;7;,=1

3 _
& Ui+ UT =1

112 .. - _
'We do not address the opposite implication which is a trivial consequence of the completeness results
for IL and CL, and the observation that IL-provability is contained in CL-provability.




(All lines between the first and the last one marked “for all i” carry this condition.)
The resulting E;j have the form -+ —x;; and those which were preceded by — are now
preceded by =+ instead (line -5/-4).

To complete the proof for arbitrary tautologies, not only in CNF, we only observe
that any + + ¢(z) € L(:) is (intuitionistically) equivalent to + + ¢'(z) where ¢'
is obtained from ¢ by classical transformations (e.g., + + (+¢1(z) U +2(z)) =
++ +((z) NYa(x)), + + (+1(z) Utha(z)) = + + (Y1 (z) < P2(x)), etc. Hence, if
our classical tautology is not, initially, in CNF, we transform it into CNF, apply the
above result, and then transform the final intuitionistic formula under +- into the
corresponding intuitionistic form using these equivalences.

4 7C-models for S5

The development in section 3 is not limited to S4. What is specific about S4 is only
that it contains the intuitionistic logic in an unmodified form. Further extensions
will, typically, affect this aspect and we illustrate it by an extension to S5.

To the ZC-axioms s1-s4, we add the S5-axiom:

sh. —+xC+=+=x
which is just — +z C + — — + z, i.e.,, Oz — OOz. Combined with axiom s1, this
entails — + z = + + z. That is, in ZC-algebras for S5, the negation of open elements

equals the interior of their negation, i.e., the complement of an open is open.
An equivalent definition of Sb-algebras, e.g., [2], requires that complement of
every closed element is closed, i.e.,

(¥*) Vzdy: —(—+2)=—+y.
(sb = (*) follows since — +z =+ +2z = —(— + 1) = — + (+z), so we can take
y = +z. For the opposite implication, let  be arbitrary, then — <+ z is closed, and
so —(— +x) ® —+y,le,+r=—+y. Butthen -+ (+z)=—+—+y=—2+y=
+x = ++x =—+1z.) As is well known, a topological algebra is an S5-algebra iff

the topology is almost discrete (open = closed).
In such algebras, we obtain, for instance:

S5-11. — - — = T e ie., OOz + Ox
$5-12. ++tr=—-+tr=——3z="2

The essential difference between the ZC-algebras for S4 and for S5 is that the former
contain genuine Heyting substructures. In the latter, where complement of an open
is open, every open element -z is regular, s5-12, which implies that the Heyting
substructure is actually boolean. This known fact can be now seen as the crucial
collapse enforced by S5: its modalities, still present, express no longer a relation
between a classical world and its intuitionistic substructure, but between one classical
world and its substructure which is itself classical.



5 Reasoning

Since ZC-algebras are boolean algebras with the additional operation of +, the rea-
soning system is obtained by augmenting a sequent system for classical logic with the
two rules for handling this connective. The rules given in Table 1 form a sound and
complete reasoning system, LIC, for ZC-algebras. Having established some auxiliary
results in 5.1, we prove completeness in 5.2. In 5.3 we give a decidability argument.

Az : pkp for atomic p

L+ R
T'FAA TAFA
- T,—AFA TFA —A
., Ira4; TBEA A+ A,B
IA— BF A I'FA,A— B
, DAFA; TBEA T'+A, A B
[LAVBEFA TFA AVB
N\ AB,TFA I'FAA ; TFBA
AAB,TFA THAAB,A
_ I+AF A A =T, A+
- [L~AFA sTF=A
T-A T'A
") ATFA TFA,B

Table 1: The calculus LIC.

In the rule (R+), +I' denotes a sequence of formulae each starting with +.

Each side of a sequent is a set of formulae. A sequent I' F A is valid iff for
every ZC-algebra M and every valuation of the variables occurring in the sequent,
v:X = M, Nv[) CUJv(A), where valuations are extended to (sets of) formulae
in the obvious way.?

I FA;
Lemma 5.1 All rules are sound, i.e., for every rule — L for every IC-algebra

M and every valuation v, if v(I';) C Jv(4;) then Nv(I') C Uv(A). The opposite
implication [invertibility] holds for all rules except (W).

PrROOF. The proof for all classical rules is standard and applies since M is, in
particular, a boolean algebra. We only show the claim for (L+) and (R+).

20ne might expect this definition to require: (*) Nv(T) = 1 = Jv(A) = 1. This, however, would
give, for instance, z Oz or Oz,2 — y F Oy, which aren’t sound for S4. (Note that Oz,z — y F Oy
does hold — it is actually the K axiom: Oz,0(x — y) F Oy.) Our definition implies (*), so any valid
sequent /tautology is also valid according to (*). Finally, it squares well with the empty rhs of T F & which
becomes (|I' = 0 rather than [|T" # 1: the rule (R+) is both sound and invertible. All rules are sound
also with respect to (*), if only we interepret I' - @ in (R+) as (v(T") = 0.



(R+) N=TNACO0 <= N=+T' C—-A <<= (+T C +A - the last equivalence holds
since (] +T is open.?
(L) TN+ACAUA <= TN+AN-ACA < TI'n+A C A - the last

equivalence holds since ~A4 C —A. O

Example 5.2 The formula AV +A is not provable, since the proof cannot proceed

past the step - A, +A.

Below, we give a proof of ++ (AV +A):

AF A
A, +(AVv+A) + A +A (W)
A +(AV+A) F AV=+A (RV)
A +(AV+A) F (L+)
+(Av=+A) + +A (R+)
~(Av=A) F =4 A (RW)
+(Av+A) F +AVA (RV)
~(Av+A) F (L+)
F -+ (Av=+A4) (RY)
The “intuitionistic” tautology A — + =+ A is not provable. As observed at the begin-

ning of section 3.2, this is due to the fact that A need not be interepreted as an open
element of an ZC-algebra. Imposing such a requirement, gives the provable formula

A+ A

Lemma 5.3 The following rules are admissible:

1 t)I‘I—A,A . TLAF A
- (cu T.I'FA,A
'kFAA
/. ’
. (L')P,+AFA
T,AFA . =THA Or - A
% (0 T oara (54) ~Troa (%) Brroa

PROOF. 1. The proof by induction (i) on the complexity of the cut formula and,
secondarily, (ii) on the sum of the heights of the derivations of the premisses is
standard — new cases for + present no serious difficulties. Details are given in [10].

2. (L'+) r+AA
+AFAA (LW)
I+-AFA (L+)
3. Admissibility of these rules follows by expansion of O.
(T) LAEFA (S4") = A
'F—-AA (R-) +~I',—AF (L-)
+~—AFA (L'+) ~I'F+—-A (R+)
(S4) is just a special case of (S4’). O

3We do not have the distinction between the bound and free variables, and hence, between the open
and closed formulae in the usual sense. Therefore, it should not be confusing if we call a formula
“open” /“closed” when it denotes an open/closed element for all possible valuations.



Remark 5.4 Notice that, given the rule (L'<), the rule (L=) becomes admissible,
simply as its special case. However, the latter is invertible while the former is not.
(Invertibility may fail whenever, semantically, +A # —A. It obtains whenever this
equality holds, e.g., when A is closed, in particular, has the form — + A'.) Non-
invertibility of (L'<) is suggested by the mere fact that the proof of its admissibility
uses (W). (Analysis showing that such a use is required might even establish non-
invertibility.) Since all rules of LIC, except for (W), are invertible, the proofs identify
explicitly the “non-invertible transitions” needed, typically, in the intuitionistic logic.

(W) is necessary because of (R+). Given only the classical rules, (W) can be
made admissible by generalizing the form of the azioms to T' = A where ' N A # (.
However, in the presence of (R-), this is no longer possible. Without (W) no sequent
of the form + +A,+B would be provable. This strengthenes the conjecture that no
sound and complete set of invertible rules can be designed for the intuitionistic logic.

Note, furthermore, that the rule (L) involves implict contraction, as the principal
formula <A is retained in the premiss.* Replacing this rule with (L'<) would require
us to view each side of the sequents as a multiset, and not a set, of formulae, and
would demand explicit contraction rule. For instance, the bottom part of the proof
from example 5.2, would have to be modified as follows:

+(AVv+A) F AV A
+(AV+A),+-(AV+A) + (L'+)
~(AVv+A) (LC)
F ++(AVv=A) (RY)

5.1 Some auxiliary results

The lemmata from this subsection are used in the completeness proof in 5.2.

Lemma 5.5 Fach of the follwing formulae is provable:
. FA— A
it. F(A—-B)—>((B—>C)— (4A—0))
. FA—> AV B
iw.F(A=>C)=>(B—=>C)—=>(AVB—=(0))
v.FAANB— A
vi. F(C - A) = ((C - B)— (C— (AAB)))
vii. all the above with X — 'Y replaced by X — Y, i.e., by + — (X = Y)
viti. F(A—- (B—C)) < (AANB— C)
iz. the above with A repalced by +~A and — by —
2. FAN—-A— B
zi. F(A— (AN-4)) > -A
zii. the two above with —, — replaced by +,—
1. FAV-—A

“Following the standard terminology, e.g., [8], we call a formula appearing explicitly in the conclusion
of a rule its “principal formula”.
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PROOF. i-vi, viii, x, xi and xiii follow since our calculus includes the classical sequent
calculus. The respective “intuitionistic” versions, vii, ix, xii follow by appropriate

removal of +— using (54), (T'). We give only one example terminating the proof once
it arrives at a propositional form.
ix. — B—C,AB+C
A,BFC,A +—-(B—=0C),A,B-C (T)
A—-+—-(B—-C),ABFC (L—)
A—->+-(B—->C)FAANB—-C (R—), (LA)
+—(A—->+-(B—-C)FAANB—-C (T)
+—(A>=+-B=-0O)F=-—(AANB—=0) (54)
F+—(A—>+-(B—->C)>+—(ANB—- () (R—)
Fr—(+-(A—>+-B—=>0C)—>+—-(AANB—-C)) (54
FA—(B—=C)—=(AANB <= C(C) =
+—: *ANB—-C,+AFB—>C
+—(+AANB—-C),+AFB—=>C (T)
+—(+AANB—=C),+AF+—-(B—(0) (54"
+—-(+AANB—-C)F+A—- +—(B—= () (R—)
+—(+AANB—->C)F+—(+A—>+—-(B—0)) (S4)
F+—(+AANB—-C)—»+—-(+A—>+—-(B—=0)) (R—)
F+—(+—(+AAB—-C)>+—-(+A—->+—-(B—=0))) (54
F(+AANB <= C) = (+A—= (B—=(0)) = 5

The statements i-vi, together with x, xi and xiii imply that the Lindebaum algebra
for LIC, L, is boolean and we will use this in the proof of completeness below. The
statements vii, ix and xii, apply to all elements except for the one direction of ix,
where the restriction to open elements, +A, is needed. As these statements apply,
in particular, to all open elements, this means that the Lindenbaum algebra actually
contains a Heyting algebra of open elements with — being the relative pseudo-
complement and + pseudo-complement. This fact will not enter directly into the
completeness proof, but it is related to the following lemma, which will ensure that
L is actually an ZC-algebra.

Lemma 5.6 The following are provable:
. vAF-A
i. A+ —+Aand +-+AF A
iti. ~(AVB)F +AAN+B and +tAN+BF +(AV B)
. F+(AN-A)

Lemma 5.7 The following rules are admissible:

HFA— B
“FiBo A
THVAA AL T F A
“ A A T.T'FA

11



PROOF. i. The last step in the proof of H A — B must apply (R—) to AF B, so we
get

AFB .
+B, A+ (L'%)
+BF+A (R+)

ii. Consider the first of the rules. We proceed by induction on the number n of
disjuncts in \/ A. The basis n = 1 is obvious, so assume IH for \/ A and a proof of
'\ AvVD,A" Consider the first place I. in the bottom-up proof (i.e., the lowest
place when viewed top-down) where this disjunction is the principal formula. It may
be introduced by (RV) or by (W). In the first case we have the following situation:

I—1. T"+VA,D,A
l. I\ AVD,A" Rv

z. 'FVAVDA

By IH, we have a proof I'. T" + A, D,A"”. (The situation is entirely analogous if
VAV D is split in any other way as \/ A1,/ Ag.) Since the disjunction is not
processed between [ and z, the rule (R+) could not be applied anywhere between |
and z. But then, since all the other rules are context insensitive, we can reuse the
derivation [...z starting from [’ instead. This will yield a proof 2. I' =, A, D, A’.

If \/ AV D is introduced at [ by (W), we simply introduce A, D instead and copy
the rest of the derivation which is possible by the same argument as above.

The proof of the other rule proceeds analogously by induction on the number n
of conjuncts in AT, with the trivial basis case n = 1. O

'+rA—B
Note that the empty lhs in i. is essential — the rule Tr =B A is not admissible!.
For instance, A > B A — B,but A - Bl +B — +A, which would be unsound.

Eg,—-AUBYZ —+BU=+A,ifwetake —+B=BC+AC-A=—(+—-A).

5.2 The completeness proof

5.2.1. The construction of the Lindenbaum algebra L for LIC, over a given alphabet
X, follows [7] (numbers in square parantheses refer to the results given there). Let
F(X) denote the set of all formulae over the alphabet X where, for convenience, we
use the symbols U, N instead of V, A. We define:

1. VA Be F(X):A<B < +FA—B
2. VA,BEF(X):Ax~B > A<Band B< A.
3. the domain of L is F(X)/x, and for op € {—, +,U,N, =} : op([4;]) = [op(A4;)]

5.2.2. 5.5.i-ii ensure that < is a quasi-ordering over F(X) and hence ~ is an equiva-

lence. It induces an ordering (reflexive, transitive, antisymmetric) over F(X)/~ with
[A]C[B]& A<B. Thus [A]C [B]&+A— B.

12



Now, 5.5.iii-vi (iii and v apply to both arguments, only one of which was men-
tioned) ensure that L is a lattice and ~ a congruence wrt. U,N [VI.10.3]. When also
viii, x, xi, xiii of 5.5 hold, L is a boolean algebra and ~ is a congruence also wrt. to
—, [VL10.6].

5.2.3. That ~ is a congruence also wrt. + follows by lemma 5.7.i which implies that
if A< B and B < A, then also +B < +A and +A < +B. So L is well-defined.

5.2.4. Thus L is a boolean algebra, and we verify that it is also ZC, i.e., satisfies the
axioms s1-s4. By lemma 5.6.i-iii (and (R—)), for each of the axioms s1-s3, | = r,
the respective implications - — r and - r — [ are provable. Hence L satisfies these
axioms. By 5.5.x, 0 = [A A —A], and by 5.6.iv we have that L = +0 = 1, i.e., also
s4 holds in L.

5.2.5. We consider only the canonical valuation of formulae in L, i.e., one given by
c(p) = [p] for p € X, which extends to ¢(A) = [4] for all formulae A. L =, A means
thus that [A] = 1 under the canonical valuation, where 1 = [AV —A] = [A — A].

5.2.5.i. F A< L |, A, [VL104]. If F A, then also (by (LW) and (R —))
F(A—A) = A ,sol=[A— A] C[A]. Conversely, if [A] =1, then [A — A] C [4]
and by 522+ (A — A) —» A. Hence also A -+ AF A. Since F A — A by 5.5.1 so,
by admissibility of (cut), we conclude - A.

5.2.5.ii. LIC is consistent (does not prove some formula) iff L is not degenerate, i.e.,
contains at least two elements, [VI1.10.7]. For by 5.2.5.1 I/ A < [A] # 1, which means
that the domain of L has at least two distinct elements.

(p — —p, for p € X, gives an example of an unprovable A. Ie., L is non-
degenerate.)

5.2.6. If for some formula t/ A then, by 5.2.5.i, [A] # 1, i.e., L 5 A. Thatis, L = A
and, since L € ZC by 5.2.4, ZC £~ A.
Thus, combined with lemma 5.1, we have for any A: F A < E A.

5.2.7. The general statement follows: ' EA & NI C JA & —-NTUulUA =1,
which by the above obtains iff - AT — \/ A. But any proof of the latter must begin
(bottom-up) with AT'F\/ A. Lemma 5.7.ii gives then I' - A.

5.3 Decidability

A tree of all possible (and attempted) derivations of a given sequent S is constructed
bottom-up starting with S in the root node. From each node, we split the tree into n
branches where 7 is the number of all possible applications of all rules to the sequents
contained in the current node. The subsequent node in each branch contains all the
premisses of the respective rules’ application. When no rule is applicable to the (set
of sequents in a) node, the branch terminates. It terminates with success when the
final node contains only instances of axioms, and with failure otherwise.

All rules have the subformula property. Applied bottom-up they also reduce
the complexity of the sequent (measured by the number of connectives), with the
only exception of (L) which preserves the principal formula in the premiss. Hence,
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branches whose nodes contain sequents with <+ A on the left of I, may be infinite.
Then such branches contain also infinitely many applications of (L-). But due to the
subformula property, in any such branch there will be (infinitely many) nodes with
identical (sets of) sequents. We terminate a branch once such a repetition occurs.
Hence all branches terminate and the tree gives a proof iff at least one branch
terminates with success. Putting the possible worries about the branching and com-
plexity aside, we see that LIC is decidable. Recalling the grammars 3, ¢, u from page
4, we thus obtain in one stroke decidability of classical, intuitionistic and S4 logics.

6 A concluding note on a possible reading

One can attempt a variety of readings of the operation + and, consequently, of
the modalities +— and —=-. To avoid torturous arguments, let us follow Heyting’s
contention that while the classical logic addresses the ontological aspect of the world,
the intuitionistic logic addresses the (finite/constructive) epistemic aspect. Accepting
this general statement, the Heyting substructure of an ZC-algebra can be seen as a
subuniverse of epistemic approximations to objects which, in general, may lay outisde
it in the classical universe. All elements of this universe can be seen as objects
knowledge might be about, while the opens as the objects knowledge is actually
using. While IL is only logic of the solipsistic knowledge unrelated to any world
outside its finite constructions, the modal logics arise from the interacion between
these two dimensions.

6.1. The reading of the arising modalities will depend on the more specific reading of
the opens. Given the above view of opens as the epistemic elements, and the fact that
+z is open, one might propose to read it as some form of epistemic impossibility.®

Oz = <+ — z becomes then the (epistemic) impossibility of the negation of z.
Thus, O read as knowledge, becomes an epistemic impossibility (unimaginability)
of the contrary. But this is no different from necessity, at least if we grant its
epistemic character. At least to the common-sense, necessity is simply impossibility
of accepting other alternatives, as when we say: “This is unavoidable!” Surely, few
things are ever unavoidable/necessary in the strict sense of logical impossibility. In
the more mundane situations, logical impossibility is replaced by milder, that is,
more epistemic predicates: irrelevancy, implausibility or incapacity, and = appears
unavoidable just when its contrary falls under some such predicate.

Possibility, having classical negation as the main operator, acquires a more on-

tological character. $xr = — +-x DO + + z, i.e., x is possible not only when its
impossibility appears (is epistemically) impossible, + + z, but also when it actually
— ontologically — does not obtain, — + z.

6.2. The ZC-formulation does not commit one to any specific choice as to where

5Speaking stricly and intuitionistically, such an impossibility amounts to the presence of a counter-proof,
namely, of the proof +T', A + &, from which +T' + +A follows by (R+).
that only other “epistemic” elements, +T', can contribute to establishing the “epistemic” impossibility +A
of A. However, allowing for some laxity, one might interpret such an impossibility as, say, existence of a

counter-proof, the lack of proof, or even more vaguely as inadmissibility, incomprehensibility,...
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the line separating the ontological from the epistemic should be drawn. It only
acknowledges the distinction between the two, and obtains modalities out of their
combination. Necessity acquires an epistemic aspect and knowledge turns out as ...
its synonym — of course, knowledge understood not merely as an acceptance of a fact,
but as inadmissibility of a contrary, we might say, as a justified belief.

6.3. The epistemic-ontological complementarity can be also read into S5 as presented
here. We have seen that the s5 axiom amounts to equating the epistemic and the on-
tological negation when applied to the epistemic elements. The epistemic subuniverse
can still be distinct from the ontological one, but it is itself a classical universe. This
is the counterpart of the specific property of S5, namely, that any chain of modalities
is equivalent (“collapses”) to the rightmost one. In ZC-formulation, having once en-
tered the epistemic subuniverse (by means of +), the + becomes —, + +x = — + z,
and so no more properly modal operations are available. This seems to express well
the traditional reading of S5 as the logic of metaphysical necessity: it comprises a
subset of the actual universe (all necessary truths) which is itself governed by the
same (classical) laws without any extraneous epistemic disturbances.

6.4. Working with the “possible world” semantics (of modal logic), one has been
in need to repeatedly emphasize that “possible worlds” are not any strange other-
worldly entities but simply possible variations of the states of affairs obtaining in the
world we are actually living in. Some interpreters could take the phrase “possible
worlds” more literally. Such an interpretative misuse is, however, grounded in the
semantic formalism itself where, indeed, different possible worlds can have nothing
ontological in common. If one points at one world claiming that this is the actual
one, there is still nothing in the framework ensuring that all agents actually share
in this particular world; there may even be agents to whom this world remains
inaccessible. (A residual trace of the “common world” can be found, e.g., in the
concept of rigid designators whose role (apart from giving an interpretation of proper
names) is exactly to establish a common ontology shared by all possible worlds.)
The presented view resolves this problem by means of the distinction between the
classical world of ontology and its intuitionistic substructure of epistemic approx-
imations. A variety of possibilities is then simply a potential multiplicity of such
“epistemic subuniverses” which all are substructures of the same (classical) world.
Formally, one would simply introduce a multiplicity of +;, one for each agent 7.6

6.5. To give an impression of such a modelling of multiple agents, let us give two
simple examples for, respectively, S4 and S5. (The examples, being finite and small,
are not fully representative. They should, nevertheless, give the impression of the
essential points.)

6.5.i. [S4] Consider a simple classical world B = P({a,b,c}) and its two epistemic
substructures, Heyting algebras H1, H2. (We denote joins by concatenation, e.g.,

6Thus, the “philosophical” view of modalities might seem contrary to that involved in Kripke semantics.
At the technical level, however, there is no need to posit any opposition since reachability relation can be
recovered from the topological (and hence ZC) algebra applying Jénsson-Tarski’s representation theorem
(3.10 from [3], also chap. 5 of [1]).
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a U b is written ab.)

H1l abc B abc abc H2
| PRI |
ac ac  ab bc be
VAN | < X VAN
a c a c b c b
N S N N S
0 0 0
We have, for instance:
H1 | H2 H1 | H2 H1 | H2
1. —c=| ab | ab —b=| ac | ac ~bc=| a a
2. ~c=| a b b= ac c ~bc=| a 0
3. +~—c=| ¢ c ~—b=| 0 b +~—bc=| ¢ be
4. —+c=| bc | ac —=b=| b | ab —+bc=| bc | abc
5. +~+c=| ¢ c ~=b=| 0 b +~=bc=| ¢ |abc

The first table concerns the element ¢ present in both H1 and H2. The differences in
rows 2. and 4. reflect the differences between the respective epistemologies. Reading
~+c as “recognized impossibility of ¢”, for H1 it can be only a while for H2 only b.
This is then reflected in what appears as ¢’s possibility in row 4. In either case it can
be c itself, but for H1, possibly also b — as it does not belong to its epistemic world,
the possibilities it harbours are not recognizable by H1.

The two last tables concern elements which are in the epistemic world H2 but
not H1. Thus, either a or ¢ of H1 amount to impossibility of b, while for H2, it is
only c. Dually, the necessity of b, row 3., does not obtain in H1, while it is present
in H2 as the element b itself. (In the third table, although bc ¢ H1, its necessity
still obtains as the element b — the best available approximation of this epistemically
absent element.) The possibility of b, row 4., is not however absent for H1, although
it does not meet any elements in H1 — it is an “external” possibility, obtaining only
due to the ontological structure of the whole B. For H2, this possibility is further
extended by the element a which is not part of his epistemic world (and hence might,
potentially for H2, harbour the possibility of b, even if it actually does not).

6.5.ii. [S5] Consider the same B as above and two S5 epistemic substructures H1,
H2. Since s5 axiom makes complements of opens open, the Heyting substructure
becomes a boolean algebra where all opens are also closed.

H1 abc B abc abc H2
/ o e \b e \
a ac

N R
\0/ \(i]/ \0/

We have, for instance:
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H1 | H2 H1 | H2 H1 | H2
1. —c=1| ab | ab —b=| ac | ac —bc=| a a
2. +c=| a b +b=| a | ac <bc=| a 0
3. ~—c=| 0 0 +~—b=|0 b +~—bc=| bc b
4. —+c=| bc | ac —=b=| b | ab —=+bc=| bc | abc
5. ++c=| bc | ac ~=b=| b | ab +=>bc=| bc | abc

Note that although the epistemic substructures are now boolean algebras, the epis-
temic negation + does not coincide with the ontological one —. The difference con-
cerns the epistemically absent elements. Thus, for instance, in the first table, c is
epistemically absent from H1, but its impossibility, <c¢, amounts only to the epistem-
ically available contraries, namely, a, and not to its ontological negation ab. Likewise,
in the third table, bc ¢ H2, but its epistemic impossibility amounts to contraditiction
0, although ontologically it can be also obtained as a.

6.6. Finally, let us observe an entirely different aspect of epistemic modelling. The
view of knowledge as the ability to draw and relate distinctions indicates intimate re-
lations to topology. The fact that topological opens form a Heyting algebra provided
the basis, in [9] (and in the tradition of formal topology), for viewing them as repre-
senting finite observations allowing to draw distinctions. Such a view of knowledge
emerges naturally from the topological interpretation of ZC-algebras.

Consider, for instance, a classical world P({a, b, ¢,d}) and a Heyting substructure
containing (the opens) {0,a,b,ab,abcd} with ) = 0 and abcd = 1. Following the
topological view, this amounts to (being capable of) distinguishing a from b (having
disjoint opens covering each of them). However, ¢ and d fall outisde the epistemic
world and, consequently, they (or their join) are indistinguishable by the available
epistemic means (table on the left). Also, no interaction of these elements with the
available a, b will uncover any difference between them (table on the right):

‘c‘d‘cd ‘ac‘ad‘acd
— | abd | abc | ab —| bd | bc b
=~ | ab | ab | ab =| b b b
1| 0 0|0 | a a a
—+ | cd | cd |cd —=+ | acd | acd | acd
Expanding the epistemic base with, say, recognition of the element ¢ will, of course,
lead to new distinctions, e.g., ~c = ab # abc = =d.

Viewing the epistemic elements as the distinctions one is capable of recognizing,
the modalities arise now from the interaction between such distinctions and the on-
tological ones which, however, remain epistemically indistinct. One might even be
tempted to read now -z as the impossibility to apprehend/recognize z, with the
consequences for:

— ‘necessity’ of £ = + — £ = impossibility to apprehend the negation of z and

— ‘possibility’ of x = — + & = the absence of impossibility of apprehension of z.
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