
Complete Axiomatisations of
Properties of Finite Sets

THOMAS ÅGOTNES, Bergen University College, Norway.
E-mail: tag@hib.no

MICHAL WALICKI, University of Bergen, Norway.
E-mail: michal@ii.uib.no

Abstract
We study a logic whose formulae are interpreted as properties of a finite set over some universe. The language is
propositional, with two unary operators inclusion and extension, both taking a finite set as argument. We present
a basic Hilbert-style axiomatisation, and study its completeness. The main results are syntactic and semantic
characterisations of complete extensions of the logic.

1 Introduction

Finite sets and, more generally, finite structures, play a vital role in many areas and applica-
tions (finite model theory, e.g., [10]; bounded arithmetics, e.g., [8, 9]; database theory, e.g.,
[15, 18]; reasoning about agents with bounded memory, e.g., [5, 3, 2]; reasoning about coali-
tions of agents, e.g., [4]). Unfortunately, many desirable properties which are obtained in
the situation when all models are admitted, cease to be valid when the model class contains
only finite structures. A paradigmatic example is Trahtenbrot’s theorem according to which
there is no sound and complete system for deducing all first-order properties valid in all
finite structures. In this article we address the problem of complete reasoning about proper-
ties of finite sets in a propositional language with unary inclusion and extension operators
taking (symbols representing) finite sets as arguments. Considering this restricted logical
vocabulary we obtain a reasoning system and a characterisation of additional axioms for
which the system is complete with respect to the corresponding class of finite sets. In par-
ticular, the empty theory satisfies the criteria, and so we obtain weak completeness for the
class of all finite sets: the formulae of our language valid in all finite sets are recursively
enumerable. Thus, the paper gives an example of a language and finite semantics for which
(a counterpart of) Trahtenbrot’s theorem does not apply.
One important proviso is the following. One can discuss possible axiomatisations of the
finite sets among all sets. For instance, starting with the axioms of ZF and removing the
axiom of infinity, one can ask what other adjustments are needed in order to obtain all
and only finite sets. ([7, 23, 17] are examples of works in this direction. Reverse mathemat-
ics, originating with [12], gives numerous variations on this theme, all with the additional
axioms for the number system and arithmetic operations.) Our purpose in this paper is very
different. We do not aim at an axiomatisation of finite sets but at complete axiomatisa-
tions of their properties. We assume that such sets are given and use them as the semantic
framework in which our logical theories are interpreted. Theories (in our restricted language)
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specify only lower and upper bounds on the contents of a set – their models are all finite
sets satisfying the specification. It quickly turns out that there can be no finitary logical
system which is strongly complete with respect to this semantics. Thus, the main question
we study in this article is: for which theories is the reasoning system complete?
The general setting can be described as follows. We start with a, typically infinite, universe
U , and let s be some finite subset of U . In a language with explicit symbols for finite sets,
we could then express properties of s by relating it to other finite sets s′, such as inclusion
(s⊆s′) and extension (s⊇s′). If we wanted to express properties of an otherwise unknown
finite set, we could introduce a formal variable x to allow statements such as x⊆s′ and x⊇s′.
In this article we take another approach in order to simplify the presentation and focus on
the essential issue of finitude. Instead of using formal variables, we express properties of a
single, given, finite set s. We use unary versions of inclusion and extension, taking finite
sets as arguments, to express properties of the set s, such as �(s′) (s is included in s′) and
�(s′) (s is an extension of s′). We use a propositional language with such expressions for
each finite subset s′ of U as atoms. It is interpreted as statements about finite sets s of U
in the obvious way.
The language with the unary set operators was originally introduced in [1], from where

most of the results presented here are adopted. Similar languages have been applied in several
contexts. In [4], the language was used to express properties of groups of agents (coalitions)
such as “having a as a member and not having any other agents than a, b or c as members”.
Incorporation of the language into a variant of Coalition Logic [24] provided a restricted
form of quantification allowing succinct expressions of coalitional abilities. In [1, 5, 3, 2] the
language was used for expressing properties of the beliefs of resource-bounded agents, such
as “believing p and not believing anything else than p, q or r”. In this article, some proof–
and model theoretic properties of the language are presented independently from possible
applications. The results are of primary interest when the universe U is infinite, such as in
the second but not the first of the mentioned applications.
The paper is organised as follows. In the next section, the language and semantics are
defined. In Section 3 we present a sound Hilbert-style logical system. Since the logic is
not semantically compact, a strongly complete finitary axiomatisation is not possible. We
set out instead, not only to show weak completeness, but also an intermediate notion of
completeness between weak and strong: we characterise the sets of premises for which the
logic is complete, i.e., the theories � for which � |=φ implies that ��φ for any formula φ.
Such theories are called finitary. As an intermediate step, Section 4 presents results for an
alternative semantics in the form of general models, allowing also infinite sets. Section 5
provides a complete proof theoretic characterisation of finitary theories, while Section 6
provides several sufficient conditions in terms of algebraic properties of the model classes.
The conditions imply, in particular, that the empty (and every finite) theory is finitary
and thus that the system is weakly complete. Section 7 gives some examples illustrating
application of the results in the context of beliefs of resource-bounded agents. Section 8
concludes.

2 Language and semantics

Assume a fixed (typically infinite) set U , henceforth called the universe. The set of all finite
subsets of U is denoted ℘fin(U ).
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Formulae φ of the language L(U ), or just L when U is clear from context, are defined
over an alphabet including (names for) the elements of ℘fin(U ) by the following grammar,
where X ∈℘fin(U ):

φ ::= �(X) | �(X) |¬φ |φ∧φ (1)

We use the usual derived propositional connectives, in addition to =(X) for �(X)∧�(X).
When X={e} is a singleton, we sometimes write ∈e for �(X) and 	e for �(X) for simplicity.
Also, we write 
�(X), 
�(X), 
∈e and 
	e, for ¬�(X), ¬�(X), ¬∈e and ¬	e, respectively.
A theory is a set of formulae �⊆L.

L is interpreted by a single finite subset of the universe, s∈℘fin(U ), called a model set or
just a model. Formally, the satisfaction relation |= ⊆℘fin(U )×L is defined as follows:

s |= �(X) ⇔ s⊆X
s |= �(X) ⇔ X⊆s
s |=¬ψ ⇔ s 
|=φ
s |=ψ1∧ψ2 ⇔ s |=ψ1 and s |=ψ2

(2)

Note that finite sets are used as symbols in the logical language, and that the interpretation
of a set-symbol is the set itself.

S fin denotes the class ℘fin(U ) of all finite sets. We use the usual terminology: s satisfies
a set of formulae iff it satisfies each formula in the set; a formula φ is satisfiable (in S fin) iff
there is an s∈S fin such that s |=φ; it is valid, |=φ, iff it is satisfied by every s∈S fin ; it is a
logical consequence of a set �⊆L, � |=φ, iff s satisfies φ whenever s satisfies �. The class of
all finite sets satisfying a set of formulae � is denoted S fin(�).
It is easy to see that the language is expressively complete, in the sense that for every
finite set s there is a formula φs such that s′ |=φs iff s′ =s (take φs=�(s)∧�(s)).
Before we discuss the question of axiomatisation in the next section, observe that the logic
is not semantically compact.

EXAMPLE 2.1
The semantics of L is not compact. A counter example can be constructed from any infinite
set. For instance:

�1={	e :e∈U }

Although every finite subset of �1 is satisfiable, �1 itself is not when U is infinite. A more
specific example is given by the theory �2 requiring membership of all Peano numerals,
i.e., 	0 and, whenever 	n then also 	s(n).

The analysis in the following sections is mostly interesting in the case that the universe
is infinite.
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3 An axiomatisation
DEFINITION 3.1
FS is the logical system over the language L consisting of the following axiom schemata:

All substitution instances of tautologies of
propositional calculus Prop

�(∅) E1
(�(X)∧�(Y ))→�(X∪Y ) E2
¬(�(X)∧�(Y )) when X�Y E3
(�(Y ∪{γ })∧
	γ )→�(Y ) E4
�(X)→�(Y ) when Y ⊆X S
�(X)→�(Y ) when X⊆Y G

and the following deduction rule

��φ,��φ→ψ

��ψ MP

��φ means that φ is derivable from � in FS . �φ denotes that ∅�φ. FS is sound (wrt.
S fin) iff ��φ implies that � |=φ, for any theory � and formula φ. A set of formulae � is
consistent if it is not the case that both ��φ and ��¬φ for some formula φ; � is maximal
if either φ∈� or ¬φ∈� for any φ∈L. � is maximal consistent if it is both maximal and
consistent.
Note that the system FS cannot be strongly complete, in the sense that ��φ whenever

� |=φ for every � and φ, because the semantics is not compact. For a given �, by �-
completeness (wrt. S fin), we mean the property that ��φ whenever � |=φ for any φ. Note
that in this terminology, weak completeness, i.e., the property that |=φ implies that �φ
for all φ, is the same as ∅-completeness. �-completeness is useful if we want to axiomatise
a subclass of all finite sets: if FS is �-complete then the system obtained by adding � as
axioms to FS is weakly complete with respect to S fin(�). While FS is not �-complete for
all � (i.e., not strongly complete), we now set out to investigate for which theories � FS
is �-complete. Of particular interest, of course, is weak completeness. While it is not too
difficult to prove weak completeness of FS directly, we shall prove a more general result
from which weak completeness, as well as other forms of �-completeness, follow as special
cases.
We first relax the semantic assumption about finiteness, in order to establish some inter-
mediary results.

4 A detour to infinite sets

Consider a variant of the semantics where formulae are interpreted by arbitrary subsets of
the universe, and not only by finite subsets. The satisfaction relation is defined exactly as
in Section 2 for finite sets. Now, the theory �1 from Example 2.1 is satisfiable. However, the
semantics is still not compact.
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EXAMPLE 4.1
Consider an infinite U and let e∈U be arbitrary. The following theory states that e∈s 
={e}
while for all e′ 
=e, e′ 
∈s:

�3={	e, 
∈e}∪{
	e′ :e′ ∈U ,e′ 
=e}

Every finite subset of �3 is satisfiable (in the infinite sets semantics), but �3 is not.

The problem with respect to compactness with the above �3 is that, while the first part
requires some element e′ 
=e to be included in the model, the second part forbids any other
element to be included.
However, there is a slightly different compact variant of the semantics. Let ∗ 
∈U be a new

element which is not in the universe, and let

S∗ =℘(U )∪℘fin(U ∪{∗})

The sets S∗ – finite subsets of the universe, infinite subsets of the universe, or finite subsets
of the universe with the element ∗ added – are henceforth called general models. We interpret
the language in general models by defining a satisfaction relation |=∗ ⊆S∗×L in exactly the
same way, i.e., using (2), as for the satisfaction relation |= between finite sets and L. It is
important to note that while we extend the set of models, we do not change the language
L: sets X occurring in formulae must still be finite subsets of the universe – in particular,
they cannot contain the element ∗.
We now establish some results for this semantics. These will be useful for studying the
finite sets semantics in the following sections.
In the following, we will use |=∗ to denote satisfiability and logical consequence with
respect to S∗, while we keep |= for the case of only finite sets. A formula φ is satisfiable in
S∗ iff there is an s∈S∗ such that s |=∗φ; φ is valid wrt. S∗ (|=∗φ) iff every s∈S∗ satisfies
φ; φ is a logical consequence of � wrt. S∗ (� |=∗φ) iff s |=� implies that s |=φ for every
s∈S∗; FS is sound wrt. S∗ iff ��φ implies that � |=∗φ for any theory � and formula φ; FS
is strongly complete wrt. S∗ iff � |=∗φ implies that ��φ for any theory � and formula φ.
Given a theory �, we write S∗(�) for the class of its general models.

THEOREM 4.2
FS is sound and strongly complete with respect to S∗.

In order to prove Theorem 4.2, we first establish some lemmas. The proof of the following
lemma is standard.

LEMMA 4.3
For any consistent set of formulae �, there is a maximal consistent set �′ such that �⊆�′.

LEMMA 4.4
Let � be a maximal consistent theory. If there is an X ′ such that �(X ′)∈�, then for every
X ∈℘fin(U ),

�(X)∈�⇔{e :	e∈�}⊆X

PROOF. Assume that �(X ′)∈�. For the direction to the right, let �(X)∈�, and let 	e∈�.
If e 
∈X , then ¬�(X)∈� by axiom E3, which contradicts the consistency of �. For the
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direction to the left, let {e :	e∈�}⊆X . If X ′ ⊆X then �(X)∈� by axiom G and we are
done. Assume that X ′ 
⊆X , i.e., that X ′ \X={e1,...,ek} for some k≥1. Because ej 
∈X for
each j , ej 
∈ {e :	e∈�}. Thus, for each j , 	ej 
∈�. By maximality, ¬	ej ∈�. By axiom E4,
�(X ′ \{e1,...,ek})∈�, and because X ′ \{e1,...,ek}⊆X , �(X)∈� by axiom G. �
LEMMA 4.5
Every maximal consistent theory is satisfiable in S∗.

PROOF. Given a maximal consistent theory �, define the following general model s∈S∗:

s=
{ {e :	e∈�} if �(X ′)∈� for some X ′, or {e :	e∈�} is infinite

{e :	e∈�}∪{∗} otherwise

We show that

s |=∗φ⇔φ∈�
for any formula φ, by structural induction. When φ=�(X) and X=∅ we are done by E1.
When φ=�(X) and X 
=∅, s |=∗φ iff X⊆s iff, since ∗ 
∈X , X⊆{e :	e∈�} iff, by E2 in one
direction and S in the other, φ∈�.
Let φ=�(X). First assume that there is a X ′ such that �(X ′)∈�. s={e :	e∈�}, and by
Lemma 4.4, φ∈� iff s⊆X , which holds iff s |=∗φ. Second, assume that �(X ′) 
∈� for all X ′.
In particular, φ 
∈�. But then we also have that s 
|=∗φ, since either s={e :	e∈�}∪{∗} and
∗ 
∈X , or s is infinite (and X is finite). Induction passes trivially through the propositional
connectives. �
PROOF OF THEOREM 4.2. Prop, E1–G are valid, and MP preserves logical consequence, giving
soundness. Strong completeness follows directly from Lemmas 4.3 and 4.5. �

5 Finitary theories and completeness

We now consider soundness and completeness of FS with respect to S fin . The following
follows immediately from Theorem 4.2.

COROLLARY 5.1
FS is sound wrt. S fin .
As discussed in Section 3, we want to characterise the theories � for which FS is �-

complete, i.e., for which � |=φ implies that ��φ for any φ. In this section we provide such
a characterisation. We define the concept of a finitary theory, and show that the finitary
theories are exactly the theories for which FS is �-complete. The proof builds upon the
completeness result for the more general semantics described in the previous section.

DEFINITION 5.2 (Finitary and Finitarily Open Theories)
A theory � is finitary iff it is consistent and for any φ:

���(X)→φ for all X ∈℘fin(U )
⇓
��φ

A theory � is finitarily open iff there exists a finite set X such that � 
� 
�(X).
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Informally speaking, a theory is finitary if provability of a formula under arbitrary upper
bounds on the model set implies provability of the formula itself.
As an illustration, the following are examples of non-finitary theories; the claims will be
proved after the following lemmas.

EXAMPLE 5.3
• Not finitarily open and not finitary: The theories �1 and �3 in examples 2.1 and 4.1,
respectively
• Finitarily open, but not finitary: �4={
	pi→	a : i∈N } (where a 
=pi for all i)

LEMMA 5.4
1. A finitary theory is finitarily open
2. If � is a finitary theory and � 
�φ, then �∪{¬φ} is finitarily open

PROOF.
1. If � is finitary and not finitarily open, �� 
�(X) for all X . Thus, ���(X)→φ for any φ,
and by finitariness ��φ. But by the same argument ��¬φ, contradicting consistency
of �.

2. Let � be a finitary theory such that � 
�φ. There must be an X such that � 
��(X)→
φ. By Prop, � 
�¬φ→
�(X), and thus �∪{¬φ} 
� 
�(X) which shows that �∪{¬φ} is
finitarily open.

�

LEMMA 5.5
A theory � is finitarily open iff it is satisfiable in S fin .

PROOF. � is finitarily open iff there exists an X ∈℘fin(U ) such that � 
� 
�(X); iff, by Theorem
4.2, there exists an X such that � 
|=∗ 
�(X) iff there exists an X and a model set s∈S∗ such
that s |=∗� and s |=�(X) iff there is a finite set s∈℘fin(U ) such that s |=�. �

EXAMPLE 5.6 (Example 5.3 continued)
• �1 and �3 are not satisfiable by a finite set, and thus not finitarily open or finitary.
• �4={
	pi→	a : i∈N } (a 
=pi for all i) has a finite model, for instance the set {a}. How-
ever, the theory �4∪{
	a} has no finite model and, by the above lemma, is not fini-
tarily open. �4 
�	a because otherwise there would be a finite set �⊆�4 such that
��	a, and by soundness (Corollary 5.1) � |=	a. To see that the latter is not true, take
s={pi : 
	pi→	a∈�} (a finite set); we have that s |=� but s 
|=	a. Hence, by lemma
5.4, �4 is not finitary. The formula 	a also provides a direct witness to nonfinitariness
of �4: for every finite set X , we do have �4��(X)→	a, while �4 
�	a as just observed.

It is, however, more difficult to prove finitariness of a theory. Indeed, much of the following is
concerned with that problem. It is particularly interesting because of the following theorem.

THEOREM 5.7
FS is �-complete wrt. S fin iff � is finitary.
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PROOF. Let � be a finitary theory and let � |=φ. By Lemma 5.4.1 � is finitarily open and
thus satisfiable by Lemma 5.5. �∪{¬φ} is unsatisfiable in ℘fin(U ), and thus not finitarily
open, and it follows from Lemma 5.4.2 that ��φ.
For the other direction, let FS be �-complete wrt. S fin . Assume that � 
�φ. By �-complete-
ness, � 
|=φ, that is, there is an s∈℘fin(U ) such that s |=� and s 
|=φ. We have that s |=�(s),
and so s 
|=�(s)→φ. By soundness (Corollary 5.1) it follows that � 
��(s)→φ, showing that
� is finitary. �

The following corollary sums up characterisations of finitary theories. Note point 5 which is
a special form of a finite model property.

COROLLARY 5.8
Let � be a theory. The following statements are equivalent:

1. � is finitary
2. � 
�φ⇒�∪{¬φ} is finitarily open, for any φ
3. � |=φ⇒��φ, for any φ
4. � |=φ⇒� |=∗φ, for any φ
5. S∗({�,φ}) 
=∅⇒S fin({�,φ}) 
=∅, for any φ

We thus have a complete characterisation of theories for which FS is complete. However, the
use of the above corollary to actually check whether a given theory is finitary may be rather
difficult and impractical. We therefore inquire now into other ways of checking finitariness
of a theory.

6 Algebraic conditions for completeness

In this section we study finitariness from a semantic perspective. The main results are
algebraic conditions on the general models of a theory, which will be sufficient to ensure
finitariness of the theory. Note that these are conditions on the general models introduced
in Section 4, but they are used to ensure completeness with respect to finite models. Thus
we use general models as a tool to prove completeness with respect to finite models. Given
a theory �, we construct its class of general models, and if that class satisfies the algebraic
conditions given below, FS is �-complete with respect to finite models.
The following Definition 6.1 will form the basis for checking finitariness of a theory by

checking the respective properties of its class of general models. The involved conditions of
this definition are strengthened and simplified in Lemma 6.9 and Lemma 6.10. The main
result is Theorem 6.2. Some examples are found at the end of this section, and in the next
section. The remainder of this section is concerned with intermediate, and rather technical,
results for proving Theorem 6.2. First some terminology:

Directed Set A set A with a reflexive and transitive relation ≤ is directed iff for every finite
subset B of A, there is an element a∈A such that b≤a for every b∈B. In the following
directedness of a set of sets is implicitly taken to be with respect to subset inclusion.
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Cover A family of subsets of a set A whose union includes A is a cover of, or covers, A.

DEFINITION 6.1 (Finitary Set of General Models)
If S⊆S∗ is a set of general models and s∈℘(U ), then the set of finite subsets of s included
in S is denoted

S |fs=S∩℘fin(s).

S⊆S∗ is finitary iff both:

1. For every infinite set s∈S :
(a) S |fs is directed
(b) S |fs is a cover of s

2. ∀s�{∗}∈S :∀s′ ∈℘fin(U ) :∃α∈U \s′:
(a) ∃sf ∈S∩℘(s∪{α}) :s′ ∩s⊆sf
(b) ∃sf ∈S∩℘(s∪{α}) :sf 
⊆s′
(c) S∩℘(s∪{α}) is directed

The definition specifies conditions for each infinite set in S , condition 1, and each finite set
in S containing ∗, condition 2. (The notation s�{∗} stands for s∪{∗} where ∗ 
∈s). Condition
1 requires every infinite model to be a limit of approximations by finite models. Condition
2 is similar, but it is complicated by the fact that, informally speaking, the existence of a
“proper” element of the universe α to “replace” ∗ is needed. In practice, the simplified (and
stronger) conditions presented in Lemma 6.10 below can often be used.
The following connects the syntactic (Definition 5.2) and the semantic (Definition 6.1)
notions of finitariness.
THEOREM 6.2
A theory � is finitary if S∗(�) is finitary.

The following definitions and intermediate results are needed in the main proof of Theorem
6.2, which then follows.
Given a set of general models S⊆S∗, we henceforth let Sf denote the subset of finite
model sets (without the ∗ element) it contains:

Sf =S∩℘fin(U )

Condition 1 of Definition 6.1 can be expressed equivalently as follows.

LEMMA 6.3
Let S⊆S∗ be a set of general models. Definition 6.1.1 holds iff for every infinite s∈S

∀s′ ∈℘fin(s) :∃sf ∈Sf :s′ ⊆sf ⊆s (3)

PROOF.

⇒) Assume that Def. 6.1.1 holds, and let s′ ∈℘fin(s). s′ is finite, say s′ ={β1,...,βk}. Because
s′ ⊆s, by Def. 6.1.1.b) s′ ⊆⋃

(S∩℘fin(s)), so for each βj there is a tj ∈(S∩℘fin(s)) such
that βj ∈ tj . By Def. 6.1.1.a), there is an sf ∈(S∩℘fin(s)) such that ⋃

1≤j≤k{tj}⊆sf . Then
s′ ⊆sf . Since sf ∈(S∩℘fin(s)), s′ ∈Sf and sf ⊆s.

⇐) Assume that (3) holds.
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Def. 6.1.1.a) Let S ′ be a finite subset of S∩℘fin(s). Clearly, s′ =⋃
S ′ ∈℘fin(s), and by

(3) there is an sf ∈S∩℘fin(s) such that s′ ⊆sf .
Def. 6.1.1.b) Let α∈s. Because {α}∈℘fin(s), by (3) there is an sf ∈S∩℘fin(s) such that
α∈sf . Then, α∈⋃

(S∩℘fin(s)). Thus, s⊆⋃
(S∩℘fin(s)), and Def. 6.1.1.b holds. �

LEMMA 6.4
Let S⊆S∗ be a set of general models. If S is finitary then:

1. For every infinite s∈S :
(a) ∃sf ∈Sf :sf ⊆s
(b) ∀s′ ∈℘fin(U ) :∃sf ∈Sf :(sf ⊆s and sf 
⊆s′)

2. ∀s�{∗}∈S :∀s′ ∈℘fin(U ) :∃α∈U \s′:
(a) ∀s′′ ⊆s′ :s′′ ⊆s⇒∃sf ∈S∩℘(s∪{α}) :s′′ ⊆sf
(b) ∀s′′ ⊆s′ :∃sf ∈S∩℘(s∪{α}) :sf 
⊆s′′
(c) S∩℘(s∪{α}) is directed

PROOF.

1. Let s∈S be infinite.
(a) Follows from Lemma 6.3 by letting s′ =∅.
(b) Assume that 1b) does not hold for s, i.e. that

∃s′ ∈℘fin(U ) :∀sf ∈Sf :(sf ⊆s⇒sf ⊆s′)

That is, there is an s′ ∈℘fin(U ) such that

∀sf ∈S∩℘fin(s) :sf ⊆s′

in other words

(
⋃
(S∩℘fin(s)))⊆s′

Since s is infinite and s′ is finite, s 
⊆s′ and thus

s 
⊆(
⋃
(S∩℘fin(s)))

which contradicts the fact that
⋃
(S∩℘fin(s)) covers s. Thus, 1b) must hold.

2. Let s∪{∗}∈S (∗ 
∈s) and s′ ∈℘fin(U ), and let α be as defined in Def. 6.1.2.
(a) Let s′′ ⊆s′ and s′′ ⊆s. By Def. 6.1.2.a there is an sf ∈S∩℘(s∪{α}) such that s′ ∩s⊆
sf . Since s′′ ⊆s′ ∩s, s′′ ⊆sf which proves 2a).

(b) Let s′′ ⊆s′. By Def. 6.1.2.b there is an sf ∈S∩℘(s∪{α}) such that sf 
⊆s′. Then,
sf 
⊆s′′ which proves 2b).

(c) Def. 6.1.2.c. �

In the proof of the main theorem below, we show the existence of a finite model from the
assumption of the existence of a general model. This requires replacing a possible occurrence
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of ∗ by a “proper” element of the universe and we begin by showing the existence of such an
element in Lemma 6.6. When φ,ψ are formulae, we use the notation ψ≤φ to denote that
ψ is a (not necessarily proper) subformula of φ.

DEFINITION 6.5 (sφ)
Given a formula φ∈L,

sφ=
⋃

�(X)≤φ or �(X)≤φ
X

Observe that sφ is always finite, since all X are finite and a formula only has a finite number
of subformulae.

LEMMA 6.6
If φ∈L, S⊆S∗ is a finitary set of general models and s= ŝ�{∗}∈S , then there exists a

α
φ,s
S ∈U \sφ (4)

where sφ is defined in Def. 6.5, such that

1. ∀s′′ ⊆sφ :s′′ ⊆ ŝ⇒∃sf ∈S∩℘(ŝ∪{αφ,sS }) :s′′ ⊆sf
2. ∀s′′ ⊆sφ :∃sf ∈S∩℘(ŝ∪{αφ,sS }) :sf 
⊆s′′
3. S∩℘fin(ŝ∪{αφ,sS }) is directed
Note that, given S ,s and φ, there may exist more than one α∈U \sφ satisfying the three
properties above, but we select one of them (arbitrarily) and call it αφ,sS .

PROOF. Follows from Lemma 6.4.2, since S is finitary, ŝ∪{∗}∈S and sφ ∈℘fin(U ). �

DEFINITION 6.7 (s̃φ,sS )
Let φ∈L, S be a finitary set of general models and s∈S .
Let

s̃φ,sS =
{
s if ∗ 
∈s
(s\{∗})∪{αφ,sS } if ∗∈s

(s̃φ,sS is s possibly with the asterisk replaced by α
φ,s
S ).

PROOF OF THEOREM 6.2. Let � be a theory such that S∗(�) is finitary. Henceforth, let S=
S∗(�). Let φ be an arbitrary formula, and assume that there is a general model s∈S satis-
fying φ. We will show that there is a model sf ∈Sf satisfying φ, which proves the theorem
by Corollary 5.8.
Either ∗∈s or ∗ 
∈s. When ∗∈s, the following shorthand notation is used:

α=αφ,sS
where αφ,sS is defined in Lemma 6.6, where

α 
∈sφ
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Similarly, the following shorthand notation is used (see Def. 6.7):

s̃= s̃φ,sS
If ψ ∈L, let L(ψ) be the following statement

L(ψ) :∃sf
⎧⎨
⎩
a) sf ∈Sf
b) sf ⊆ s̃
c) s′ |=∗ψ for all s′ s. t. sf ⊆s′ ⊆ s̃

and let P(ψ) be the following statement

P(ψ) :ψ≤φ⇒
{
1) s |=∗ψ⇒ L(ψ)
2) s |=∗ ¬ψ⇒ L(¬ψ)

If P(φ) holds, then, since φ≤φ, L(φ) holds by 1) and the fact that s |=∗φ. P(φ) is a
stronger statement than the theorem, and is needed for the inductive structure of the proof.
By taking s′ =sf in c) (in L(φ)), we get that sf |=φ for sf ∈Sf , which proves the theorem.
Before the main proof of P(φ), one property of S is shown:

∃sf ∈Sf :sf ⊆ s̃ (5)

To see that (5) holds, first consider the case that s is finite. If ∗ 
∈s, then sf =s∈Sf and
sf ⊆ s̃=s. If ∗∈s, then there is a sf ⊆ s̃ by Lemma 6.6.2 (take, e.g., s′′ =sφ) and sf ∈Sf since
s̃ is finite. Second, in the case that s is infinite then s̃=s and (5) holds by Lemma 6.4.1.a.
We now prove P(ψ) for all formulae ψ (including φ), by induction over the structure of

ψ .1

ψ=�(X): Assume that �(X)≤φ.
1. Assume that s |=∗ �(X), i.e., X⊆s. We show L(�(X)) in the following three cases:
i) ∗ 
∈s and s finite: let sf =s, then a), b) and c) hold trivially.
ii) ∗ 
∈s and s infinite: by Lemma 6.3, since X is a finite subset of s, there is an
sf ∈S∩℘fin(s), giving a) and b) (s̃=s), such that X⊆sf . If sf ⊆s′ ⊆ s̃, then X⊆s′
and s′ |=∗ �(X) giving c).
iii) ∗∈s: by Lemma 6.6.1, since X⊆sφ and X⊆(s\{∗}), there is an sf ∈S∩℘fin(s̃),
giving a) and b), such that X⊆sf . If sf ⊆s′ ⊆ s̃, then X⊆s′ and s′ |=∗ �(X) giving c).

2. Assume that s |=∗ ¬�(X), i.e., X 
⊆s. We show L(¬�(X)). By (5) there exists an sf
such that sf ∈Sf and sf ⊆ s̃, giving a) and b). Let s′ be such that sf ⊆s′ ⊆ s̃. First,
consider that ∗ 
∈s. Then s̃=s, and since X 
⊆s, X 
⊆s′. Second, consider that ∗∈s.
Assume that X⊆s′. Then X⊆ s̃ but, since �(X)≤φ, α 
∈X by definition of α, so
X⊆(s\{∗}). But this is a contradiction, since (s\{∗})⊂s and X 
⊆s, so the assumption
that X⊆s′ is impossible. Thus in either case, X 
⊆s′, and s′ |=∗ ¬�(X) giving c).

ψ=�(X): Assume that �(X)≤φ.
1. Assume that s |=∗ �(X), i.e., s⊆X . We show L(�(X)). Simply choosing sf =s suffice:
a) holds since s∈S and s is finite since s⊆X . b) holds since s⊆X⇒ ∗
∈s⇒ s̃=s=
sf ⇒ sf ⊆ s̃. Let s′ be such that sf ⊆s′ ⊆ s̃. Since sf = s̃, s′ = s̃=s. s′ ⊆X , and s′ |=∗ �(X).

1Keep in mind that s,φ,s̃, and α whenever ∗∈s, are fixed before the inductive proof of P.
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2. Assume that s |=∗ ¬�(X), i.e., s 
⊆X . We show L(¬�(X)) in the following three cases:
i) ∗ 
∈s and s finite: let sf =s, then a), b) and c) hold trivially.
ii) ∗ 
∈s and s infinite: s̃=s. By Lemma 6.4.1.b, since X ∈℘fin(U ), there is an sf such
that sf ∈Sf and sf ⊂s= s̃ giving a) and b), and such that sf 
⊆X . If s′ is such that
sf ⊆s′ ⊆ s̃=s, then s′ 
⊆X and s′ |=∗ ¬�(X) giving c).
iii) ∗∈s: Since X⊆sφ , by Lemma 6.6.2 there is an sf such that sf ∈Sf and sf ⊂ s̃,
giving a) and b), and such that sf 
⊆X . If s′ is such that sf ⊆s′ ⊆ s̃, then s′ 
⊆X and
s′ |=∗ ¬�(X) giving c).

ψ=¬ψ1: The induction hypothesis is P(ψ1). Assume that ¬ψ1≤φ; then also ψ1≤φ.
1. Assume that s |=∗ ¬ψ1. Then, since ψ1≤φ, L(¬ψ1)=L(ψ) holds by P(ψ1) 2).
2. Assume that s |=∗ ¬¬ψ1. Then, s |=∗ψ1 and since ψ1≤φ, L(ψ1) holds by P(ψ1) 1). By
the definition of L, L(ψ1) holds iff L(¬ψ)=L(¬¬ψ1) holds.

ψ=ψ1∧ψ2: The induction hypotheses are P(ψ1) and P(ψ2). Assume that ψ1∧ψ2≤φ.
1. Assume that s |=∗ψ1∧ψ2. ψ1∧ψ2≤φ implies that ψ1≤φ, and s |=∗ψ1∧ψ2 implies that
s |=∗ψ1, and thus, by P(ψ1), L(ψ1) holds. That is, there exists s

f
1 ∈Sf such that sf1⊆ s̃

and for all s′1 such that s
f
1⊆s′1⊆ s̃, s′1 |=∗ψ1. Similarly, by P(ψ2), L(ψ2) holds; there

exist, sf2 ∈Sf such that sf2⊆ s̃ and for all s′2 such that sf2⊆s′2⊆ s̃, s′2 |=∗ψ2. We show
L(ψ1∧ψ2). Since S∩℘fin(s̃) is directed (by Def. 6.1.1.a when ∗ 
∈s and by Lemma
6.6.3 when ∗∈s (recall that s is finite when ∗∈s)) and sf1,sf2 ∈S∩℘fin(s̃), there exists
an sf ∈S∩℘fin(s̃) such that sf1,sf2⊆sf . a) holds since sf ∈S is finite, and b) holds since
sf ∈℘fin(s̃). Let s′ be such that sf ⊆s′ ⊆ s̃. Because sf1⊆sf ⊆s′ ⊆ s̃, sf1⊆s′ ⊆ s̃ and, by
L(ψ1), s′ |=∗ψ1. Similarly, because s

f
2⊆sf ⊆s′ ⊆ s̃, sf2⊆s′ ⊆ s̃ and, by L(ψ2), s′ |=∗ψ2.

Thus, s′ |=∗ψ1∧ψ2, and c) holds.
2. Assume that s |=∗ ¬(ψ1∧ψ2); s |=∗ ¬ψ1∨¬ψ2; s |=∗ ¬ψ1 or s |=∗ ¬ψ2. Assume the first
case (the proof in the second case is symmetrical). ψ1∧ψ2≤φ implies that ψ1≤φ and
since s |=∗ ¬ψ1, L(¬ψ1) holds by P(ψ1). That is, there exist sf ∈Sf such that sf ⊆ s̃ and
for all s′ such that sf ⊆s′ ⊆ s̃, s′ |=∗ ¬ψ1. But then we also have that s′ |=∗ ¬(ψ1∧ψ2)
(i.e., sf , the witness in L(¬ψ1), is also a witness in L(¬(ψ1∧ψ2))). �

COROLLARY 6.8
FS is �-complete if S∗(�) is finitary.

Theorem 6.2 shows that the conditions in Definition 6.1 on the class of general models of
a theory are sufficient to conclude that the axioms are finitary. In the following lemmas,
we present several simpler but stronger sufficient conditions (the proofs are straightforward
and left for the reader).

LEMMA 6.9
A set of general models S⊆S∗ is finitary if

1. For every infinite s∈S :
(a) S |fs is directed
(b) S |fs is a cover of s

2. ∀s�{∗}∈S :∀s′ ∈℘fin(U ) :∃α∈U \s′:
(a) S |fs∪{α} is directed
(b) S |fs∪{α} is a cover of s∪{α}

The following conditions are even stronger than Lemma 6.9.
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LEMMA 6.10
S⊆S∗ is finitary if either one of the following three conditions hold:

1. For every s⊆U :
(a) S |fs is directed
(b) S |fs is a cover of s

2. (a) S |fs is directed for every s⊆U
(b) {α}∈S for every α∈U

3. (a) S |fs is directed for every infinite s∈S
(b) {α}∈S for every α∈U
(c) ∀s�{∗}∈S :∀s′ ∈℘fin(U ) :∃α∈U \s′ :s∪{α}∈S

Thus, given a theory �, we now have a tool for proving �-completeness: take the general
model class S∗(�) and check whether any of the conditions given above hold. If the answer
is positive, we have �-completeness: ��φ for all φ such that � |=φ.
The sufficient conditions for (semantic) finitariness above can be used to show that the
empty theory is (syntactically) finitary, and thus that FS is weakly complete, i.e., that |=φ
implies that �φ for all φ.
COROLLARY 6.11 (Weak Completeness)
FS is weakly complete wrt. S fin .
PROOF. It suffices to show that S∗(∅)=S∗ is finitary. Then, it follows by Theorem 6.2 that
∅ is a finitary theory, and thus Theorem 5.7 implies that FS is ∅-complete, i.e., weakly
complete.
We make use of Lemma 6.10.1. Let s⊆U . S∗|fs=S∗∩℘fin(s)=℘fin(s). ℘fin(s) is directed,

because for every finite subset B⊂℘fin(s), ∪s′∈Bs′ ∈℘fin(s). ℘fin(s) is a cover of s, because
s⊆⋃

℘fin(s). �

Since |=φ→ψ iff ∀s∈S fin :s |=φ implies s |=ψ , the corollary implies also that for every finite
�, FS is �-complete. Although the particular case of weak completeness can be proved
directly in a less complicated manner, the above proofs and statements reflect the interest
in the more general properties of finitariness. The next section gives some examples.

7 Example: finite epistemic states

Epistemic or doxastic logics [14, 11, 19] are used to reason about knowledge and belief.
Most often such logics are based on propositional modal logic, with a modality B with the
intended meaning of Bα that α is believed or known. Epistemic logics vary according to
which principles of knowledge they accept, some common ones being:

B(α→β)→(Bα→Bβ) Distribution K
Bα→¬B¬α Consistency D
Bα→BBα Positive Introspection 4
¬Bα→B¬Bα Negative Introspection 5

All (normal) modal epistemic logics agree on one principle, namely that belief is closed
under logical consequence: if α is believed and ψ is a logical consequence of α, then ψ is
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also believed. It follows, e.g., that it is assumed that all tautologies are believed, that an
inconsistent belief entails belief in everything, and that an agent always has infinitely many
beliefs. Thus, such logics give an account of implicit beliefs, or belief after an indefinite
amount of time, or the beliefs of ideal reasoners, but do not model the explicit beliefs of real
resource-bounded agents at a certain point in time very well. This is commonly known as
the logical omniscience problem [13].
In particular, modal epistemic logic does not seem to be very well suited to model the
explicitly computed beliefs, at some point in time, of reasoners who store their beliefs syn-
tactically as logical formulae (e.g., in a database or written on a piece of paper). In practice,
closure conditions such as closure under logical consequence on such belief states can not be
assumed, because a certain inference might not yet have been made. Often no consistency
condition can be assumed either – real agents often hold contradictory beliefs. Finally, a
real reasoner can only store a finite number of formulae simultaneously. The logical closure
assumption in modal epistemic logics makes them inadequate for modeling finite sets of
beliefs.
A logic for reasoning about belief as arbitrary finite sets of formulae can be obtained
by interpreting formulae Bα using syntactic assignments instead of Kripke structures (see,
e.g., [11, Ch. 9]). Syntactic assignments are generalisations of both Kripke structures and
Montague-Scott structures [20, 21, 28]. The literature contains numerous proposed solutions
to the logical omniscience problem, see, e.g., [22, 29, 11] for reviews. Wansing [30] shows that
many of these approaches can be modeled using Rantala models [25, 26], and that Rantala
models can be seen as the most general models of knowledge. It is easy to see that syntactic
structures are as general as Rantala models. However, the logic one obtains, assuming the
traditional propositional belief language, is simply propositional logic – this notion of belief
has no non-trivial properties expressible in the language. By using our logic of finite sets,
however, we obtain a more expressive language for reasoning about finite syntactic belief
states. Thus, take the universe U to be some object language OL – the language we assume
that the agents store their beliefs in (propositional logic, traditional epistemic logic, even
our language L itself, etc.). Formulae are thus interpreted as statements about a finite set
of beliefs, and we can now read the 	 operator as B: 	α means that α is included in the
belief set. Furthermore, �(X), where X is a finite set of object formulae, means that at least
X is believed (stored). Correspondingly, �(X) means that at most X is believed. While
�(X) is already definable in the traditional propositional belief language, �(X)≡∧

α∈X Bα,�(X) is not – it corresponds to a conjunction �(X)≡∧
α∈OL\X¬Bα in the case that OL

is finite, but the conjunction would be infinite in the typical case of an infinite object
language (e.g., an object language closed under propositional connectives). This notion of
believing at most can be seen as a syntactic version of the notion of only knowing [16] in
modal epistemic logic. Thus, FS is a sound and weakly complete axiomatisation for reason-
ing about finite syntactic belief states in the language of believing at least and believing
at most.
FS axiomatises unrestricted finite belief sets. We might want to restrict the possible
belief sets s by imposing closure conditions which do not entail infiniteness, or consistency
conditions. For example, we may want to axiomatise the class of belief sets not containing
both α and ¬α for any α – i.e., the class of model sets S fin(D) for the D axiom above.
Or the class S fin(K) of finite sets containing Bβ whenever they contain B(α→β) and Bα;
S fin(4) of finite sets containing BBα whenever they contain Bα; or S fin(5) of finite sets
containing B¬Bα whenever they contain ¬Bα. The results in the previous sections can help
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us investigate axiomatisations of such classes.2 The following are some examples. Let FSA
denote the system obtained by adding axiom schema A to FS (note that we view an axiom
schema as an (infinite) set of formulae). Henceforth, assume that the object language OL is
closed under propositional connectives and the B (	) operator.
THEOREM 7.1 (Completeness Results)
1. FSK is sound and weakly complete with respect to S fin(K)
2. FSD is sound and weakly complete with respect to S fin(D)
3. FS4 is not complete with respect to S fin(4)
4. FS5 is not complete with respect to S fin(5)
PROOF. Consider first the two former parts of the theorem. Soundness follows immediately
from Corollary 5.1 and the fact that K and D are valid in S fin(K) and S fin(D), respectively.
For the completeness claims, we have the following classes of general models, for the two
axioms, respectively:

S∗(K) =S∗ \{s∈S∗ :∃α,β∈OL :α→β,α∈s,β 
∈s}
S∗(D) =S∗ \{s∈S∗ :∃α∈OL :α,¬α∈s}

It suffices to show that these classes of general models are finitary. It then follows by Corol-
lary 6.8 that FS is K-complete and D-complete. Thus, if φ is valid on S fin(K) then φ is
derivable from the combination of FS and K, and similarly for D.
For the two latter parts of the theorem, we show that 4 and 5 are not finitary theories; it
follows by Theorem 5.7 that FS is not 4-complete or 5-complete. Thus, there exists formulae
φ such that φ is valid on S fin(4) but φ is not derivable from the combination of FS and 4,
and similarly for 5.

1. Lemma 6.10.3 holds for S∗(K):
Lemma 6.10.3.(a): It must be shown that S∗(K)|fs is directed for infinite s∈S∗(K). Let
s′,s′′ ∈S∗(K)∩℘fin(s), and let:

s0=s′ ∪s′′
sj=sj−1∪{β :α→β,α∈sj−1}
sf =⋃

k sk

It is easy to show that sf ∈S∗(K), each sj is a finite subset of s, and sf is finite.
Lemma 6.10.3.(b): Clearly, {α}∈S∗(K) for every α∈OL.
Lemma 6.10.3.(c): Let s�{∗}∈S∗(K) and s′ ∈℘fin(OL). Let α∈OL be s. t.:
• α→β 
∈s for any β∈OL
• α 
∈s′
• The main connective in α is not implication

It is easy to see that there exist infinitely many α satisfying these three conditions;
there are infinitely many α∈OL without implication as main connective, and both s
and s′ are finite. It can easily be shown that s∪{α}∈S∗(K).

2Note that, for instance, S fin(K) denotes the class of models of this one axiom only, not of the modal logic (also
called) K.



Complete Axiomatisations of Properties of Finite Sets 309

2. Lemma 6.10.3 holds for S∗(D):
Lemma 6.10.3.(a): It must be shown that S∗(D)|fs is directed for infinite s∈S∗(D). Let
s′,s′′ ∈S∗(D)∩℘fin(s), and let sf =s′ ∪s′′. It can easily be shown that sf ∈S∗(D), and
sf ∈℘fin(s) trivially.
Lemma 6.10.3.(b): Clearly, {α}∈S∗(D) for every α∈OL.
Lemma 6.10.3.(c): Let s�{∗}∈S∗(D) and s′ ∈℘fin(OL). Let α∈OL be s. t.:
• ¬α 
∈s
• α 
∈s′
• α does not start with negation

It is easy to see that there exist infinitely many α satisfying these three conditions;
there are infinitely many α∈OL without negation as main connective, and both s and
s′ are finite. It can easily be shown that s∪{α}∈S∗(D).

3. Let s∈S fin be such that s |=4. s must be the empty set – otherwise it would not be
finite. Thus, 4 |=�(∅). 4 does, however, have infinite models, so 4 
|=∗ �(∅). Corollary
5.8.4 gives that 4 is not finitary.

4. It is easy to see that 5 is not satisfiable in S fin (i.e., that a model for 5 must be infinite).
By Lemma 5.5 and Lemma 5.4, 5 is not finitary. �

Of course, it is intuitively clear that K and D are compatible with finite beliefs and that
4 and 5 are not, but the examples above show how this (in)compatibilty is manifested as
(in)completeness and illustrate how, e.g., completeness can be proved. Note that in the case
of FS4, unlike FS5, there are finite models (namely the empty set).
The above examples show the possibilities of reasoning about static syntactic belief sets

at a given point in time. In [3] the dynamics of such states are studied by adding ‘believing
at least’ and ‘believing at most’ operators to modal logics.

A remark
Most epistemic axioms require a certain relationship between the object language OL and
the language L. In the example above we required, for the 4 and 5 axioms to be well-formed,
that OL is closed under B(	).
Consider now the veridicality axiom T :Bα→α. This axiom requires that OL⊆L. How-

ever, that is not possible in the typical case when OL contains primitive propositions, such
as when OL is the traditional language of epistemic logic, because L does not contain such
propositions. This problem can be circumvented by slightly modifying the definition of the
meta language L to allow primitive propositions.3 An interesting consequence of a finitary
semantics is that such an axiom precludes knowing the (finite) limit of one’s knowledge. If
knowledge implies truth, T, then there is no (finite) s and X such that s |=�({�(X)}). For
assume that there are such an s and X . Then, s |=�({�(X)}) iff �(X)∈s, while by T, also
s |=�(X), i.e., s⊆X . Thus �(X)∈X which is impossible, at least as long as we are working
with the usual well-founded syntax and set theory.

3At the same time, L is defined as a function of U =OL. L and OL can in this case more precisely be defined
simultaneously as follows. We take as the basis some, possibly empty, set of primitive atoms L0=A, and define the
formulae φi+1 of the language Li+1(Li) as in (1) with the additional clause ... |φi . L is then the least fixed point,
relative to a given A, which exists by the Knaster-Tarski theorem. With A 
=∅, the notion of a model is extended
with the valuation of the elements of A to handle their propositional combinations. Details can be found in [1].
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Finally we remark that, as discussed in the beginning of this section, the interpretation of
the belief operator used here is very different from the interpretation in classical epistemic
logic, and thus that the results obtained here are not directly transferable to, or comparable
to results in, modal logic.

8 Discussion and conclusions

We introduced a propositional logic over expressions �(X) and �(X), where X is a finite
set, interpreted as statements about some (other) finite set.
The main results are an axiomatisation of the logic, characterisation of finitely satisfiable
theories (finitarily open theories), and two characterisations of additional axioms for which
the resulting logic is complete. The first, the notion of finitary theories, is proof-theoretic.
The second, in form of algebraic conditions on the class of general models, is a semantic one,
but gives only sufficient conditions for finitariness. The latter was used to show finitariness of
the empty theory and thus weak completeness of the system. The semantic conditions give a
general completeness proof, of which weak completeness is a special case, and the complexity
of the proof is due to this generality. In general, we get the following methodology. We can
prove that a theory is finitary by taking its class of general models, and check that it
has one of the algebraic properties discussed in Section 6. Conversely, we can prove that a
theory is not finitary, by using the finitariness properties discussed in Section 5. We showed
some examples of both methods in Section 7. It remains for future work to show whether
or not the semantic conditions in Definition 6.1 are also necessary for finitariness and, if
not, tighten them to obtain conditions which are both sufficient and necessary. The idea of
characterising a class of logics for which we have completeness is also used in Sahlqvist’s
completeness theorem for modal logic [27], but the characterisation does not seem to be
directly comparable.
Most of the results presented here originate from [1], in which they are presented in the
context of resource-bounded reasoners discussed in Section 7. Some related works on the
two unary set operators in the same context have since appeared. There are some minor
differences between variants of the language; the variant of the language we have used in
the current article is identical to the language used in [4] (see further discussion below).4

In [6] we study axiomatisations of the language with the inclusion and exclusion operators
interpreted over general (possibly infinite) sets. In [3] modal logics extended with the two
unary set operators are studied. The extended modal language is interpreted over Kripke
structures where a finite set is associated with each state. The finite sets are assumed to
be finite syntactic belief sets, as in Section 7, and the modal operators are used to express
properties about how belief sets can evolve as a result of reasoning or communication. For
example, (	p∧	(p→q))→�	q means that the agent can reason with modus ponens. In
[2] a propositional language with nullary operators min(n) and max(n) interpreted in the
context of a set, meaning, respectively, that the set has at least n elements and at most n

4In [1] and the mentioned follow-up works in the same context the symbols � and � are used for the exclusion
and inclusion operators � and �, respectively. In these works, the finite sets represent sets of formulae in an agent’s
belief base. Two minor differences between the set operators in [1, 5], on the one hand, and the other mentioned
related works and the current article, on the other are, first, that instead of an atomic symbol for each finite set,
terms representing sets are built from symbols standing for individual elements and set-building operators; and,
second, that several pairs of the unary set operators are allowed, each pair interpreted over a designated finite set
representing the belief base of one of several agents.



Complete Axiomatisations of Properties of Finite Sets 311

elements, is studied, and the relative expressiveness of the operators min(n), max(n), �(X)
and �(X) are compared.
In a separate strand of research, a language identical to the one discussed in this article
was used by Ågotnes, van der Hoek and Wooldridge [4] in order to succinctly express the
ability of coalitions of agents in a variant of Coalition Logic [24] called Quantified Coalition
Logic (QCL).5 The main construct of QCL is of the form 〈P〉φ where φ is a formula of
the QCL language and the coalition predicate P is a formula over the language we have
discussed in this article taken over the universe of all agents (or agent names). Intuitively,
〈P〉φ means that there exists some coalition (finite set of agents) satisfying P which has
the power to bring about φ (by acting in a certain way). For example, ¬〈¬�({a})〉p means
that agent a is a weak veto player for p: it is not the case that there exists a coalition C
which does not include agent a and which can bring about p. The system FS presented
in the current paper was in fact used as an axiomatisation of coalition predicates in [4].
However, in [4] the universe of all agents (the grand coalition) is taken to be finite, and most
of the results in the current article are interesting only in the case of an infinite universe.
Completeness in the case of a finite universe is a rather trivial special case of the general
result since the inclusion operator then can be expressed in terms of the exclusion operator
(�(X)≡∧

e∈U \X¬	e). An interesting opportunity for future work is to apply the results
presented here to a setting of [4] with an infinite universe of agents.
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