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Abstract

The thesis presents a logic of the explicit knowledge of deliberative agents
who represent their knowledge symbolically as sets of formulae – agents with
finite syntactic epistemic states. It is well known that modal epistemic logic
either describes implicit knowledge, including all logical consequences of the
explicit knowledge, or describes the explicit knowledge of unrealistically in-
telligent and powerful agents, but does not describe the explicit knowledge of
real agents. A source of this problem is the failure to separate the concepts of
explicit knowledge and reasoning. The logic in this thesis consists of two parts.
The first is a logic of explicit syntactic knowledge, with no closure conditions,
which can be viewed as knowledge at a given point in time. Although this is
a simple concept, the meta-language is expressive enough to allow the devel-
opment of an interesting theory of static finite syntactic epistemic states. The
second part is a logic of the evolving explicit syntactic knowledge of agents
who have reasoning and communication mechanisms in addition to syntacti-
cal storage, i.e. about how the epistemic states can change over time as a result
of reasoning and/or communication. The language introduces expressions for
knowing a rule, analogue to knowing a formula. Instead of the usual closure
conditions on knowledge it is possible to express the fact that if an agent knows
some formulae and he knows a certain rule, then he may get to know a conclu-
sion if he chooses to. This model is based on Alternating-time Temporal Logic
(ATL). It differs from related epistemic logics based on ATL in that it models
explicit instead of implicit knowledge and in the expressiveness of rule oper-
ators. It differs from related models of evolving explicit knowledge in that it
allows reasoning in terms of possible futures, cooperation and strategies.
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Chapter 1

Introduction

1.1 Reasoning About Knowledge

Formal methods for reasoning about knowledge are used to design and an-
alyze artificial intelligent agents, to design and analyze distributed computer
systems, to predict the outcome of games with rational players, to provide for-
mal semantics for natural languages, and by philosophers to gain a better un-
derstanding of the concept of knowledge.

In artificial intelligence and computer science, the word “knowledge” is
most often used as a metaphor. For example, we may say that a car wash ma-
chine knows the position of a car by the use of optical sensors, or that a web
browser knows the previous page you visited. For a slightly more advanced ex-
ample, if a network component A sends a message to component B and B sends
back an acknowledgement to A, it may be of interest to reason about whether
B knows that A knows that B knows the message. We do of course not mean that
the car wash machine, the web browser or the network components have con-
sciousness, neither do we necessarily assume properties of knowledge from
epistemology such as justification, truth, etc.1 The metaphorical use of “know”
usually means “have information”, but the precise meaning will always be de-
fined in a formal system such as the ones presented in this thesis. As always,
the use of metaphors comes with a price: the danger of identifying the two
concepts.

To be able to do a formal analysis, the properties of knowledge must be
defined. To this end, epistemic logic is used.

1.1.1 Epistemic Logic

While there are many different proposals about how to model the logic of
knowledge in the literature, the most popular are based on modal epistemic logic,
henceforth called epistemic logic when no confusion can occur, with language
and semantics (Hintikka, 1962) taken from modal logic. The book “Reasoning
about Knowledge” by Fagin et al. (1995) is the standard reference in the field.

1In the literature, the metaphor “belief” is sometimes used instead of “knowledge”, and
“knowledge” used as true belief. I do not make this distinction.

3



4 CHAPTER 1. INTRODUCTION

Modal epistemic logic is based on classical propositional logic. The modal
operator K is used to represent the fact that something is known. If p is the
proposition that it rains in Bergen, then Kp is the proposition that it is known
that it rains in Bergen. In systems of several agents, multi-agent systems, (i) the
individual agents often have to reason about the knowledge held by the other
agents, and (ii) we (the analysts or designers) need to reason about the indi-
vidual knowledge held by the agents. For multi-agent systems, the standard
modal logic is extended to a multi-modal logic by introducing a knowledge
operator Ki for each agent i. These logics can be used to express propositions
like K1K2¬K1¬p — agent 1 knows that agent 2 knows that agent 1 considers it
possible that it rains in Bergen.

Examples of potential properties of knowledge are whether Ki p can be true
without KiKi p being true, or Ki p and Ki¬p being true at the same time. Rather
than being one logic with fixed properties of knowledge, epistemic logic is a
collection of logics with different properties.

1.2 Finite Syntactic Epistemic States

Dennett (1987) suggests that many systems can be analyzed by ascribing atti-
tudes such as knowledge, intentions, etc., to agents; this is called the intentional
stance. Examples of such ascriptions of knowledge were mentioned earlier.

In this thesis I will, however, model the knowledge of deliberative agents.
A deliberative agent acts according to knowledge obtained by observing and
reasoning about its environment and represented symbolically, in contrast to a
reactive agent who reacts on stimuli from the environment without symbolical
deliberation. Of course, “knowledge” is used as a metaphor also in this context.

In principle, symbolical knowledge can be represented internally by differ-
ent agents in different ways; e.g. in different types of data structures.

In this thesis I consider agents who represent their knowledge syntactically;
as strings of symbols representing formulae in some logical language2. It is
assumed that agents have a storage for such syntactical representations. For
example, they may write them down on a piece of paper or store them in a
database. The storage is not required to be permanent; it is possible to remove
items from it between a point in time and the next. However, at a given point
in time, each agent is assumed to have a fixed set of such syntactical objects —
called a syntactic epistemic state (henceforth sometimes just “epistemic state”).

Obviously, no agents can have a syntactic epistemic state which is not finite.
The goal in this thesis is an epistemic logic for agents with finite syntactic

epistemic states.

1.3 The Logical Omniscience Problem

Modal epistemic logic have been successfully applied to puzzles involving
complicated nested knowledge, such as the Three Wise Men puzzle. One of the
reasons that modal epistemic logic lends itself to these kinds of puzzles, is that

2Konolige (1986a) calls this concept “sentential”, and uses the term “syntactic” for first-order
approaches to epistemic logic.
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it is assumed in the puzzles that the agents which are modeled are extremely in-
telligent. One property of knowledge shared by all the variants of modal epis-
temic logic is that the agents know all the consequences of their knowledge,
including all tautologies. This is, however, a property not normally associated
with the concept “knowledge”. For example, if someone knows the rules of
chess, he will not automatically know whether white has a winning strategy.
This problem is called the logical omniscience problem (LOP). The real concept
of knowledge contains facts held explicitly, rather than implicitly. Levesque
(1984a) identifies these two different concepts of knowledge; implicit and ex-
plicit knowledge. Explicit knowledge is the actual knowledge held explicitly by
an agent, which he can act upon and answer questions about; implicit knowl-
edge is that which follow logically from explicit knowledge. Modal epistemic
logic can be seen as a theory of implicit knowledge of real agents or, alterna-
tively, as a theory of explicit knowledge for ideal agents with unlimited reason-
ing abilities. It fails, however, as a general theory of the (explicit) knowledge
of real agents. Particularly, it fails as a theory of the explicit knowledge of
agents with finite syntactic epistemic states. “Solving” the LOP by interpret-
ing “knowledge” as implicit knowledge of course only changes the problem to
finding a logic that describes explicit knowledge. This thesis presents a logic
of explicit knowledge for agents with finite explicit epistemic states, without
logical omniscience.

1.3.1 Logically Non-omniscient Agents

Some of the explanations of the fact that real agents lack logical omniscience
found in the literature are that an agent lacks awareness of certain formulae,
that it does not focus on all issues simultaneously, that it has an incomplete reason-
ing mechanism, that is has bounded resources, that it has different states of mind
at different times, that it reasons in a non-standard logic, that it is restricted to
computing solutions to problems of a given complexity class, that it fails to take
all relevant knowledge into consideration when considering a possible conclu-
sion, and others. Fagin & Halpern (1988, p. 40) suggest that the LOP “stems
from a number of different sources”, and list the first four of the sources just
mentioned.

Aside from incomplete reasoning mechanism, each of the other explana-
tions seems to be a special case of bounded resources, and it is not difficult to
find examples of real agents who do not match each of the descriptions. (Men-
tal) action is needed to reason, and real agents cannot do an unlimited num-
ber of actions, because they have limited resources. Although an incomplete
reasoning mechanism can in theory be a source of logical non-omniscience or-
thogonal to bounded resources, in practice the latter is much more plausible.
For example, the reason that a chess player does not know whether white has a
winning strategy is that he cannot reason fast enough, or, equivalently, that he
does not have enough time, and not that he does not know the rules of chess.

Thus, in a realistic model of deliberative agents, lack of logical omniscience
should be modeled by bounded resources rather than by logical ignorance. Hintikka’s
semantics does not take bounded resources into account. Resources here are
typically time and memory. In this thesis I make the simplifying assumption
that the only bound on memory is that it must be finite. This is done in order
to focus on the other bounded resource: time.
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Examples such as the chess example motivate explanations such as inability
to compute solutions to problems in certain complexity classes as mentioned
above. However, in principle there is not a qualitative difference in doing sim-
ple and complex deductive reasoning, in e.g. using modus ponens one time
or a million times. Not even simple consequences of knowledge is obtained
automatically, but presupposes mental action. One cannot say that an agent
must at a particular time know anything additional because it follows from his
other knowledge, because he may not have computed it yet. A proper logic of
explicit knowledge must make the distinction between knowledge and reason-
ing, and modal epistemic logic does not do that. This motivates the following
description of explicit knowledge: explicit knowledge has no closure.

Of course, a completely “stupid” agent, unable to draw any consequences
of its knowledge, is perfectly non-omniscient. Thus non-omniscience is only
one part of a proper logic. A crucial property of a logic is that it allows model-
ing non-omniscient agents that nevertheless are intelligent. Non-omniscience
and non-ignorance are not contradictory when the concept of knowledge is
distinguished from the concept of reasoning; note the difference between the
fact that, in a logical system, agent a’s knowledge of a set of formulas Φ log-
ically implies that agent a may know some other formula φ after using some
resources and the fact that agent a’s knowledge of Φ implies agent a’s knowl-
edge of φ. In other words, agents must – in principle – be able to find out any
consequence of their knowledge, given enough time. For example, unlike a
closure condition such as

If the agent knows both p and p→ q then he must also know q.

the following condition describes explicit knowledge properly3:

If the agent knows both p and p → q and he has a mechanism that
can deduce q from p and p→ q, then he will know q in the future if
he chooses to.

Each use of “know(s)” in this latter condition means “know(s) explicitly”, and
the condition is a relation between the (explicit) knowledge at different points
in time and reasoning.

1.4 A Logic of Finite Syntactic Epistemic States

The solution to the seemingly contradictory requirements that the agents should
not be logically omniscient and be able to find out any consequences of their
knowledge, is that two modalities are required: knowledge and time.

A logic of explicit knowledge will then be composed of three parts. First,
a model of the concept of static explicit knowledge at a point in time. Second,
a model of time. Third, a model of interaction between the two modalities:
how explicit knowledge evolves dynamically over time as a result of reasoning,
observation, communication, etc.

This thesis presents such a logic, and the three parts are introduced next.

3This description of explicit knowledge as presupposing action is the view taken by Duc
(1997b), where an action corresponds to the selection of an inference rule in a model similar to
the one in this thesis (discussed further in Section 9.6).
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1.4.1 A Model of Static Explicit Knowledge

The model of the static explicit knowledge of agents with finite syntactic epis-
temic states (as described in Section 1.2) describes each agent as a finite set of
formulae in a specified object language in which the agents can represent their
knowledge about the world and about other agents’ knowledge. There are nei-
ther closure or consistency conditions on epistemic states; an agent can know,
at a given point in time, a contradiction and he can know φ without knowing
¬¬φ. The only condition on the epistemic states is that they must be finite.

An agent explicitly knows a formula at a point in time if and only if the
formula is included in his epistemic state.

1.4.2 A Model of Time

Time is viewed as a sequence of discreet time points. A main difference be-
tween logical models of time is whether they are linear or branching. The latter
allow reasoning about possible futures, and the most popular logic of this kind
is Computational Tree Logic (CTL). Branching time is selected as a model of time
in this thesis, because it allows such reasoning about explicit knowledge as
“the agent may know the formula in the next state” or “it is possible that the
agent will never know the formula”.

Recently, Alternating-time Temporal Logic (ATL) has been proposed as a gen-
eralization of CTL. ATL allows reasoning about cooperation, for example about
facts such that “agent a and b can cooperate to make the formula true in the
next state”. As this kind of cooperation is very useful to explain how explicit
knowledge can evolve in a multi-agent system, ATL is selected as a framework
for modeling time.

1.4.3 A Model of Dynamic Explicit Knowledge

In addition to a symbolical storage, the agents described by the logic are equipped
with mechanisms. A mechanism is a general model of reasoning; an agent can
use the mechanism to obtain a new epistemic state from a current one. In the
logic, we can reason about mechanisms in terms of knowledge of rules, as fol-
lows:

If the agent knows both p and p→ q and he knows modus ponens,
then he can get to know q in the next state if he chooses to.

Very few restrictions are placed on mechanisms; they are neither required to be
sound or complete.

Reasoning is not the only way knowledge can evolve. In general knowl-
edge evolves through observation, and in a multi-agent system through com-
munication. In this thesis I focus on communication; other types of observation
can be modeled as communication from an “environment agent”. Communi-
cation can be viewed as a generalization of reasoning; the latter can be seen as
intra-agent communication. Thus, mechanisms are generalized to model also
inter-agent communication.
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1.5 Overview of the Thesis

The next preliminary chapter reviews background and motivation for the rest
of the thesis. Review of related work is mostly postponed to Part IV. First,
modal epistemic logic is formally presented. This presentation also serves as
an introduction to logical concepts and conventions used throughout the the-
sis. The logical omniscience problem is then discussed in greater detail, par-
ticularly the source of it in modal epistemic logic including some approaches
to alleviate the problem in order to model explicit knowledge. The last back-
ground section is on alternating-time temporal logic.

The main parts of the thesis are II and III, which present the models intro-
duced in Sections 1.4.1 and 1.4.3. Although the latter is an extension of the
former, the former is a proper and interesting logic on its own and not just a
preliminary step towards the latter.

Part II presents a model of static finite syntactic epistemic states. First, in
Chapter 3, the assumption about finite states is not yet made. A logical lan-
guage for reasoning about syntactic states is introduced, and a semantics where
states can possibly be infinite defined. This semantics will be useful when con-
sidering a finite semantics later. Chapter 4 presents a sound and complete log-
ical system. In Chapter 5 the semantical restriction to finite states is made,
together with soundness and completeness results. Extensions of the logical
system with additional axioms, particularly axioms describing epistemic prop-
erties, and corresponding semantical changes, are discussed in Chapter 6. Ax-
ioms from modal logic discussed in Ch. 2 are used as examples.

Part III extends the model from Part II into a model of dynamic finite syntac-
tic epistemic states. This model is not developed in as great detail as the model
in Part II, but the model itself is more complex. Chapter 7 presents the model
with a logical language for reasoning about how knowledge change over time
as a result of reasoning and communication. The relation to ATL, upon which
the model is based, is discussed. In Chapter 8 the well known Byzantine Gen-
erals problem is used to illustrate some of the aspects of the model; particularly
communication.

Finally, the work is discussed in Part IV. Chapter 9 compares to selected ear-
lier work; the model in Part II to previous models of syntactic representation,
and the model in III to previous models of evolving knowledge. Particularly,
the latter is compared to Alternating-time Temporal Epistemic Logic, another
integration of epistemic logic and ATL. Chapter 10 provides a summary, con-
clusions and discussion of future work.



Chapter 2

Background

This chapter gives a brief overview of background material which is used in
the following Parts II and III of the thesis. A complete overview of the field is
not presented here; earlier work is presented and compared with the work in
the thesis in Part IV.

Traditional modal epistemic logics are presented first. The discussion also
introduces some general logical notation and concepts used in later chapters.
The logical omniscience problem and its source in modal epistemic logic is
discussed in Section 2.2. In Section 2.3, alternating time temporal logic is pre-
sented.

2.1 Modal Epistemic Logic

This section gives a quick overview over standard modal epistemic logic (by
“standard” I mean an epistemic modal logic that is propositional (not quanti-
fied), monotonic and multi-modal).

There are (at least) two ways of characterizing modal logics. Here, these –
and the relation between them – are discussed. The first is Hilbert-style proof
theory; a syntactic approach. The second is model theory; a semantic approach.
First, the syntax of well-formed epistemic formulae is defined.

Let Φ be a set of primitive propositions. The language of epistemic logic
for a set of n agents, named 1, . . . , n, is the set of well-formed formulae (wffs)
Ln(Φ). The set of wffs is defined inductively:

• Φ ⊆ Ln(Φ)

• Ifφ ∈ Ln(Φ), then ¬φ ∈ Ln(Φ)

• Ifφ,ψ ∈ Ln(Φ), then (φ ∧ψ) ∈ Ln(Φ)

• Ifφ ∈ Ln(Φ), then Kiφ ∈ Ln(Φ) for 1 ≤ i ≤ n

As usual, the use of the connectives ∨,→ and↔ is allowed as syntactic sugar,
and parentheses can be omitted when no confusion can occur.

A logical system S in Ln(Φ) is a pair (R,A) where A ⊆ Ln(Φ) is a set of
axioms and R is a set of (transformation) rules. For epistemic logic, R is the

9
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following set of rules:

`S φ,`S φ→ ψ

`S ψ
MP

`S φ

`S Kiφ
, 1 ≤ i ≤ n Nec

The rules are called modus ponens and the necessitation rule , respectively.
An important property of a logical system is that of its theorems. The fact

that a wff φ is a theorem of the system S is denoted `S φ. The set of theorems
for a logical system is defined as follows. First, the axioms are theorems. Sec-
ond, if `Sφi ,...,`Sφk

`Sψ
is an instance of a rule – that is, a rule with wffs substituted

for the lettersφ,ψ, . . . – and allφi, 1 ≤ i ≤ k, are theorems, thenψ is a theorem
too. Note that a rule is a schema, describing the forms of the wffs it matches.
For instance, MP says that if wffs φ and φ → ψ are theorems then so is ψ for
all wffs φ and ψ. A rule is a means for obtaining a new theorem from the set
of axioms and/or previously obtained theorems. If a theoremφ is obtained by
iteratively applying the rules in a logical system S in this manner, the sequence
of axioms and new wffs obtained by rule application is called a (Hilbert-style)
proof.

For epistemic logic the set A of axioms includes the axiom schema PC:

φ, whereφ is a substitution instance of a propositional tautology PC

In addition, wffs commonly included as axioms are described by the following
schemata1, for 1 ≤ i ≤ n

Ki(φ→ ψ)→ (Kiφ→ Kiψ) Ki

Kiφ→ ¬Ki¬φ Di

Kiφ→ φ Ti

Kiφ→ KiKiφ 4i

¬Kiφ→ Ki¬Kiφ 5i

¬φ→ Ki¬Kiφ Bi

Which axioms should be included in a logical system is a philosophical ques-
tion. Here, only normal systems are discussed, i.e. systems defining logics in
which the Ki formulae are theorems. The logical system (R, {PC} ∪ {Ki : 1 ≤
i ≤ n}) is called Kn. Systems describing logics of belief rather than knowl-
edge (doxactic logics) often include the Di axioms instead of the Ti axioms
commonly included in epistemic logics. The 4i and 5i axioms are called the
positive and negative introspection axioms, respectively. Commonly used log-
ical systems and their axioms (in addition to PC) are Tn with the Ki and Ti

1In another tradition, an finite set of wffs is used instead of axiom schemata, in addition to the
uniform substitution rule

`S φ

`S φ[ψ1/p1 , . . . ,ψk/pk ]
USub

where φ[ψ1/p1 , . . . ,ψk/pk ] denotes the formula resulting from uniformly replacing the primitive
propositions pi with wffs ψi in the formulaφ.
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axioms, S4n with the Ki, Ti and 4i axioms, S5n with the Ki, Ti, 4i and 5i ax-
ioms, KD45n with the Ki, Di, 4i and 5i axioms and KTBn with the Ki, Ti and
Bi axioms. One relationship between these logical systems, viz. the inclusion
of theorems, can be shown graphically (Fig. 2.1). In the figure, S // S′

indicates that all the theorems of system S′ are also theorems of system S.

S5n

{{wwwwwwww

##HH
HH

HH
HH

H

KTBn

##GG
GG

GG
GG

G S4n

{{vvvvvvvvv

Tn

��
Dn

��

KD45noo

Kn

Figure 2.1: Logical systems

Semantics is used to assert the truth-value of a formula. Hintikka (1962)
based the semantics of epistemic formulae on the notion of possible worlds. The
basic assumption of the possible worlds approach is that we can use a set of
alternative possibilities, or alternative worlds, to reason about how the world
may be. Each possible world is a model of propositional logic. Hintikka then
defines an agent’s knowledge as the agent’s ability to tell the correct state of af-
fairs, i.e. to discern between the alternative worlds. If an agent is unable to
discern between two alternative worlds in which some particular state of af-
fairs, say the time of the day, differs, the agent can be said to lack knowledge
of this state of affairs. In each alternative world, an agent is viewed as con-
sidering a subset of the set of alternative worlds possible, and is said to know
a fact if this fact is true in all the worlds considered possible. Note that in a
world an agent considers possible, another agent might consider a set of al-
ternative worlds possible, which gives meaning to propositions with nested
knowledge such as K1K2 p (in each world agent 1 considers possible, agent 2
considers possible a set of worlds where p is true in every world). Possible
worlds semantics is formalized by Kripke structures. A frame F for n agents is
a tuple (S,K1, . . . ,Kn), where Ki, 1 ≤ i ≤ n, are binary relations, called possi-
bility relations, over the set of possible worlds, or states, S. A Kripke structure
M over the frame (S,K1, . . . ,Kn) and the set of primitive propositions Φ is a
tuple (S, π ,K1, . . . ,Kn), where π – called an interpretation – is a truth assign-
ment to the primitive propositions in each state: π(s) : Φ → {true, false} for
all s ∈ S. The possibility relation Ki identifies the worlds agent i considers pos-
sible relative to any given (actual) world, and the interpretation π states which
basic facts are true in each alternative world. The fact that a wff φ is true in
a state s in a structure M = (S, π ,K1, . . . ,Kn) over Φ is denoted (M, s) |= φ.
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The |= relation is defined by structural induction on the formula:

(M, s) |= p ⇔ π(s)(p) = true, where p ∈ Φ (2.1)
(M, s) |= ¬φ ⇔ (M, s) 6|= φ (2.2)
(M, s) |= (φ ∧ψ) ⇔ (M, s) |= φ and (M, s) |= ψ (2.3)

(M, s) |= Kiφ ⇔ (M, s′) |= φ for all (s, s′) ∈ Ki (2.4)

A wff φ is valid in a structure M = (S, π ,K1, . . . ,Kn), written M |= φ, iff
(M, s) |= φ for all s ∈ S. A wff is valid, written |= φ, if it is valid in all structures.
It is valid in a frame F, written F |= φ, if it is valid in all structures based on F.
Finally, a wff is valid in a class of structures (frames) M (C), written M |= φ

(C |= φ), iff it is valid in all structures inM (frames in C). Similar terminology
apply to satisfiability. A wff φ is a logical consequence of a set of wffs Ψ (or Ψ

logically impliesφ) with respect to a class of structuresM, written Ψ |= φ (with
M implicitly understood) iff, for all M ∈ M, (M, s) |= φwhenever (M, s) |= ψ

for all ψ ∈ Ψ. A logical system S for Ln(Φ) is sound with respect to a class of
structures M (a class of frames C) iff whenever `S φ then M |= φ (C |= φ),
for all φ ∈ Ln(Φ). It is complete with respect toM (C) iff wheneverM |= φ

(C |= φ) then `S φ.
There are correspondences between certain axiom systems and validity. A

logical system is characterized by a class of structures (frames) iff it is sound and
complete with respect to that class. The following correspondences hold2: Kn
is characterized by the class of all structures (frames), Dn is characterized by
the class of all serial3 structures (frames), Tn is characterized by the class of all
reflexive structures (frames), S4n is characterized by the class of all reflexive
and transitive structures (frames), S5n is characterized by the class of all reflex-
ive, transitive and symmetric structures (frames), KD45n is characterized by
the class of all eucledian4, serial and transitive structures (frames), and KTBn
is characterized by the class of all reflexive and symmetric structures (frames).

The framework outlined above is a tool for reasoning about knowledge in
multi-agent systems. The language of epistemic logic is quite expressive. For
instance, if p is the proposition that it is raining, the statement “If it is rain-
ing, then Mary knows that John considers it possible that it is raining” can be
expressed as the wff p → KMary¬KJohn¬p. However, the semantics defined
in this framework leads to certain non-intuitive properties of knowledge. As
mentioned in the introduction, one of these properties is logical omniscience.

2.2 The Logical Omniscience Problem

A property of modal epistemic logic is that the agents always know all con-
sequences of their knowledge; in particular they know all tautologies. The
assumption that an agent knows all the consequences of its knowledge seems
to be too strong when analyzing many non-trivial situations.

2A property, such as reflexivity, is said to hold for a structure (frame) when it holds for all the
possibility relations in that structure (frame).

3A binary relation R over A is called serial iff for all a ∈ A there exists a b ∈ A such that
(a, b) ∈ R.

4A binary relation R is called eucledian iff when (a, b) ∈ R and (a, c) ∈ R then (b, c) ∈ R.
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As an example, consider the following cryptography scenario (a similar ex-
ample is found in (Halpern, Moses, & Vardi, 1994)): agent a sends an encoded
version me of a message m to agent c, in order to keep m secret from agent b,
over a channel known to be insecure. me can be decoded, to m, by using two
large primes n1 and n2, and the product n1 × n2 is publicly known. If we make
the assumption, as in modal epistemic logic, that the agents know all conse-
quences of their knowledge, reasoning about their knowledge would proceed
as follows. If we assume that agent b knows the rules of arithmetic (not an un-
reasonable assumption), then it follows that b can deduce the values of n1 and
n2 from the public product and hence that once it knows me it also knows m.
Furthermore, this fact is also known to agent a. Agent a’s view of the knowl-
edge held by agents c and b regarding n1 and n2 is then identical if a assume
that b knows me. Of course, it is not realistic that agent b knows n1 and n2 just
because it knows n1 × n2 and an algorithm to deduce the former from the lat-
ter. In fact, this is why public-key cryptography schemes are useful – all the
information needed to find the secret key is available but the computational
complexity of the corresponding problem is proved to be very high.

In both this example and the chess example mentioned in the introduction,
modal epistemic logic fails to model any real (human or artificial) agent prop-
erly.

The fact that according to modal epistemic logics agents are logically om-
niscient, i.e. know all consequences of their knowledge, and that real agents
are not, is called the logical omniscience problem (LOP), and was first identified
by Hintikka (1975). In 1986, Moore (1986) said that the LOP was “perhaps
the most hotly contested issue in this field [of reasoning about knowledge in
artificial intelligence]”, and it still receives considerable attention. Selected ap-
proaches to the problem is reviewed in Section 2.2.2 and in Chapter 9. Other
reviews of the LOP include (Sim, 1997) and (Moreno, 1998). See also (Fagin
et al., 1995, Chap. 9) for a discussion. The source of the LOP in modal epis-
temic logic is discussed in Section 2.2.2. Presently, several forms of the LOP are
presented.

2.2.1 Forms of Logical Omniscience

Several formulations of the LOP exist in the literature, and several “weaker”
problems are commonly discussed under the LOP label. The original definition
by Hintikka (1975) is the most common, and also the strongest condition: an
agent knows all the logical consequences5 of its knowledge. Fagin et al. (1995)
call this full logical omniscience. Several other forms of omniscience exist, some
of which are often called logical omniscience. And, as shown below, many
are indeed instances of full logical omniscience. The following conditions are
related to logical omniscience (Fagin et al., 1995):

• Closure under logical consequence (full logical omniscience): If ψ is a logical
consequence of the set Φ and an agent knows all the formulae in Φ, then
he also knows ψ.

5Logical consequence, and thus logical omniscience, is relative to a given class of structures. All
the forms of logical omniscience discussed here are implicitly assumed to be relative to such a class.
Also, as discussed previously, considering validity with respect to certain classes of structures is
equivalent to considering provability with respect to the corresponding logical systems.
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• Knowledge of all valid formulae: If φ is valid, then any agent knows φ. A
related problem is the problem of irrelevant beliefs.

• Closure under logical implication: If ψ is a logical consequence of φ and an
agent knowsφ, then the agent also knows ψ.

• Closure under logical equivalence: If φ and ψ are logically equivalent and
an agent knowsφ, then the agent also knows ψ.

• Closure under material implication: If an agent knows both φ and φ → ψ,
then the agent also knows ψ.

• Closure under valid implication: If φ → ψ is valid and an agent knows φ,
then the agent also knows ψ.

• Closure under conjunction: If an agent knows both φ and ψ, it also knows
φ ∧ψ.

It is easy to see that knowledge of all valid formulae, closure under logical
implication and closure under logical equivalence are implied by full logical
omniscience. If we assume the standard interpretations of material implication
and conjunction, then also the three latter conditions follow from full logical
omniscience.

Fagin et al. (1995, p. 311) point out that “Logical omniscience can be viewed
as a certain closure property of an agent’s knowledge [...]”. From the discus-
sion in Ch. 1 about separating the notions of knowledge and reasoning, it may
be tempting to generalize the concept of logical omniscience to any closure con-
dition on knowledge6. There are, however, circumstances where particular clo-
sure conditions are appropriate. It may be, for example, that an agent’s reason-
ing mechanism never will produce ¬¬φwithout also producingφ. The agent’s
explicit knowledge will then be closed under this requirement, because it is im-
possible for the agent to know ¬¬φ without also knowing φ. Note, however,
that this argument only holds for finite closure conditions; the other direction
of the example — knowingφ implies knowing ¬¬φ— cannot be explained by
one step of a reasoning mechanism since it would mean that the mechanism
could produce infinitely many inferences simultaneously. This motivates the
following definition.

• Partial Logical Omniscience: If an agent knows φ, then there are infinitely
many ψ such that the agent knows ψ.

Closure under logical consequence, henceforth “full logical omniscience”, is
implied by partial logical omniscience, as are all the other conditions listed
above except closure under material implication.

As discussed in Chapter 1, the concern in this thesis is a logic describing
the explicit knowledge of deliberative agents who represent their knowledge
syntactically. It is assumed that the agents have finite epistemic states, and thus
cannot be partially logically omniscient.

6For example (in the notation of modal epistemic logic):

• If Kiφ is a logical consequence of a set Φ, and there is no finite subset Φ′ ⊆ Φ such that
(∧Φ′)→ Kiφ is an instance of a propositional tautology.
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2.2.2 The Source of Logical Omniscience in Epistemic Logic

In standard (modal) epistemic logic all agents are fully logical omniscient (with
respect to all subsets of all structures). To see this, consider a state s in a struc-
ture M where (M, s) |= Kiφ for each φ in a set Φ, and let Φ |= ψ. Then, for
each (s, s′) ∈ Ki, (M, s′) |= φ for all φ ∈ Φ and so (M, s′) |= ψ by logical
consequence. Thus, (M, s) |= Kiψ. In fact, due to the standard definition of the
propositional connectives, modal epistemic logic suffers from all the forms of
logical omniscience listed in Section 2.2.1.

In search of the cause of the LOP in modal epistemic logic, it is tempting to
investigate the properties of knowledge in each particular logical system; i.e.,
which of the formulae listed on page 10 are valid in the system. However, full
logical omniscience was shown above for all systems without any restriction
on the possibility relations (i.e., without any assumptions of axioms other than
Ki). Thus, the LOP goes deeper than a particular axiomatization. The cause
of the problem lies in the way Hintikka defined the concept of knowledge in
the possible worlds framework. The requirements that, first, an agent views a
subset of worlds as possible, second, that every world is a model of proposi-
tional logic and, third, that the agent must know something because that is true
in all these worlds, are clearly sources of the problem. Chomsky (1982, p. 91)
states that possible worlds semantics “fails” in propositional attitude contexts.
Vardi (1986) points out that the assumption of a set of possible worlds is not
problematic, but this association of knowledge with a subset of these worlds
goes a long way beyond this assumption.

More fundamental critique of the use of possible worlds has also been of-
fered. Hadley (1988) argues that it is unreasonable to assume that an agent
knows the function mapping atomic propositions to truth values in all possi-
ble worlds if the set of possible worlds is large. Wooldridge (1995b) argues
that possible worlds are not useful in practice unless they are “grounded”, i.e.,
given a concrete interpretation.

Several authors have suggested to weaken the assumption that all worlds
are models of propositional logic in order to solve the LOP. Although the for-
malisms will not be used in the remainder of the thesis, three of these ap-
proaches are briefly introduced in the next subsection, in order to show that
approaches with non-logical worlds are not suitable as models of explicit syn-
tactic knowledge. In Chapter 9, earlier work more directly related to the model
of syntactic knowledge presented in the thesis is discussed in more detail.

Non-logical Worlds

Impossible Possible Worlds Hintikka (1975) responds to the claim that his
proposed (Hintikka, 1962) possible worlds analysis of knowledge and other
propositional attitudes commits us to the assumption that an agent knows all
the consequences of its knowledge. He argues as follows that no such commit-
ment is inherent in the approach. First, an agent knows a fact if it is true in all
the worlds it considers epistemically possible. Second, a realistic agent is not
logically omniscient, that is, there exist φ and ψ such that φ logically implies
ψ and the agent knows φ but does not know ψ. Third, φ logically implies ψ
if φ → ψ is true in every logically possible world. Hintikka argues that these
three facts are not incompatible unless we make the assumption that every
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epistemically possible world is also logically possible. This usually implicit as-
sumption, he claims, is the root of the logical omniscience problem. The reason
for this is that only a logical omniscient agent would only consider logically
possible worlds possible; an agent with limited reasoning abilities would need
to hold more options open (even though they really are logically impossible).
We can give up this assumption by introducing worlds that the agents can
consider possible, even though they are not logically possible. Hintikka (1975)
calls these worlds impossible possible worlds7. The following formal treatment is
from Fagin et al. (1995).

An impossible worlds structure is a tuple M = (S, W,σ ,K1, . . . ,Kn), where
(S,K1, . . . ,Kn) is a Kripke frame, W ⊆ S is called the possible states, and σ is a
syntactic assignment with the following properties in the possible states s ∈W:

σ(s)(φ ∧ψ) = true⇔ σ(s)(φ) = true and σ(s)(ψ) = true
σ(s)(¬φ) = true⇔ σ(s)(φ) = false

σ(s)(Kiφ) = true⇔ σ(s′)(φ) = true for all s′ such that (s, s′) ∈ Ki

The satisfaction relation is defined as

(M, s) |= φ ⇔ σ(s)(φ) = true

σ behaves in a standard way in logically possible worlds, but in the impossible
possible worlds S−W, e.g. both (or neither) φ and ¬φ can be true. Since im-
possible possible worlds are only epistemical rather than logical alternatives,
logical implication and validity are therefore defined relative to the set of pos-
sible states only. Ψ logically impliesφ if for all impossible worlds structures M
and possible states s ∈W in M such that (M, s) |= ψ for allψ ∈ Ψ, (M, s) |= φ.
φ is valid if, for all M, (M, s) |= φ for all possible states s ∈W in M. For exam-
ple, assume that an agent knows allψ ∈ Ψ and that Ψ logically impliesφ. Then
φmust be true in all the logically possible states. The agent may, however, also
consider other states where φ is not true possible, in which case it does not
knowφ.

Nonstandard Propositional Logic In Kripke structures, each world is a model
of propositional logic. Fagin, Halpern, & Vardi (1996) suggest using worlds
which are models for their nonstandard propositional logic NPL. The idea is
to weaken logical omniscience by weakening the logical abilities of the agents.
Knowledge and logical consequence are defined in the usual way. A difference
from the impossible possible worlds approach is that all worlds are models of
the nonstandard logic rather than having disjoint sets of possible and impossi-
ble worlds.

Several nonstandard propositional logics appears in the literature. Some
of the best known are intuitionistic logic (Heyting, 1956) and relevance logic
(Anderson & Belnap, 1975); the latter to which NPL is closely related. The
particular nonstandard approach taken in NPL is to allow φ and ¬φ to have
independent truth values. The intuition behind this is to consider an agent
equipped with two databases; one for true formulae and one for false formu-
lae. This idea is captured semantically by associating an adjunct state s∗ to each

7The notion of such worlds has appeared several times in the literature under varying names.
One of the first appearances is in Cresswell (1970), under the name non-classical worlds.
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state s, and to define that ¬φ holds at s if and only ifφ does not hold at s∗. The
decoupling of the semantics of φ and ¬φ destroys the semantics of material
implication, since e.g. the formula φ → φ can be seen as an abbreviation of
φ ∨ ¬φ. This formula is not valid under the nonstandard semantics. To ex-
press the intuition behind material implication properly, a new connective ↪→
called strong implication is introduced. φ ↪→ ψ is defined to be true if ψ is true
wheneverφ is true.

A nonstandard Kripke structure M is a tuple (S, π ,K1, . . . ,Kn, ∗) where
(S, π ,K1, . . . ,Kn) is a Kripke structure and ∗ is a function ∗ : S→ S (we write
s∗ for ∗(s)) such that s∗∗ = s. The satisfaction relation is defined exactly as
for Kripke structures (particularly, knowledge is defined as truth in all worlds
considered possible), except for the negation clause and a new clause for strong
implication :

(M, s) |= ¬φ ⇔ (M, s∗) 6|= φ (2.5)
(M, s) |= φ ↪→ ψ ⇔ (M, s) 6|= φ or (M, s) |= ψ (2.6)

Fagin, Halpern, & Vardi (1996) show that the logical system K↪→ consisting
of the axiom schema

(Kiφ ∧ Ki(φ ↪→ ψ)) ↪→ Kiψ

and the inference rules

All sound inference rules of NPL

and

`K↪→ φ

`K↪→ Kiφ

is sound and complete with respect to validity in nonstandard Kripke struc-
tures.

As mentioned above, all worlds in a nonstandard structure are models of
the nonstandard propositional logic. However if s∗ = s, the semantics of nega-
tion in nonstandard structures (eq. 2.5) coincides with that of Kripke structures
(eq. 2.2 on page 12). The state s is then called a standard state. It is possi-
ble to view nonstandard structures from the perspective of impossible possible
worlds rather than the nonstandard logic approach discussed here, by view-
ing standard worlds as possible worlds and nonstandard worlds as impossible
worlds. A nonstandard structure M = (S, π ,K1, . . . ,Kn, ∗) induces an impos-
sible worlds structure M′ = (S, W,σ ,K1, . . . ,Kn) where W is the set of stan-
dard states in M and σ(s)(φ) = true if and only if (M, s) |= φ. A formula
is said to be standard-state valid if it is true at every standard world in every
nonstandard structure.

Explicit and Implicit Belief Levesque (1984a)8 identifies two different con-
cepts of knowledge; namely implicit and explicit knowledge, and his approach
has been extended by or inspired others (Lakemeyer, 1987; Fagin & Halpern,

8Later revised in Levesque (1984b).
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1988). Explicit knowledge is the actual knowledge held explicitly by an agent;
implicit knowledge is that which follow logically from explicit knowledge.

Levesque describes a logic for both implicit and explicit knowledge based
on impossible worlds or, as he calls them, situations. A situation is a “partial”
possible world; a world that supports the truth of some sentences, the falsity
of some sentences, and possibly neither the truth or falsity of other sentences.
Incoherent situations, supporting both the truth and falsity of some sentence,
are also allowed.

The language Levesque considers is quite restricted. Particularly, nested
knowledge is not allowed. Lakemeyer (1987) extends Levesque’s framework
with nested knowledge.

Formally, the language is defined in the usual way from a set of atomic
propositions Φ and is closed under the connectives ∨, ∧, ¬, B and L. The
intended meaning of the formulae Bφ and Lφ is that φ is explicit and implicit
knowledge, respectively.

The semantics of the language is defined through a model structure

M = (S ,B, T ,F )

where S is a set of situations, B ⊆ S , and T and F are functions from Φ to
the powerset of S . Given a model structure M, the support relations |=T and
|=F between S and the language are defined. Below, W(s) denotes the set of
situations that, for all p ∈ Φ are a) members of exactly one of T (p) and F (p),
b) is a member of T (p) whenever s is and c) is a member of F (p) whenever s
is. s |=T φ (s |=F φ) means that s supports the truth (falsity) ofφ:

s |=T p ⇔ s ∈ T (p) where p ∈ Φ

s |=F p ⇔ s ∈ F (p) where p ∈ Φ

s |=T (φ ∨ψ) ⇔ s |=T φ or s |=T ψ

s |=F (φ ∨ψ) ⇔ s |=F φ and s |=F ψ

s |=T (φ ∧ψ) ⇔ s |=T φ and s |=T ψ

s |=F (φ ∧ψ) ⇔ s |=F φ or s |=F ψ

s |=T ¬φ ⇔ s |=F φ

s |=F ¬φ ⇔ s |=T φ

s |=T Bφ ⇔ s′ |=T φ for every s′ ∈ B
s |=F Bφ ⇔ s 6|=T Bφ

s |=T Lφ ⇔ s′ |=T φ for every s′ ∈ W(B)
s |=F Lφ ⇔ s 6|=T Lφ

Finally, validity is defined as follows:

|= φ ⇔ s |=T φ for any model structure (S ,B, T ,F ) and any s ∈ W(S)

Levesque then defines an axiomatic system for the logic. It turns out that ex-
plicit knowledge can be characterized by the notion of entailment in relevance
logic (Anderson & Belnap, 1975), and the corresponding axioms and rules can
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thus be “imported” directly from relevance logic. Some of them are9:

B(φ ∧ψ)↔ B(ψ ∧φ)
B¬(φ ∨ψ)↔ B(¬φ ∧ ¬ψ)

Bφ ∧ Bψ↔ B(φ ∧ψ)
` ((Bφ ∨ Bψ)→ Bγ)
` B(φ ∨ψ)→ Bγ

Non-logical Worlds as Models of Syntactic Knowledge All the three ap-
proaches with non-logical worlds weaken the logical omniscience problem,
but do not solve it. Indeed, the agents described in all three approaches are
logically omniscient with respect to weaker logics; they are partially logically
omniscient.

For example, in Levesque’s concept of explicit knowledge if an agent knows
p then he knows p ∧ p and p ∧ p ∧ p and so on. Clearly, for syntactical knowl-
edge each of these formulae must be computed to be explicitly known. Sim-
ilarly, adding impossible possible worlds just changes the logic in which the
agents reason and in the new logic they are logically omniscient (Vardi, 1986),
and in the approach with nonstandard Kripke structures the agents are logi-
cally omniscient with respect to NPL.

Thus, neither modal epistemic logic nor attempts at removing the source of
the LOP within the possible worlds framework can be seen as proper descrip-
tions of explicit syntactic knowledge.

2.3 Alternating-time Temporal Logic

Temporal logics differ in whether they consider the future10 to be linear or
branching. Computational Tree Logic (CTL) is a commonly used branching time
temporal logic. CTL has temporal connectives consisting of two parts, a path
quantifier and a tense (or state) quantifier. For example, the formula AFφ
expresses that along all paths there is a state where φ is true. E2φ expresses
that there is a path whereφ is globally true, i.e. true at all states. The semantics
of CTL is defined by Kripke structures.

Alternating-time Temporal Logic (Alur, Henzinger, & Kupferman, 2002) is a
generalization of CTL in which the path quantifiers A and E are generalized
to a set of quantifiers 〈〈G〉〉 where G is a group of agents, in order to allow
the expression of cooperation and strategies. Informally, 〈〈G〉〉Fφ means that
G can cooperate to make φ true in the future, and similar for the other state
quantifiers. For example

〈〈a, b〉〉F p

means that agents a and b have a strategy to ensure that, no matter what the
other agents in the system do, p will be eventually be true if a and b use the
strategy.

Note that the CTL quantifiers A and E can be expressed as 〈〈∅〉〉 and 〈〈A′〉〉,
where A′ is the set of all agents in the system, respectively.

9Note that the last rule was erroneously omitted from Levesque (1984a), but was included in
Levesque (1984b).

10Or the past or both; here I will only be concerned with the future.
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ATL will be used in Chapter 7 to model agents whose knowledge changes
over time and who can cooperate through communication.

2.3.1 Concurrent Game Structures

The semantics of ATL is defined by concurrent game structures, a generaliza-
tion of Kripke structures.

Definition 2.1 (Alur, Henzinger, & Kupferman, 2002) A concurrent game struc-
ture11 is a tuple

(k, Q, Π, π ′, d, δ)

where

• k > 0 is a natural number of players

• Q is a finite set of states

• Π is a finite set of propositions

• π ′(q) ⊆ Π for each q ∈ Q; the labeling function

• For each player a ∈ {1, . . . , k} and state q ∈ Q, da(q) ≥ 1 is a natu-
ral number. The set {1, . . . , da(q)} is called the set of moves available to
player a in q. D(q) = {1, . . . , d1(q)} × · · · × {1, . . . , dn(q)} is the set of
move vectors in q.

• For each move vector v ∈ D(q) in a state q ∈ Q, δ(q, v) ∈ Q; the transition
function. 2

Intuitively, δ(q, ( j1, . . . , jk)) is the next state of the system if each player i
chooses move ji in state q.

Computations and Strategies

A computation λ is an finite sequence of states; λ = q0q1 · · · , where for each
j ≥ 0 there is a move vector v ∈ D(q j) such that δ(q j, v) = q j+1. We use λ[ j]
to denote the element in λ with index j (q j); λ[0, j] to denote the finite j + 1
element prefix of λ (q0 · · · q j).

The set of all non-empty finite state sequences is denoted Q+; Q+ =
{q1q2 · · · qm : q j(1 ≤ j ≤ k) ∈ Q, m > 0}. A strategy for player i is a func-
tion fi : Q+ → N having fi(q1 · · · qm) ≤ di(qm), mapping any finite prefix of a
computation to a move for player i. A strategy vector ~fG for a set of players G is
a set of strategies, one for each agent, ~fG = { fi : i ∈ G}. The set of all strategy
vectors for agents G is denoted Str(G). A strategy vector ~fG for G ⊆ {1, . . . , k}
induces a set of computations out(q, ~fG) for a given state q ∈ Q, called the
outcomes of ~fG in q, as follows. A computation λ ∈ out(q, ~fG) iff

11Note that several slightly different definitions of concurrent game structures has been pro-
posed by the authors. Many secondary papers use the definition in (Alur, Henzinger, & Kupfer-
man, 1999). It turns out that the small differences in the definitions can be significant in certain
contexts, as discussed in Section 9.4. In Section 7.4.1, I present yet another slightly different defini-
tion.
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1. λ[0] = q

2. ∀ j≥0∃v = (m1, . . . , mk) ∈ D(λ[ j])

(a) ∀i∈Gmi = fi(λ[0, j])
(b) δ(λ[ j], v) = λ[ j + 1]

In Part III a model of agents’ mechanism for reasoning and communication
is represented. This model induces a concurrent game structure, which will
allow us to reason about the dynamic aspects of the system in terms of e.g.
computations and strategies.

2.3.2 ATL Syntax and Semantics

Given a finite set Π of propositions and a finite number k of players, let Σ =
{1, . . . , k}. The following constitutes all well-formed ATL formulae:

• If p ∈ Π, then p is an ATL formula

• Ifφ1 andφ2 are ATL formulae, then ¬φ1 andφ1 ∨φ2 are ATL formulae.

• If φ1 and φ2 are ATL formulae and A ⊆ Σ, then 〈〈A〉〉 ©φ1, 〈〈A〉〉2φ1
and 〈〈A〉〉φ1Uφ2 are ATL formulae

Thus, the ATL language has 3× 2k operators consisting of two parts: a quanti-
fier 〈〈A〉〉 over paths or computations and a quantifier© (“next”), 2 (“globally”)
or U (“until”) over states along the paths.

The usual derived propositional connectives are used. A derived oper-
ator is 〈〈A〉〉F (F meaning “sometime in the future”); 〈〈A〉〉Fφ stands for
〈〈A〉〉trueUφ.

The semantics of ATL is defined as follows.

Definition 2.2 If S = (k, Q, Π, π ′, d, δ) is a concurrent game structure, q ∈ Q,
A ⊆ Σ = {1, . . . , k} andψ is an ATL formulae, the satisfaction ofψ by S and q,
written S, q |= ψ is defined by structural induction over ψ:

S, q |= p ⇔ p ∈ π ′(q), where p ∈ Π (2.7)
S, q |= ¬φ ⇔ S, q 6|= φ (2.8)
S, q |= φ1 ∨φ2 ⇔ S, q |= φ1 or S, q |= φ2 (2.9)
S, q |= 〈〈A〉〉©φ ⇔ ∃~fA∈Str(A)∀λ∈out(q,~fA)S, λ[1] |= φ (2.10)

S, q |= 〈〈A〉〉2φ ⇔ ∃~fA∈Str(A)∀λ∈out(q,~fA)∀ j≥0S, λ[ j] |= φ (2.11)

S, q |= 〈〈A〉〉φ1Uφ2 ⇔ (2.12)
∃~fA∈Str(A)∀λ∈out(q,~fA)∃ j≥0(S, λ[ j] |= φ2 and ∀0≤k< jS, λ[k] |= φ1) (2.13)

2

Intuitively, 〈〈A〉〉 ©φ,〈〈A〉〉2φ and 〈〈A〉〉Fφ mean that the agents A can
cooperate to makeφ true in the next state, all states in the future, and some state
in the future, respectively. 〈〈A〉〉φ1Uφ2 means that A can cooperate to make
φ2 true in some future state andφ1 true in every state before that.

Note that the expression 〈〈∅〉〉2φ means that φ will always be true — no
matter what any of the agents do.
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A derived path quantifier [[A]] is sometimes used. [[A]]© φ stands for
¬〈〈A〉〉 © ¬φ, [[A]]2φ for ¬〈〈A〉〉F¬φ and [[A]]Fφ for ¬〈〈A〉〉2¬φ, meaning
that the agents in A cannot avoid φ in in the next state, all states in the future,
and some state in the future, respectively.

The language defined in Part III is based on the ATL language.

2.3.3 Variations

Presenting ATL, Alur, Henzinger, & Kupferman (2002) also discuss several
variations of the general framework: specializations (Moore synchronous game
structures, turn-based synchronous game structures) and generalizations (game
structures with fairness constraints, ATL with incomplete information). Fair-
ness constraints will not be considered further here.

Moore synchronous game structures

A game structure S = (k, Q, Π, π ′, d, δ) is Moore synchronous if:

1. Q is of the form Q1 × · · · ×Qk

2. For each player a there is a function δa mapping a state q ∈ Q and a move
j ∈ {1, . . . , da(q)} to Qa such that δ(q, ( j1, . . . , jk)) = (δ1(q, j1), . . . , δ(q, jk)).

Intuitively, each player has his own local state, and a player’s next local state is
determined by the move the player chooses along with the current global state
(the composition of all the local states).

Turn-based Synchronous Game Structures

A concurrent game structure is turn-based synchronous if for every q ∈ Q there
exists an aq, 1 ≤ aq ≤ k, such that da(q) = 1 for every a 6= aq.

An equivalent definition is the following: a turn-based synchronous game
structure is a tuple S = (k, Q, Π, π ,σ , R) whereσ : Q→ {1, . . . , k}maps a state
to a player and R ⊆ Q× Q is a total transition relation. Intuitively, only one
player can move in each state. In state q it is σ(q)’s turn, and he can choose a
new state q′ where (q, q′) ∈ Q.

Turn-based Synchronous Game Structures with Incomplete Information

A turn-based synchronous game structure with incomplete information is a turn-
based game structure S = (k, Q, Π, π ,σ , R) together with a set Πa of observable
propositions for each player 1 ≤ a ≤ k, such that:

• For each 1 ≤ a ≤ k, there is a pa ∈ Π

• pa ∈ π(q) exactly when σ(q) = a

• Let πa(q) = π(q) ∩Πa and πã(q) = π(q) \ Πa:

1. If σ(q) = a and (q, q′) ∈ R then πã(q) = πã(q′) \ {pσ(q′)}
2. If σ(q1) = σ(q2) = a, πa(q1) = πa(q2) and (q1, q′1) ∈ R then

(q2, q′2) ∈ R for all states q′2 such that πa(q′2) = πa(q′1) and πã(q′2) \
{pσ(q′2)

} = πã(q2).
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A player can observe when it is his turn. Condition 1 says that the player can
only influence propositions he can observe (in addition to the propositions pa
which are influenced implicitly by the act of making a move). Condition 2 says
that the moving player’s choice is from upon the non-observable propositions.

Conditions 1 and 2 ensure that we can write the transition relation R as a
vector of relations {Ra ⊆ Va × Va : 1 ≤ a ≤ k} where Va, called the set of
a-views, is ℘(Πa).

The notion of a strategy in turn-based synchronous game structures with in-
complete information is also modified according to the two conditions above:
1) the strategy only specifies the truth-/falsehood of the moving player’s ob-
servable propositions in the next state and 2) the strategy is a function of the
history of the observable propositions. Formally, a strategy for player a is a
function fa : V+

a → Va mapping each finite sequence of a-views to an a-view,
with the restriction that (vm, fa(v0 . . . vm)) ∈ Ra.

Finally, the notion of a well-formed formula is restricted syntactically. The
restriction is that for a formula 〈〈A〉〉©φ all the involved propositions ofφmust
be observable by each of the agents in A. Informally, the involved propositions
of a formula is the set of propositions occurring in the formula together with
the sets of observable propositions for all the player names occurring in the
formula. The argument12 is that it makes no sense that an agent could have a
strategy to reach a state where a certain proposition is true if the player cannot
observe that proposition, and, similarly, a player cannot determine if he has
reached a state where another player has a certain strategy if the first player
cannot observe all the propositions observable by the second player.

Incomplete information will be of interest in Part III, where agents take
actions based on local epistemic states.

12I disagree. See Section 7.4.2.
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Part II

A Static Logic of Finite
Syntactic Epistemic States
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Chapter 3

Language and Semantics

3.1 Introduction

It is widely accepted that there is a need for theories describing what agents ac-
tually or explicitly know and can act upon, as opposed to what they implicitly
know as described by modal epistemic logic, i.e. what follows logically from
their explicit knowledge. Levesque (1984b) and others (see Section 2.2.2) have
proposed to formalize the rules governing explicit knowledge. The model of
explicit knowledge in this Part II of the thesis is a different approach. First, in-
stead of describing closure conditions on explicit knowledge, it is assumed that
explicit knowledge has been obtained, and a logic for reasoning about static ex-
plicit knowledge in a group of agents is constructed. A framework for reason-
ing about static knowledge is useful for analyzing the knowledge in a group
of agents at an instant in time (or a time span when no epistemic changes are
made), for example between computing deductions. Second, it is assumed that
the agents are deliberative reasoners who represent their knowledge syntacti-
cally.

The need for reasoning about explicit knowledge is illustrated by the cryp-
tography example mentioned earlier: an agent a sends an encrypted version
me of a secret message m to agent c through a public channel, it is possible
to decipher the message using two (large) prime numbers n1 and n2, and the
product n = n1 × n2 is publicly known. If we use the “implicit” knowledge
concept, the sentence

“agent b knows m” (3.1)

could be derived from the sentences

“agent b knows me” (3.2)
“agent b knows n” (3.3)

assuming agent b knows the rules of arithmetic, since the values of n1 and n2
follows logically from the value of n.

However, even if we use the “explicit” knowledge concept, the sentence

“agent b does not know m” (3.4)

27
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does not follow logically from sentences (3.2) and (3.3). Information about what
the agent explicitly knows, does not make us able to deduce what he (explic-
itly) does not know. For example, agent b could have gotten to know m even
before the message was sent. But if we add the sentence

“sentences (2) and (3) describe all that is known by b” (3.5)

then sentence (3.4) follows from (3.2), (3.3) and (3.5). The concept of only know-
ing has been suggested to capture “all an agent knows”, but most approaches
are in the context of implicit knowledge. As illustrated by the example, using
the “implicit” knowledge concept does not allow us to deduce sentence (3.4)
from (3.2), (3.3) and (3.5), because m is implicitly included in what is “only
known” since it follows logically from other known facts. Thus, a proper logic
for reasoning about knowledge combines reasoning about explicit knowledge
with the concept of only knowing.

In the current part of the thesis, a logic for static finite explicit knowledge
is constructed. How the agents obtain their explicit knowledge is not discussed
before in Part III. Neither is the relation of this knowledge to reality of concern
here; an agent can e.g. know false facts or contradictions. In other words, noth-
ing is assumed in general about the closure or consistency of explicit knowl-
edge.

First, the notion of “only knowing” in the context of explicit syntactic knowl-
edge is discussed, before the object language — the language in which the
agents represent their knowledge internally — is formalized. A meta language,
or logical language, for reasoning about syntactic epistemic states of agents is
introduced in Sections 3.4 and 3.5. One of the main goals in this thesis is to
model agents with finite epistemic states. To this end, it turns out, a more gen-
eral model where the agents are not restricted to finite states is useful as an
intermediate result. Therefore, a semantics where agents are not restricted to
finite states is presented in Section 3.6. A sound and strongly complete logical
system for this semantics is presented in Chapter 4. In Chapter 5 the semantics
is restricted to finite states. The resulting logic is called Static Syntactic Epistemic
Logic (SSEL). A key concept, finitary theories, which in effect describe axioma-
tizable agents is introduced. As discussed in Section 2.1, different variations
of modal epistemic logic can be obtained by adding axioms corresponding to
epistemic properties. In Chapter 6 such extensions of SSEL are investigated,
and examples of well known axioms are discussed.

3.2 Only Knowing

We want to capture the concept “all an agent explicitly knows”. Everything
an agent implicitly knows may be possible to describe by one single formulaα;
the agent implicitly knows everything that is logically entailed by the formula.
If the operator KI denotes the concept of implicit knowledge, we can express
the agent’s knowledge by KIα. Everything an agent explicitly knows, however,
cannot be described by a single formula (if it knows more than one formula),
because there is no closure condition for explicit knowledge. If the operator
KE denotes explicit knowledge, the formulae KEα and KEβ say that the agent
knowsα and β, but does not say anything about e.g. whether the agent knows
the formula γ = (α ∧β). We therefore need to express knowledge about sets of
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formulae. The fact that the formulae α1, . . . ,αk are all that is explicitly known
by agent i will be described by the formula

♦i{α1, . . . ,αk}

When we consider static sets of explicit knowledge, there are a number of as-
pects we can reason about, for example “the agent knows more than X” or
“the agent knows less than X”. The fact that at least the formulaeα1, . . . ,αk are
known by i is formalized by the formula

4i{α1, . . . ,αk}

This formula says that agent i knows each αi, but it may know more. The
formula

5i{α1, . . . ,αk}

is used to express the fact that agent i knows at most α1, . . . ,αk, i.e. that all he
knows is included in the set but he may know less. Evidently,

♦iX ⇔ 4iX ∧5iX

3.3 Semantic Assumptions

It is assumed that there is a group of n deliberative agents who may posses
“pieces of knowledge” about the world as well as about the knowledge of other
agents, obtained through observation or deliberation. Initially, no assumption
is made about the finiteness of the storage; this semantic assumption is added
later (Ch. 5). Presently, the model of the “pieces of knowledge” is introduced.
It is assumed that the agents have the ability to represent finite sets of formu-
lae, so that the “pieces of knowledge” can contain the expressions about only
knowing discussed above. Although the set of all “pieces of knowledge” is not
defined as a formal logical language, I will henceforth abuse the terminology
and refer to the elements of this set as formulae and call the set the object lan-
guage. It is assumed that the representation is identical for all the agents. In
general, no assumption about the combination of formulae in this set is made
– i.e. no assumption about the consistency, or about any closure condition, of
the underlying deliberation mechanism is made. I will, however, show how
such assumptions can be modeled in Chapter 6. Informally, the semantics of
the language which will be used to reason about the agents’ knowledge de-
scribes the group of agents as a collection of points in the subset lattice of all
formulae. Formal semantics is presented in Section 3.6. It is shown later that
certain epistemic properties of the agents can be modeled by making the set of
possible points a proper subset of all points.

The object language OL(n, Θ) — just OL when no confusion can occur — is
defined over a given set Θ of primitive propositions, for a group of n agents. Θ

is assumed to be countable (this assumption might be dropped which would,
however, complicate some proofs).

Definition 3.1 (OL(n, Θ)) OL(n, Θ) is the least set such that:

• OL0 = Θ
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• If X ∈ ℘ f in(OLk) then 4iX
5iX

}
∈ OLk+1

Ifα,β ∈ OLk then ¬α
(α ∧β)

}
∈ OLk+1

• OL(n, Θ) =
⋃∞

k=0 OLk 2

where ℘ f in(S) denotes the set of finite subsets of S. I use the common propo-
sitional connectives ∨,→,↔ as syntactic sugar with the usual meaning, and
♦iX to stand for (4iX ∧5iX).

The nesting of the power set construct, i.e. its application at each stage of
the construction of OL captures the possible nesting of epistemic operators in
the agents’ knowledge. Examples of formulae for agent i (pieces of knowledge
which are held by agent i) are (if p, q ∈ Θ are primitive propositions): p (agent
i knows p), p → q (agent i knows that p implies q), 5 j{p} (agent i knows that
agent j knows at most p, and (4 j{p → q} ∧ p) → q (agent i knows that if
agent j knows that p implies q and p is true, then q is true).

A language for reasoning about explicit knowledge over OL needs a repre-
sentation of the elements in OL – which again require a representation of sets
of such elements. In the following, the agent language and the term language
are defined by mutual recursion. The latter is simply a notation for sets of the
former, while the former includes such sets in its definition.

The term language is considered first.

3.4 The Subset Lattice Term Language

The term language allows us to construct terms corresponding to the finite
sets of OL formulae. The following definition is parameterized by an arbitrary
agent language L, which will be instantiated in the following Section 3.5. For
the moment, think of it as (something similar to) OL.

Definition 3.2 (TL(L)) Given a language L, the set of terms TL(L) is the least
set such that

• Ifα1, . . . ,αk ∈ L then {α1, . . . ,αk} ∈ TL(L)

• If T, U ∈ TL(L) then (T tU)
(T uU)

}
∈ TL(L) 2

Formally, the term language TL(L) is defined over the alphabet

AL ∪ {{, ,, }, (, ),t,u}

where AL is the alphabet of L. A term of the form {α1, . . . ,αk} will, of course,
be used to denote the set {α1, . . . ,αk}. Often, to simplify the notation, I will
write the term {α1, . . . ,αk} simply as {α1, . . . ,αk} (and the term {} as ∅). It
will be clear from the context when the expression {α1, . . . ,αk} is a term, and
when it is a mathematical expression of a set. Such terms are called basic. In
the following, α,β, . . . will be used to denote formulae in the language L and
T, U, . . . denote general terms.
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The parameter L will be omitted when it is clear from context.
The logical meta language of term formulae is constructed from the following

atomic expressions: if T, U are terms then T .= U is a well formed formula, and
the set of all such atoms is closed under the propositional connectives ¬ and
∧. The usual abbreviations are used, in addition to T � U for T t U .= U.
The following definitions provide interpretation of terms and validity1 of term
formulae.

Definition 3.3 (Interpretation of Terms) Given a language L together with an
interpretation of the elements of L into a set S

[ ] : L→ S

the interpretation of terms TL(L)

[ ] : TL(L)→ ℘fin(S)

is inductively defined as follows:

• [{α1, . . . ,αn}] = {[α1], . . . , [αn]}

• [T tU] = [T] ∪ [U]

• [T uU] = [T] ∩ [U] 2

Validity of term formulae is defined as expected:

Definition 3.4 (Validity of Term Formulae)

|= T .= U ⇔ [T] = [U]
|= ¬φ ⇔ 6|= φ

|= φ ∧ψ ⇔ |= φ and |= ψ 2

Term formulae are a part of the meta language for the logic, which is intro-
duced next.

3.5 The Epistemic Language

This section defines an agent language AL(n, Θ) for representing formulae in
OL(n, Θ), and an epistemic language EL(n, Θ) which is a meta language for ex-
pressing propositions about sets of formulae in OL(n, Θ). These sets are repre-
sented by the term language TL(AL). The epistemic language is a superset of
the agent language and includes, in addition, term formulae over TL(AL).

Definition 3.5 (AL(n, Θ)) Given a set of primitive formulae Θ, the agent lan-
guage AL(n, Θ), or just AL, is the least set such that:

• Θ ⊆ AL

• If T ∈ TL(AL) then 4iT
5iT

}
∈ AL

1Truth of term formulae follows entirely from the particular formula and is not defined relative
to an external structure; thus the notions of truth and validity coincide.
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• Ifα,β ∈ AL then ¬α
(α ∧β)

}
∈ AL 2

Definition 3.6 (EL(n, Θ)) Given a set of primitive formulae Θ, the epistemic
language EL(n, Θ), or just EL, is the least set such that:

• AL ⊆ EL

• If T, U ∈ TL(AL) then (T .= U) ∈ EL

• Ifφ,ψ ∈ EL then ¬φ
(φ ∧ψ)

}
∈ EL 2

As usual, the abbreviations (φ ∨ψ) for ¬(¬φ ∧ ¬ψ), (φ → ψ) for (¬φ ∨ψ),
(φ ↔ ψ) for ((φ → ψ) ∧ (ψ → φ)) and T � U for T t U .= U are used.
In addition, ♦iφ stands for (4iφ ∧ 5iφ). The operators 4i ,5i and ♦i are
called epistemic operators. Paranthesis will sometimes be skipped when not
necessary. The usual precedence of propositional connectives is used; e.g. φ1 ∧
φ2 → φ3 = ((φ1 ∧φ2)→ φ3).

In the following, p, q, . . . are used to denote members of Θ, the meta-variables
α,β, . . . AL-formulae and φ,ψ, . . . EL-formulae. The only instantiation of the
parameter L in the definition of TL(L) of concern in this Part II of the thesis is
AL, and I will often write TL for TL(AL).

The set EL(n, Θ) is defined by reference to AL(n, Θ) and this latter one by a
mutual recursion with the definition of the set of terms TL(AL) from Definition
3.2. Intuitively, and roughly:

TL(AL) consists of terms denoting finite sets of AL formulae with arbitrary
nesting, e.g., {p, q, r}, {p,4i{p, q}}, {p,4i{p,5 j{q}}, {p,4i{q}} t
{5 j{p, q, r}}. A term T ∈ TL(AL) will be interpreted as a set [T] ∈ OL.

AL consists of formulae from Θ, applications of epistemic operators to terms,
and their propositional combinations, e.g., p,4i{p,5 jq},¬ 4i {p} ∧
5i({p} t {q, r}). A formula in AL represents an element in OL.

EL extends AL with propositional combinations of term formulae T .= U,
T, U ∈ TL(AL).

The primitive term formulae are included in the epistemic language in or-
der to increase the expressiveness and make it more convenient to write down,
e.g., axiom schemata. The assumption about the agent language, however, is
that no reasoning about sets are necessary. In Appendix A it is shown that these
languages defined by mutual recursion are well-defined, by showing that the
corresponding recursive function has a least fixed point.

3.6 Semantics

The agent language is intended to represent OL; generally, since we can now
write down a set in several ways (using different orderings of the formulae
and/or using set operators), more than one formula in the agent language rep-
resents a particular “piece of knowledge” in OL. The interpretation of AL-
formulae as a function [ ] : AL(n, Θ) → OL(n, Θ) is now defined. This defini-
tion is henceforth assumed in the interpretation of TL(AL) (Definition 3.3).
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Definition 3.7 The interpretation of agent formulae [ ] : AL(n, Θ)→ OL(n, Θ)
is defined inductively:

• [p] = p for p ∈ Θ

• [¬α] = ¬[α], forα ∈ AL(n, Θ)

• [α1 ∧α2] = [α1] ∧ [α1], forα1,α2 ∈ AL(n, Θ)

• [4iT] = 4i[T], for T ∈ TL(AL)

• [5iT] = 5i[T], for T ∈ TL(AL)

where the interpretation of terms [ ] : TL(AL) → ℘fin(OL) is as in Definition
3.3. 2

To determine the truth of formulae 4iT1 and 5iT2, it must be determined
whether the OL-formulae known by agent i includes [T1] or is included in [T2],
respectively. Thus, a semantical structure must include information about the
exact knowledge of the agents. Recall that the agents are not (yet) assumed
to have finite knowledge. A naı̈ve idea is then to represent the epistemic state
of each agent i as a set si ∈ ℘(OL) (in addition to a truth assignment to the
primitive propositions Θ). Consider, however, the following theory:

Γ1 = {4b{me},¬5b {me}} ∪ {¬4b {α} : α 6= me}

Γ1 describes a situation where

1. Agent b knows me

2. The set {me} is not all which is known by agent b

3. Agent b does not know any other formula than me

Clearly, Γ1 is not satisfiable in the naı̈ve semantics, because there is no set of
OL-formulae which describes agent b’s epistemic state2. Thus, Γ1 should be
considered inconsistent. However, there can be no finite proof of inconsistency
of theories such as Γ1, and an axiomatization would thus need a deduction rule
with infinitely many antecedents.

An alternative to making Γ1 inconsistent is making it satisfiable. The ques-
tion is what Γ1 could mean, if the assumptions of the naı̈ve semantics are lifted.
The problem with the naı̈ve semantics is the correspondence between AL and
OL — for each α ∈ OL there is an α′ ∈ AL such that [α′] = α. If, on the con-
trary, there was an element ∗ ∈ OL such that [α′] 6= ∗ for all α′ ∈ AL, then
Γ1 would be satisfied by a structure where the epistemic state of b is {me, ∗}.
Thus, Γ1 could be interpreted as describing an agent who knows something not
expressible in the meta language in addition to me, instead of as a contradic-
tion.

This idea is used in the following definition of a general knowledge set struc-
ture which represents the agents as a collection of points in the subset lattice of
OL extended with ∗ (the reason ∗ is only included in finite subsets is discussed
later) together with a truth assignment to the primitive propositions, and will
be used to determine truth of the language EL.

2Suppose b’s epistemic state is sb ⊆ OL. By point 1, me ∈ sb. If sb = {me}, then b knows at most
me which contradicts point 2. Ifα ∈ sb forα 6= me, then it contradicts point 3.
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Definition 3.8 (General Knowledge Set Structure) A General Knowledge Set
Structure (GKSS) is an n + 1-tuple

M = (s1, . . . , sn, π)

where
si ∈ ℘(OL) ∪ ℘fin(OL∪ {∗})

and π : Θ → {true, false} is a truth assignment. si is the epistemic state of
agent i, and the set of all epistemic states is S = ℘(OL) ∪ ℘fin(OL ∪ {∗}). The
set of all GKSSs is denotedM. 2

Any “piece” of knowledge an agent may have is finite. OL(Θ) (Def. 3.1) is
the collection of such finite “pieces”. An epistemic state can, however, have in-
finitely many (finite) pieces of knowledge. I will later be particularly interested
in agents with only finite epistemic states, and will restrict the set of struc-
tures accordingly (Chapter 5). We may also want to model certain epistemic
properties of the agents. Examples of this are an agent who always believes
β whenever it believes both α and (α → β), or an agent who never believes
a contradiction. A result in Chapter 6 is that many interesting properties can
be captured simply by restricting the set of allowed epistemic states for each
agent.

We can view a GKSS as a description of the agents as points in the lattice S .
As an example, the point {α,4k{α},4i{5 j{α,β}}} represents the epistemic
state in which an agent (who is at this point) knows: 1) α, 2) that k knows α,
and 3) that i knows that j knows at mostα and β.

The point si represents all the formulae agent i knows. Notice that an agent
may “know” formulae which are not true, just as he may “know” both α and
¬α.

Definition 3.9 (Satisfaction) Satisfaction of a EL-formula φ in a GKSS M =
(s1, . . . , sn, π) ∈ M, written M |= φ, is defined as follows:

M |= p ⇔ π(p) = true
M |= ¬φ ⇔ M 6|= φ

M |= (φ ∧ψ) ⇔ M |= φ and M |= ψ

M |= 4iT ⇔ [T] ⊆ si

M |= 5iT ⇔ si ⊆ [T]
M |= T .= U ⇔ [T] = [U] 2

Notice an important and possibly confusing subtlety. A formula which is
both an AL and an EL formula, say φ = 4i{p, q,5 j{a, b}} is interpreted, ac-
cording to Def. 3.7 as an element of OL. This, however, is merely an auxiliary
definition needed for interpretation of terms. To check its satisfaction in a struc-
ture, we actually go to the point denoted by the term following the outermost
epistemic operator – which is here the set {p, q,5 j{a, b}} – and check whether
the agent i is at or above this point. However, if this same formula φ occurred
within a term in another formula, say ψ = 5k{φ} then, to check the satis-
faction of ψ, we would only have to check whether k is at or below the point
{φ}.
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The truth conditions for the derived operators are easily seen to be:

M |= (φ ∨ψ) ⇔ M |= φ or M |= ψ

M |= (φ→ ψ) ⇔ M 6|= φ or M |= ψ

M |= ♦iT ⇔ [T] = si

M |= T � U ⇔ [T] ⊆ [U]

An EL-formulaφ is valid with respect to a classM′ ⊆M of general knowl-
edge set structures iff M |= φ for all M ∈ M′. The model class of Γ ⊆ EL
is

mod(Γ) = {M ∈ M : M |= γ for all γ ∈ Γ}

A formulaφ is a logical consequence of a set of formulae Γ , Γ |= φ, iffφ is valid
with respect to mod(Γ).

Example 3.1 Consider again the encrypted message example (p. 27). If we
assume that me, m, n are primitive propositions expressing the values of the
variables in question, sentences (3.2), (3.3), (3.5) and (3.4) can be expressed as

4b{me} (3.6)
4b{n} (3.7)

5b{me, n} (3.8)
¬4b {m} (3.9)

It is easy to see that the latter is a logical consequence of the three former:

{4b{me},4b{n},5b{me, n}} |= ¬4b {m}

If the case was that we did not know whether agent b have more informa-
tion than the encrypted message and the product, we would remove formula
3.8. Now, formula 3.9 does not follow from 3.6 and 3.7. 2

EL extends the language of term formulae, and the semantics of the latter
part of EL is still independent on any structure (Def. 3.4): ifφ is a term formulae
then M |= φ⇔|= φ for any M, and 6|= φ⇒|= ¬φ.

3.6.1 The Element ∗
The special element ∗ is used in the semantic description of an epistemic state
syntactically described by a theory (i.e. a set of formulae) Γ of a special class of
infinite theories – i.e. those in which

a) an agent cannot be at or below any (finite) point corresponding to a term
(Γ ∪ {5iT} is unsatisfiable for every T) and

b) the set of terms describing finite points the agent can be above is finite (there
exists a “largest” term S such that Γ ∪ {4iS} is satisfiable and if Γ ∪
{4iS′} is satisfiable then [S′] ⊆ [S])

In other words, the agent must be at a finite point which has no corresponding
term. A state s where ∗ ∈ s represents such a point.
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The formula ∗which can be known but not expressed in the meta language
is needed in the model, since we allow the expression of such situations in the
language (by infinite theories).

One can think of states which include the element ∗ as infinite, because they
are not bounded above by any term (point a above). Recall that the assumption
that epistemic states can be infinite is only intermediate, and from Chapter 5
and through the rest of the thesis epistemic states are restricted to be finite.
The ∗ element is then dispensed with. The results involving completeness with
respect to GKSSs (with the ∗ element) in the next chapter will, however, be very
useful later.

It is impossible to make the type of infinite theories such as Γ1 on p. 33 in-
consistent with finite deduction rules. The sound and complete logical system
presented in the next chapter has only finite rules. As an alternative, we could
dispense with ∗ and introduce infinite rules — a less desirable alternative3.

3.6.2 On An Incompleteness of Knowledge

Here, one property of the introduced logic of syntactic epistemic states is shown.
In the following theorem, the Ti axioms (knowledge is truth) discussed in Sec-
tion 2.1 are adopted. In EL notation:

4i {α} → α Ti

Theorem 3.1 For any term S:

Ti |= ¬4i {5iS} 2

PROOF It is easy to see that Ti is satisfiable4. Let M |= Ti, and assume that
M |= 4i{5iS} for some S, i.e. that 5i[S] ∈ si. By Ti, M |= 5iS and si ⊆ [S].
Then5i[S] ∈ [S], which is impossible.

Theorem 3.1 can be read as an epistemic analogue of Gödels incomplete-
ness theorem: there exist true formulae which are impossible to know — more
specifically, it is impossible to know that “this is all I know” (if knowledge is
truth). Furthermore, this holds even for (imaginary) agents with infinite mem-
ory5.

3Let

R∗ =
For allα ∈ AL: Γ ` 4i{α} → {α} � T

Γ ` 5iT

LetM− = {(s1 , . . . , sn , π) ∈ M : ∗ 6∈ si}. In Section 4.3 I describe a logical system EC which is
proven sound and complete with respect toM. To see that EC∪ {R∗} is sound and complete with
respect to M−, it then suffices to show that, for any maximal consistent theory Γ , if Γ ` ¬ 5i T
for every T and

⋃
Γ`4i S[S] is finite then Γ is inconsistent. Let [S′] =

⋃
Γ`4i S[S], and let β be such

that Γ ` ¬{β} � S′. By consistency of Γ , [β] 6∈ [S′]. By the definition of S′, Γ 6` 4i{β} and
by maximality Γ ` ¬ 4i {β}. By R∗, Γ ` 5i S′. Thus, since Γ ` ¬ 5i S′ by assumption, Γ is
inconsistent.

4Consider for example a structure with si = {p} and π(p) = true.
5A formula like 4i{5 j S}, i 6= j, is of course fully consistent with Ti; an agent can potentially

know all another agent knows.
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Example 3.2 Consider once again the encrypted message example from the
introduction. We can express the fact that agent a knows that agent b knows at
most me and n by the formula

φ = 4a{5b{me, n}}

It is easy to see that φ is satisfiable in mod(Ti); let 5b{me, n} ∈ sa and sb ⊆
{me, n}.

The fact that agent b knows that it knows at most me and n, i.e.

φ1 = 4b{5b{me, n}}

is clearly unsatisfiable in mod(Ti) since the epistemic state of b must include
the formula5b{me, n} but in mod(Ti) in every model ofφ1 the formula

5b{me, n}

must be true, i.e. the epistemic state of b can at most include me and n. If we
add this formula to the description of the epistemic state of agent b, we get

φ2 = 4b{5b{me, n,5b{me, n}}}

but in every model ofφ2 the formula

5b{me, n,5b{me, n}}

must be true, soφ2 is also unsatisfiable. Continuing in the same way, we get

φ3 = 4b{5b{me, n,5b{me, n},5b{me, n,5b{me, n}}}}
...

ad infinitum, and there is noφi which is satisfiable in mod(Ti). 2

The property (Th. 3.1) is a consequence of an impossibility of self-reference
of terms: a (finite) term cannot be its own proper subterm.
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Chapter 4

A Logical System

4.1 Introduction

In this chapter a logical system for the epistemic language EL is presented.
In Section 2.1 several general logical concepts and definitions, such as logical
systems and proofs, were presented. In addition, the following definitions are
used.

A formula φ is provable in a system S = (R,A) from a set of premises Γ ,
written Γ `S φ, iff it is a theorem of the system S = (R,A ∪ Γ). The notion
of completeness introduced in in Section 2.1, |= φ ⇒` φ, can be called weak
completeness. Recall also the notion of logical consequence form that section.
In the GKSS semantics logical consequence, Γ |= φ, can be defined as M |= Γ ⇒
M |= φ for every M ∈ M. The notions of provability from premises and logical
consequence leads to the concept of strong completeness: Γ |= φ ⇒ Γ ` φ. In
the following, it will be clear from context which version of completeness is
meant by the terms “complete” and “completeness”.

An (EL) theory is a (possibly infinite) set of EL-formulae. A theory Γ is (S-)
inconsistent iff both Γ `S φ and Γ `S ¬φ for some EL-formula φ, in which case
Γ `S ψ for every formula ψ if S is based on propositional logic. A theory Γ is
maximal iff either Γ `S φ or Γ ` ¬φ for every formula φ. The subscript on `
will be dropped when it is clear from context.

First, in Section 4.2, a term calculus for the part of EL called the term lan-
guage is defined. This will allow us to concentrate in the following Section 4.3
exclusively on the epistemic operators. The relation between the developed
calculus and the semantics for agents with possible infinite epistemic states
from the previous chapter is shown by proving soundness and completeness.
In the following chapter, the semantics are restricted to agents with finite epis-
temic states.

4.2 Term Calculus

In this section a term calculus is presented – a logical system for propositional
combinations of term equations. It has two components. The first, the lattice
calculus, is a generic axiomatization of a power set lattice. This is introduced
in Section 4.2.1. The other component is an axiomatization of equality and

39
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inequality of basic terms which, again, involves interaction with the definition
of the agent language. This is presented in Section 4.2.2. The term calculus
is the union of these two components, and its soundness and completeness is
shown in Section 4.2.3.

Recall from Section 3.4 that the language of term formulae includes term
equalities T .= U and is closed under the usual propositional connectives.

4.2.1 Lattice Calculus

Equality in a power-set lattice is axiomatized.

Definition 4.1 (LC) The (power set) lattice calculus LC is the logical system for
the language of term formulae consisting of the following axiom schemata:

All substitution instances of tautolo-
gies of propositional calculus Prop

T .= T equivalence (reflexivity) T1
T .= U → U .= T equivalence (symmetry) T2
T .= U ∧U .= V → T .= V equivalence (transitivity) T3
T .= U ∧ S .= V → S t T .= V tU join-congruence T4
T .= U ∧ S .= V → S u T .= V uU meet-congruence T5
T tU .= U t T join-commutativity T6
T uU .= U u T meet-commutativity T7
(T tU) tV .= T t (U tV) join-associativity T8
(T uU) uV .= T u (U uV) meet-associativity T9
T t (T uU) .= T meet-absorption T10
T u (T tU) .= T join-absorption T11
T u (U tV) .= (T uU) t (T uV) distributivity T12
{α1, . . . ,αn}

.= {α1} t · · · t {αn} atomicity T13
{α} .= {β} → {α} u {β} .= {α} T14
¬({α} .= {β})→ {α} u {β} .= ∅ T15

and the following transformation rule

` φ,` φ→ ψ

` ψ MP
2

Note that in addition to the axiomatization of the distributive lattice prop-
erties (T1–T12), we also need to “connect” non-basic terms to the basic terms
they (intuitively) denote. For example, we must have that {α} t {β} .= {α,β}.
The axioms T13–T15 ensure this.

Some properties of LC are now shown. First, some well-known properties
of distributive lattices (the first twelve hold for general lattices).

Lemma 4.1
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1. ` T t T .= T

2. ` T u T .= T

3. ` T � T tU

4. ` T uU � T

5. ` U � T tU

6. ` T uU � U

7. ` T � V ∧U � V → T tU � V

8. ` V � T ∧V � U → V � T uU

9. ` T � V ∧U �W → T tU � V tW

10. ` T � V ∧U �W → T uU � V uW

11. ` U � T ↔ T uU .= U

12. ` T .= U ↔ T � U ∧U � T

13. ` T t (U uV) .= (T tU) u (T tV) 2

PROOF See Appendix B.

The following Lemma justifies the earlier comments regarding the set nota-
tion (recall the underlined notation from Sec. 3.4).

Lemma 4.2 If the sequence β1 . . .βm is a permutation, possibly with dupli-
cates, of a sequenceα1 . . .αk of agent-language formulae, then

` {α1, . . . ,αk}
.= {β1, . . . ,βm} 2

PROOF Follows by T1–T4, T6, T8, T13, and Lemma 4.1.1.

Thus, in the notation of a basic set, the order in which we write down the
formulae does not matter (with respect to equality).

4.2.2 Equality and Inequality of Basic Terms

In order to complete the term calculus, an axiomatization of equality and in-
equality of basic terms, i.e. of agent language formulae, is constructed. In short,
equal formulae differ at most by the the occurrence of (syntactically) different
terms which can be proven equal.

Definition 4.2 (TC) The term calculus TC is the logical system for the language
of term formulae consisting of the lattice calculus LC in addition to the follow-



42 CHAPTER 4. A LOGICAL SYSTEM

ing axiom schemata:

{α1, . . . ,αk} � {α′1, . . . ,α′m} → (({α1}
.= {α′1} ∨ · · · ∨ {α1}

.= {α′m})∧
({α2}

.= {α′1} ∨ · · · ∨ {α2}
.= {α′m})∧

...

({αk}
.= {α′1} ∨ · · · ∨ {αk}

.= {α′m}))

N1

¬({p} .= {α}) ifα 6= p N2
T .= S↔ {4iT}

.= {4iS} N3
¬({4iT}

.= {α}) ifα 6= 4iS N4
T .= S↔ {5iT}

.= {5iS} N5
¬({5iT}

.= {α}) ifα 6= 5iS N6
{α} .= {β} ↔ {¬α} .= {¬β} N7
¬({¬α} .= {β}) if β 6= ¬γ N8
{α1}

.= {β1} ∧ {α2}
.= {β2} ↔ {(α1 ∧α2)}

.= {(β1 ∧β2)} N9
¬({(α1 ∧α2)}

.= {β}) if β 6= (β1 ∧β2) N10
2

N2–N10 axiomatize equality and inequality for all possible combinations of
singular basic terms. N1 characterizes inequality of non-singular basic terms,
in terms of inequality of singular basic terms (note that equality of non-singular
basic terms is defined by the equivalence and congruence axioms together with
the axiomatization of equivalence of singular basic terms, so the other direction
of the implication N1 also holds).

4.2.3 Soundness and Completeness of the Term Calculus

Recall the definition of validity of term formulae (Def. 3.4).

Lemma 4.3 (Soundness of TC)

`TC φ⇒ |= φ 2

PROOF All axioms of the schema Prop are valid, since the interpretation of
the propositional connectives is the same as in propositional logic. Given the
interpretation of AL (Def. 3.7) and the interpretation of .= as equality and t
and u as set union and intersection, it is obvious that each of the axioms T1–
T15 and N1–N10 are valid. Clearly, if |= φ1 and |= φ1 → φ2 then |= φ2, so MP
preserves validity. Let ` φ. |= φ follows by a simple inductive proof over the
length of the proof of ` φ.

The following are some definitions and results which are used to prove
completeness of the term calculus. The exposition is quite technical, and the
reader may want to jump directly to the main result in Corollary 4.2 (the imme-
diately following discussion about term terminology may, however, be useful
to review).

The following terminology is useful for inductive proofs over the structure
of formulae. The degree d(T) of a term T ∈ TL is 1 plus the highest number of
nested knowledge operators inside the term, and is defined as follows:
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• d(T tU) = max(d(T), d(U))

• d(T uU) = max(d(T), d(U))

• d({α1, . . . ,αk}) = max(d({α1}), . . . , d({αk}))

• d({p}) = 1

• d({4iS}) = 1 + d(S)

• d({5iS}) = 1 + d(S)

• d({¬α}) = d({α})

• d({(α ∧β)}) = max(d({α}), d({β}))

S is a subterm of a term T iff it is a term and it occurs as a substring in T, and
it is a proper subterm iff it in addition is different from T. A subterm S occurs
at a certain level lT(S)1 in the term T, corresponding to the number of nested
knowledge operators up to the point of the occurrence. The level of S in T is
defined as follows:

lT(S) = d(T)− d(S) + 1

As an illustration, the following term T of degree 3 is annotated by the level in
T (above) and degree (below) of each subterm:

T =

1︷ ︸︸ ︷

{4i

2︷ ︸︸ ︷
{p,5i

3︷ ︸︸ ︷
3︷︸︸︷
{q}︸︷︷︸

1

u
3︷ ︸︸ ︷
{q, r}︸ ︷︷ ︸

1︸ ︷︷ ︸
1

}

︸ ︷︷ ︸
2

,5i

2︷ ︸︸ ︷
{4 j

3︷︸︸︷
{p}︸︷︷︸

1

}

︸ ︷︷ ︸
2

}

︸ ︷︷ ︸
3

In the following lemmata, the notation S[·] andφ[·] for a term and a formula
respectively with a hole, i.e. with a missing term, is used. If T is a term, then S[T]
(φ[T]) is a well-formed term (formula)2.

A hole can occur at any place in a term or formula where a well-formed
term can occur, hence a hole occurs at a certain level in the term or formula –
and it may occur at any level. Henceforth, a hole “at level n” means a missing
occurrence of a subterm at level n.

I now show that we can replace a subterm with an equal subterm, at an
arbitrary level inside a term.

1Of course, the same subterm may occur at different levels in the term. Formally, we can view
each occurrence of a subterm as being annotated by a unique name. In other words, “the level of
S in T” is the level of a particular occurrence of S in T.

2Note that the notation for a missing term and for the interpretation of a term both use the
[] operator, but can not be confused. For example, [S[T]] means the interpretation of the term
resulting from replacing the “hole” in S[·] with T.
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Lemma 4.4 (Substitution) The following transformation rule is admissible in
TC:

` T .= U
` S[T] .= S[U]

Repl
2

PROOF I first show an intermediate result; that we can substitute equal terms
on the first level, i.e. that the following rule is admissible:

If S[·] has a hole at level 1 then
` T .= U

` S[T] .= S[U]
Repl−

Terms with holes at level 1 can be defined in the following way. [·] is a term
with a hole at level 1, and if S[·] is a term with a hole at level 1 and V is a
term then S[·] t V, V t S[·], S[·] u V, V u S[·] are terms with holes at level 1.
The proof is by structural induction over S[·]. Assume ` T .= U. In the base
case, S[·] is empty and S[T] = T, and the consequent of the transformation
rule is the same as the antecedent. For the induction step, S[·] is constructed
by combining a term with a hole with a well-formed term using t or u. First,
consider the case where S[·] = S1[·] t S2, i.e. where the hole in S is in the left
sub term:

1 ` T .= U Assumption
2 ` S1[T] .= S1[U] Ind. hyp.(1)
3 ` S2

.= S2 ∧ S1[T] .= S1[U]→ S1[T] t S2
.= S1[U] t S2 T4

4 ` S2
.= S2 T1

5 ` S2
.= S2 ∧ S1[T] .= S1[U] MP(Prop,2,4)

6 ` S1[T] t S2
.= S1[U] t S2 MP(5,3)

Next, consider S[·] = S1[·] u S2:

1 ` T .= U Assumption
2 ` S1[T] .= S1[U] Ind. hyp.(1)
3 ` S2

.= S2 ∧ S1[T] .= S1[U]→ S1[T] u S2
.= S1[U] u S2 T5

4 ` S2
.= S2 T1

5 ` S2
.= S2 ∧ S1[T] .= S1[U] MP(Prop,2,4)

6 ` S1[T] u S2
.= S1[U] u S2 MP(5,3)

The proofs in the cases where S[·] = S1 t S2[·] and S[·] = S1 u S2[·] are similar.
This completes the proof of Repl−.

The proof of Repl is by induction over the level of the hole in S[·]. Let
` T .= U. For the induction base, consider a term S[·] with a hole in level 1.
Then ` S[T] .= S[U] by Repl−.

For the inductive step, assume that Repl holds for all terms with holes at
level k. Let S[·] be a term with a hole at level k + 1. Then S[·] contains a level
k term on the form V[·] = {α1, . . . ,α j[·], . . . ,αm}, where α j[·] contains a term
with a hole on level 1. I now show that

` {α j[T]} .= {α j[U]} (4.1)
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by induction over the structure of α j[·]. For the base case, first let α j[·] =
4iW[·] where W[·] is a term with a missing level 1 subterm. By Repl−, `
W[T] .= W[U], and thus ` {4iW[T]} .= {4iW[U]} by N3. Second, let α j[·] =
5iW[·], and ` {5iW[T]} .= {5iW[U]} follows similarly by Repl− and N5.
For the induction step, first let α j[·] = ¬β[·]. By the induction hypothesis,
` {β[T]} .= {β[U]} and thus ` {¬β[T]} .= {¬β[U]} by N7. Second, let
α j[·] = (β1[·] ∧ β2). By the induction hypothesis ` {β1[T]} .= {β1[U]},
and by T1 ` {β2}

.= {β2}, and thus ` {(β1[T] ∧ β2)}
.= {(β1[U] ∧ β2)} by

N9. Third, let α j[·] = (β1 ∧ β2[·]) and ` {(β1 ∧ β2[T])} .= {(β1 ∧ β2[U])}
follows by similar reasoning. This completes the proof of (4.1). Then, it fol-
lows from several applications of T13 and T4 that ` V[T] .= V[U]. If we re-
place the term V[·] in S[·] with a hole, we get a term S′[·] with a missing k
level term. From ` V[T] .= V[U] and the induction hypothesis, we have that
` S′[V[T]] .= S′[V[U]]. Clearly, S′[V[T]] = S[T] and S′[V[U]] = S[U] and thus
we have that ` S[T] .= S[U] which completes the inductive step in the main
proof.

Completeness of the term calculus follows as a corollary of the next lemma,
the proof of which is quite involved and found in an appendix.

Lemma 4.5 Let T1 and T2 be terms.

1. If [T1] = [T2] then ` T1
.= T2

2. If [T1] 6= [T2] then ` ¬T1
.= T2 2

PROOF See Appendix C.

Corollary 4.1 Let T and U be terms.

1. If [T] ⊆ [U] then ` T � U

2. If [T] * [U] then ` ¬T � U 2

PROOF If [T] ⊆ [U] then [T t U] = [T] ∪ [U] = [U], and ` T t U .= U by
Lemma 4.5.1. If [T] * [U] then [T tU] = [T] ∪ [U] 6= [U], and ` ¬T tU .= U
by Lemma 4.5.2.

Finally, completeness of the term calculus is shown.

Corollary 4.2 Ifφ is a term formula, then

|= φ⇒` φ 2

PROOF The following statement is proved by structural induction overφ:

If |= φ then ` φ, otherwise ` ¬φ (4.2)

Recall the definition of validity of term formulae (Def. 3.4). In the base case,
φ = T .= U. If |= φ then [T] = [U] and ` T .= U by Lemma 4.5.1. If 6|= φ then
[T] 6= [U] and ` ¬T .= U by Lemma 4.5.2. For the induction step, first assume
that φ = ¬ψ. If |= ¬ψ then 6|= ψ and ` ¬ψ by the induction hypothesis.
If 6|= ¬ψ then |= ψ, ` ψ by the induction hypothesis and ` ¬¬ψ by Prop.
Second, assume that φ = (ψ1 ∧ψ2). If |= φ, |= ψ1 and |= ψ2, ` ψ1 and ` ψ2
by the induction hypothesis and ` (ψ1 ∧ψ1) by Prop. If 6|= φ then 6|= ψ1 or
6|= ψ2, ` ¬ψ1 or ` ¬ψ2 by the induction hypothesis, and thus ` ¬(ψ1 ∧ψ2) by
Prop.
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4.3 Epistemic Calculus

Finally, a logical system for the epistemic language is introduced. The epis-
temic language includes the language of term formulae, and the epistemic cal-
culus includes the term calculus.

Definition 4.3 (EC) The epistemic calculus EC is the logical system for the epis-
temic language EL consisting of the term calculus TC in addition to the follow-
ing axiom schemata:

All substitution instances of tau-
tologies of propositional calcu-
lus

Prop

4i ∅ E1
(4iT ∧4iU)→ 4i(T tU) E2
(5iT ∧5iU)→ 5i(T uU) E3
(4iT ∧5iU)→ T � U E4
(5i(U t {α}) ∧ ¬4i {α})→ 5iU E5
4i T ∧U � T → 4iU KS
5i T ∧ T � U → 5iU KG

and the following transformation rule

Γ ` φ, Γ ` φ→ ψ

Γ ` ψ MP
2

Example 4.1 Consider again the encrypted message example in the introduc-
tion (p. 27). In Example 3.1 (p. 35) the following formulae were used to repre-
sent sentences (3.2), (3.3), (3.5) and (3.4):

4b{me}
4b{n}

5b{me, n}
¬4b {m}

The following in an example proof in the calculus, of:

{4b{me},4b{n},5b{me, n}} ` ¬4b {m}
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Let Γ = {4b{me},4b{n},5b{me, n}}.

1 Γ ` ((4b{m} ∧5b{me, n})→ {m} � {me, n})
→ ((5b{me, n} ∧ ¬{m} � {me, n})→ ¬4b {m}) Prop

2 Γ ` (4b{m} ∧5b{me, n})→ {m} � {me, n} E4
3 Γ ` (5b{me, n} ∧ ¬{m} � {me, n})→ ¬4b {m} MP(2,3)
4 Γ ` ¬({m} � {me, n}) Cor. 4.1.2
5 Γ ` 5b{me, n}
→ (¬{m} � {me, n} → (5b{me, n} ∧ ¬{m} � {me, n})) Prop

6 Γ ` 5b{me, n} Premise
7 Γ ` ¬{m} � {me, n} → (5b{me, n} ∧ ¬{m} � {me, n}) MP(5,6)
8 Γ ` 5b{me, n} ∧ ¬{m} � {me, n} MP(4,7)
9 Γ ` ¬4b {m} MP(3,8) 2

In Example 4.1 every deduction in the proof were explicitly written down,
except in line (4). I will henceforth often drop trivial details in the proofs, by
e.g. combining several applications of Prop and MP in one line. Since the set
of term formulae (from the previous section) is a subset of EL, I will, as in line
(4) above, refer to the completeness of the term calculus instead of writing out
the proofs of term (in)equalities.

The deduction theorem, Γ ∪ {γ} ` φ ⇒ Γ ` γ → φ, clearly holds for EC,
and will be referred to as DT.

4.3.1 Soundness and Completeness

I show that EC is sound and complete3. Note that since EC extends TC, if Γ ` φ
and Γ is consistent andφ is a term formula then |= φ by completeness of TC: if
6|= φ then |= ¬φ and ` ¬φ by completeness and thus Γ is not consistent.
Theorem 4.1 (Soundness)

If Γ ` φ then Γ |= φ 2

PROOF I show that all axioms of EC are valid (we only need to consider the
“new” axioms in Definition 4.3; all the axioms of TC are valid since TC is
sound). Let M = (s1, . . . , sn, π) be an arbitrary general knowledge set struc-
ture. I show that M |= φ for each axiomφ.

Prop All Prop-axioms are valid, since the interpretation of the propositional
connectives is the same as in propositional logic.

E1 φ = 4i∅. [∅] = ∅ ⊆ si ⇒ M |= φ.

E2 φ = (4iT ∧4iU)→ 4i(T tU). If M 6|= 4iT ∧4iU, then M |= φ trivially.
If M |= 4iT ∧4iU, then

M |= 4iT ⇒ [T] ⊆ si
M |= 4iU ⇒ [U] ⊆ si

}
⇒ [TtU] = [T]∪ [U] ⊆ si ⇒ M |= 4i(TtU)

and thus M |= φ.
3Soundness and completeness of EC relies on soundness and completeness of TC. As a gener-

alization, any sound and complete calculus of term (in)equality could be used instead of TC.
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E3 φ = (5iT ∧5iU)→ 5i(T uU). If M 6|= 5iT ∧5iU, then M |= φ trivially.
If M |= 5iT ∧5iU, then

M |= 5iT ⇒ si ⊆ [T]
M |= 5iU ⇒ si ⊆ [U]

}
⇒ si ⊆ [T]∩ [U] = [TuU]⇒ M |= 5i(TuU)

and thus M |= φ.

E4 φ = (4iT ∧5iU) → T � U. If M 6|= 4iT ∧5iU, then M |= φ trivially. If
M |= 4iT ∧5iU, then

M |= 4iT ⇒ [T] ⊆ si
M |= 5iU ⇒ si ⊆ [U]

}
⇒ [T] ⊆ [U]⇒ M |= T � U

and thus M |= φ.

E5 φ = (5i(U t {α}) ∧ ¬4i {α}) → 5iU. If M 6|= 5i(U t {α}) ∧ ¬4i {α},
then M |= φ trivially. If M |= 5i(U t {α}) ∧ ¬4i {α}, then

M |= 5i(U t {α})⇒ si ⊆ [U t {α}] = [U] ∪ {[α]}
M |= ¬4i {α} ⇒ [α] 6∈ si

}
⇒ si ⊆ [U]⇒ M |= 5iU

and thus M |= φ.

KS φ = (4iT ∧U � T) → 4iU. If M 6|= 4iT ∧U � T, then M |= φ trivially.
If M |= 4iT ∧U � T, then

M |= 4iT ⇒ [T] ⊆ si
M |= U � T ⇒ [U] ⊆ [T]

}
⇒ [U] ⊆ si ⇒ M |= 4iU

and thus M |= φ.

KG φ = (5iT ∧ T � U)→ 5iU. If M 6|= 5iT ∧ T � U, then M |= φ trivially.
If M |= 5iT ∧ T � U, then

M |= 5iT ⇒ si ⊆ [T]
M |= T � U ⇒ [T] ⊆ [U]

}
⇒ si ⊆ [U]⇒ M |= 5iU

and thus M |= φ.

Clearly, if Γ |= φ1 and Γ |= φ1 → φ2 then Γ |= φ2, so MP preserves logical
consequence.

Let Γ ` φ. Γ |= φ follows by a simple inductive proof over the length of the
proof of Γ ` φ.

In order to show completeness, I first show the counterpart of Lemma 4.4
for EC — we can substitute equals for equals inside an EL-formula.

Lemma 4.6 (Substitution) The following transformation rule is admissible in
EC:

Γ ` T .= U
Γ ` φ[T]↔ φ[U]

Subst
2
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PROOF The Lemma holds trivially for inconsistent Γ , so assume that Γ is con-
sistent. The proof is by structural induction over φ[·]4. The base cases are
the three types of atomic formulae involving a term. In the first base case,
φ[·] = 4iS[·]:

1 Γ ` T .= U Assumption
2 Γ ` S[U] � S[T] Compl. of TC (1)
3 Γ ` 4iS[T] ∧ S[U] � S[T]→ 4iS[U] KS
4 Γ ` (4iS[T] ∧ S[U] � S[T]→ 4iS[U])
→ (S[U] � S[T]→ (4iS[T]→ 4iS[U])) Prop

5 Γ ` 4iS[T]→ 4iS[U] MP(2,3,4)

The proof for Γ ` 4iS[U] → 4iS[T] can be obtained by using T2 with line 1,
and exchanging S[T] and S[U] in the rest of the proof above. In the second base
case, φ[·] = 5iS[·], and the proof is obtained by replacing the three last lines
of the preceding proof with:

3 Γ ` 5iS[U] ∧ S[U] � S[T]→ 5iS[T] KG
4 Γ ` (5iS[U] ∧ S[U] � S[T]→ 5iS[T])
→ (S[U] � S[T]→ (5iS[U]→ 5iS[T])) Prop

5 Γ ` 5iS[U]→ 5iS[T] MP(2,3,4)

and similarly for Γ ` 5iS[T]→ 5iS[U].
Consider now the third base case where φ[·] = (S[·] .= V) (the proof in the

case whereφ[·] = (S .= V[·]) is similar):

1 Γ ` T .= U Assumption
2 Γ ` S[U] .= S[T] Compl. of TC (1)
3 Γ ` S[U] .= S[T] ∧ S[T] .= V → S[U] .= V T3
4 Γ ` S[U] .= S[T]→ (S[T] .= V → S[U] .= V) MP,Prop, 3
5 Γ ` S[T] .= V → S[U] .= V MP,2,4

The proof of Γ ` S[U] .= V → S[T] .= V can be obtained by using T2 with line
(1), and exchanging S[T] and S[U] in the rest of the proof above.

In the inductive step, first consider the case where φ[·] = ¬ψ[·]. By the in-
duction hypothesis, Γ ` ψ[T]↔ ψ[U] whenever Γ ` T .= U, and Γ ` ¬ψ[T]↔
¬ψ[U] follows by Prop. Second, consider the case whereφ[·] = ψ1[·]∧ψ2 (the
proof in the case thatφ[·] = ψ1 ∧ψ2[·] is similar). By the induction hypothesis,
Γ ` ψ1[T] ↔ ψ1[U] whenever Γ ` T .= U, and Γ ` ψ1[T] ∧ψ2 ↔ ψ1[U] ∧ψ2
by Prop. Clearly,ψ1[T]∧ψ2 = (ψ1 ∧ψ2)[T] (the hole in (ψ1 ∧ψ2)[·] is the hole
in ψ1), so Γ ` (ψ1 ∧ψ2)[T]↔ (ψ1 ∧ψ2)[U].

Completeness of EL, with respect to M, is now shown by the commonly
used strategy of showing satisfiability of maximal consistent theories. It may
be instructive to recall that for every finite set X ∈ ℘fin(OL), there exists a term
T such that [T] = X.

Lemma 4.7 If Γ is a consistent theory, then there exists a maximal consistent
theory Γ ′ ⊇ Γ . 2

4Formulae and terms with holes were discussed in Section 4.2.3.



50 CHAPTER 4. A LOGICAL SYSTEM

PROOF Γ ′ ⊇ Γ is constructed as follows. EL is countable, so let φ1,φ2, . . . be
an enumeration of positive formulae from EL (i.e., those where the outermost
operator is not ¬):

Γ0 = Γ (4.3)

Γi+1 =
{

Γi ∪ {φi+1} if Γi ∪ {φi+1} is consistent
Γi ∪ {¬φi+1} otherwise (4.4)

Γ ′ =
∞⋃

i=0

Γi (4.5)

Since Γ0 is consistent, clearly all Γi are consistent. Let ∆ be a finite subset of
Γ ′. ∆ ⊆ Γ j for some j, so ∆ must be consistent. Since all finite subsets of Γ ′ are
consistent, so is Γ ′. Since either Γ ′ |= φ or Γ ′ |= ¬φ for anyφ, Γ ′ is maximal.

Lemma 4.8 Let Γ ′ be a maximal consistent theory. If there exists a T′ such that
Γ ′ ` 5iT′, then there exists a T such that Γ ′ ` ♦iT. 2

PROOF Let Γ ′ ` 5iT′. Let T be a term such that

[T] =
⋂

[S]⊆[T′] and Γ ′`5i S

[S]

(this set is finite since it is included in [T′], and thus such a term T exists). Since
[T′] is finite it has only a finite number of subsets, and thus Γ ′ ` 5iT can be
obtained by a finite number of applications of E3, completeness of the term
calculus and Subst. Let U be a term such that

[U] =
⋃

Γ ′`4i S

[S]

To see that this set indeed is finite, and thus that the term U exists, observe
that for any term S such that Γ ′ ` 4iS, [S] ⊆ [T] by E4, completeness of the
term calculus and consistency of Γ ′, so there can only be a finite number of
such terms. By a finite number of applications of E2, completeness of the term
calculus and Subst, Γ ′ ` 4iU. By E4 we then have that Γ ′ ` U � T and thus
[U] ⊆ [T] by consistency of Γ ′ and completeness of the term calculus.

I now show that [T] ⊆ [U]. Assume the opposite; that there is a x such that
x ∈ [T] and x 6∈ [U]. Then there is aα such that [α] = x. Let T− be a term such
that

[T−] = [T] \ [{α}]

(T− must exist since [T] is finite). [T] = [T− t {α}] and by completeness of the
term calculus Γ ′ ` T .= T− t{α}. Since Γ ′ ` 5iT, Γ ′ ` 5i(T− t{α}) by Subst.
If Γ ′ ` 4i{α} then [α] ∈ U which is a contradiction, hence Γ ′ ` ¬4i {α} by the
maximality of Γ ′. By E5, Γ ′ ` 5iT−. But then [T] ⊆ [T−] by the construction
of T, which is a contradiction. Therefore, [T] ⊆ [U]. Thus [T] = [U] and, by
completeness of the term calculus, Γ ′ ` T .= U and, by Subst, Γ ′ ` ♦iT.

Lemma 4.9 Every maximal consistent theory is satisfiable. 2
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PROOF Let Γ be a maximal consistent theory. The following general knowl-
edge set structure is constructed:

MΓ = (sΓ
1 , . . . , sΓ

2 , πΓ )

where

πΓ (p) = true⇔ Γ ` p

sΓ
i =


[W] where Γ ` ♦iW if there is a T′ such that Γ ` 5iT′⋃

Γ`4i S[S] ∪ {∗} if ∀T′Γ 6` 5iT′ and
⋃

Γ`4i S[S] is finite⋃
Γ`4i S[S] if ∀T′Γ 6` 5iT′ and

⋃
Γ`4i S[S] is infinite

intended to satisfy Γ . In the definition of sΓ
i , any W such that Γ ` ♦iW can

be chosen in the case that there exists a T′ such that Γ ` 5iT′; Lemma 4.8
guarantees the existence of such a term. I show, by structural induction over
φ, that

MΓ |= φ⇐⇒ Γ ` φ (4.6)

This is a stronger statement than the lemma; the lemma is given by the direc-
tion to the left.

For the base case:

• φ = p ∈ Θ: Γ ` p iff πΓ (p) = true iff MΓ |= p.

• φ = T .= U: (4.6) follows by soundness and completeness of TC.

• φ = 4iT: For each direction of (4.6), consider the cases where

a) there is a T′ such that Γ ` 5iT′ or

b) Γ 6` 5iT′ for every T′

corresponding to the first and to the second and third cases in the defini-
tion of sΓ

i , respectively.

⇒) If MΓ |= 4iT then [T] ⊆ sΓ
i .

a) [T] ⊆ [W], and Γ ` T � W by completeness of TC. Since Γ `
4iW, Γ ` 4iT by KS.

b) Let [T] = {[α1], . . . , [αk]} ([T] ∈ ℘fin(OL)). By the definition of
sΓ

i there exists, for 1 ≤ j ≤ k, a proof Γ ` 4iTα j where Tα j is
a term such that [α j] ∈ [Tα j ] (∗ /∈ [S] for any term S). Since
[{α j}] ⊆ [T], Γ ` {α j} � Tα j (1 ≤ j ≤ k) by completeness
of the term calculus and then Γ ` 4i{α j} by KS. By (repeated
applications of) E2, Γ ` 4i({α1} t · · · t {αk}). Since [{α1} t
· · · t {αk}] = [T], Γ ` 4iT by completeness of the term calculus
and Subst.

⇐) a) Since Γ ` 5iW, if Γ ` 4iT then Γ ` T � W by E4. If [T] *
[W] then Γ ` ¬T � W by completeness of TC and Γ would be
inconsistent, so [T] ⊆ [W] and thus MΓ |= 4iT.

b) If Γ ` 4iT then [T] ⊆ sΓ
i and thus MΓ |= 4iT.

• φ = 5iT: For each direction of (4.6), consider again the two cases
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a) there is a T′ such that Γ ` 5iT′ and

b) Γ 6` 5iT′ for every T′

⇒) If MΓ |= 5iT then sΓ
i ⊆ [T].

a) [W] ⊆ [T], and Γ ` W � T by completeness of TC. Because
Γ ` 5iW, Γ ` 5iT by KG.

b) If ∗ ∈ sΓ
i , then ∗ ∈ [T], which is not the case for any T. This case

is impossible. If ∗ 6∈ sΓ
i , then sΓ

i is infinite. But sΓ
i ⊆ [T] and [T]

is finite, so this case is also impossible.

⇐) a) Since Γ ` 4iW, if Γ ` 5iT then Γ ` W � T by E4. If [W] *
[T] then Γ ` ¬W � T by completeness of TC and Γ would be
inconsistent, so [W] ⊆ [T] and thus MΓ |= 5iT.

b) Since Γ 6` 5iT for any T, this case is impossible.

For the induction step:

• φ = ¬ψ: MΓ |= ¬ψ iff MΓ 6|= ψ iff (by the induction hypothesis) Γ 6` ψ
iff (by the fact that Γ is both consistent and maximal) Γ ` ¬ψ.

• φ = (ψ1 ∧ψ2): MΓ |= (ψ1 ∧ψ2) iff MΓ |= ψ1 and MΓ |= ψ2 iff (by the
induction hypothesis) Γ ` ψ1 and Γ ` ψ2 iff (by Prop) Γ ` (ψ1 ∧ψ2).

Lemma 4.10 Every consistent theory is satisfiable. 2

PROOF Follows immediately from Lemmas 4.7 and 4.9.

Theorem 4.2 If Γ |= φ then Γ ` φ. 2

PROOF Let Γ |= φ. Assume that Γ is consistent (otherwise Γ ` φ trivially).
If M |= Γ then M |= φ and M 6|= ¬φ, so Γ ∪ {¬φ} is unsatisfiable and thus
inconsistent by Lemma 4.10. Then, Γ ∪ {¬φ} ` φ, Γ ` ¬φ → φ by DT, and
Γ ` φ by Prop.

Theorems 4.1 and 4.2 are collected in the following corollary.

Corollary 4.3 For every Γ ⊆ EL,φ ∈ EL:

Γ |= φ⇔ Γ ` φ 2



Chapter 5

Finite Agents

The motivation behind describing the concept of explicit knowledge is the idea
that it is different from implicit knowledge; it is unrealistic to assume that an
agent would deduce all possible consequences — generally infinitely many —
of his knowledge. In fact, it is not only unrealistic to assume that an agent
could deduce an infinite amount of facts, but also that he is able to explicitly
know (i.e. to store) an infinite amount of facts at all. The latter would require
an infinite amount of memory.

In the current chapter, the semantic assumption that agents know only a
finite amount of facts at a given time is made. Such agents are henceforth
called finite agents. In the rest of the thesis, agents are assumed to be finite. The
resulting logic is called Static Syntactic Epistemic Logic (SSEL).

The restriction to finite epistemic states ensures a concept of knowledge in
which full or partial logical omniscience, as discussed in Section 2.2.1, are not
assumed.

5.1 Semantics

In the previous chapter, GKSSs were defined as structures where agents’ epis-
temic states were represented by subsets of OL, possibly including the ∗ ele-
ment. Consider a restriction of this semantics to finite sets. Let Γ2 be the follow-
ing theory:

Γ2 = {41{p},41{41{p}},41{41{41{p}}}, . . .}

Clearly, this theory is not satisfiable by such a semantics, since it describes an
agent with an infinite epistemic state. However, like for Γ1 in Chapter 3 (p.
33), a proof of its inconsistency would require an “infinite” deduction rule and
thus an axiomatization such as EC without such a rule would be (strongly)
incomplete. As another example, consider the following theory:

Γ3 = {41{α,β} → 41{α ∧β} : α,β ∈ AL}

Unlike Γ2, Γ3 is satisfiable in a semantics of finite epistemic states, but only in a
structure in which agent 1’s epistemic state is the empty set. Thus,

Γ3 |= f 51∅

53
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(where |= f means logical consequence with respect to the mentioned finite se-
mantics). But again, a proof of 51∅ from Γ3 would be infinitely long, and an
axiomatization without an infinite deduction rule would thus be (strongly) in-
complete since then

Γ3 6` 51∅

Furthermore, the only plausible semantical explanation of Γ2 and Γ3 is that
the agents can have infinite epistemic states, so a semantical solution to the
problem in the manner of the solution to the problem with Γ1 in Ch. 3 is not
possible. Note that the problems with incompleteness illustrated with Γ2 and
Γ3 are consequences of the fact that the theories are infinite. Thus only strong
completeness is sacrificed by using the mentioned semantics; weak complete-
ness and completeness with respect to a class of premises which do cause such
problems can still be attained. This is the strategy taken in the following, where
the mentioned class is called finitary theories.

Formally, finite agents are modelled by Knowledge Set Structures (KSSs) which
is a restriction of GKSSs to finite states1.

Definition 5.1 (Knowledge Set Structure) A Knowledge Set Structure (KSS) is
an n + 1-tuple

M = (s1, . . . , sn, π)

where
si ∈ ℘fin(OL)

and π : Θ → {true, false} is a truth assignment. si is the epistemic state of
agent i, and the set of all epistemic states is S f = ℘fin(OL). The set of all GKSSs
is denotedMfin. 2

Henceforth the notation |= f is used to refer to satisfiability, or logical conse-
quence, with respect toMfin, and I continue to use the notation |= to refer to
satisfiability or consequence with respect to M. Of course, Mfin ⊂ M. The
model class of Γ ⊆ EL, w.r.t.Mfin, is modf (Γ) = {M ∈ Mfin : M |= f Γ}.

Finite agents, as described by KSSs, is the main focus in this thesis. The
framework for possibly infinite agents in Chapter 3 will, however, be very use-
ful in this and the next chapter. The logical system EC (complete w.r.t. GKSSs)
from the previous chapter will still be used with KSSs. The logic over the lan-
guage EL consisting of the logical system EC and associated semantics of KSSs
will henceforth be called SSEL — Static Syntactic Epistemic Logic.

Next, the set of finitary theories, for which EC is complete with respect to
Mfin, is defined.

EC is of course sound with respect to the restricted semantics:

Corollary 5.1

Γ ` φ⇒ Γ |= f φ 2

PROOF Corollary of Theorem 4.1, sinceMfin ⊂M.

1In addition to the infinite states we dispense with the finite states which include the ∗ element.
Recall from the discussion in Section 3.6 that we can view these states as infinite, since they cannot
be described by any terms.
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5.2 Finitary Theories

Definition 5.2 (Finitary Theory) A theory Γ is finitary iff it is consistent and for
allφ,

Γ ` (51T1 ∧ · · · ∧ 5nTn)→ φ for all terms T1, . . . , Tn

⇓
Γ ` φ 2

Definition 5.3 (Finitarily Open Theory) A theory Γ is finitarily open iff there
exist terms T1, . . . , Tn such that

Γ 6` ¬(51T1 ∧ · · · ∧ 5nTn) 2

Lemma 5.1

1. A finitary theory is finitarily open.

2. If Γ is a finitary theory and Γ 6` φ, then Γ ∪ {¬φ} is finitarily open. 2

PROOF

1. Let Γ be a finitary theory. If Γ is not finitarily open, Γ ` ¬(51T1 ∧ · · · ∧
5nTn) for all terms T1, . . . , Tn. Then, for an arbitrary φ, Γ ` (51T1 ∧
· · · ∧ 5iTn) → φ for all T1, . . . , Tn and thus Γ ` φ since Γ is finitary. By
the same argument Γ ` ¬φ, contradicting the fact that Γ is consistent.

2. Let Γ be a finitary theory, and let Γ 6` φ. Then there must exist terms
Tφ1 , . . . , Tφn such that Γ 6` (51Tφ1 ∧ · · · ∧ 5nTφn ) → φ. By Prop we must
have that Γ 6` ¬φ → ¬(51Tφ1 ∧ · · · ∧ 5nTφn ) and thus that Γ ∪ {¬φ} 6`
¬(51Tφ1 ∧ · · · ∧ 5nTφn ), which shows that Γ ∪ {¬φ} is finitarily open.

Corollary 5.2 Let Cons, FOT and Fin be the set of all consistent, finitarily open
and finitary theories, respectively.

Fin ⊂ FOT ⊂ Cons 2

PROOF Follows immediately (see Example 5.1 below for examples showing
that these subsets are proper.).

Example 5.1 The following are examples of non-finitary theories (let n = 2
and p ∈ Θ):

1. Γ2 = {41{p},41{41{p}},41{41{41{p}}}, . . .}. Γ2 is not finitarily
open, and describes an agent with an infinite epistemic state.

2. Γ4 = {¬51 T : T ∈ TL}. Γ2 is not finitarily open, and describes an agent
which cannot be at any finite point.
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3. Γ5 = {51T → ¬52 T′ : T, T′ ∈ TL}. Γ3 is not finitarily open, and
describes a situation where agents 1 and 2 cannot simultaneously be at
finite points.

4. Γ6 = {51T → p : T ∈ TL}. Γ4 is finitarily open, but not finitary. To see
the former, observe that there is no T such that Γ4 ` ¬51 T or Γ4 ` ¬52
T. To see the latter, observe that Γ4 6` p but Γ4 ` (51T1 ∧52T2) → p for
all T1, T2. 2

5.3 Completeness

I show that EC is complete with respect toMfin, for all finitary theories.

Theorem 5.1 A theory Γ is finitarily open if and only if it is satisfiable inMfin.2

PROOF Γ is finitarily open iff there exist Ti (1 ≤ i ≤ n) such that Γ 6` ¬(5iT1 ∧
· · · ∧5nTn); iff, by Cor. 4.3, there exist Ti such that Γ 6|= ¬(5iT1 ∧ · · · ∧5nTn);
iff there exist Ti and a structure M ∈ M such that M |= Γ and M |= 51T1 ∧
· · · ∧ 5nTn; iff there exist Ti and M = (s1, . . . , sn, π) ∈ M such that si ⊆ [Ti]
(1 ≤ i ≤ n) and M |= Γ ; iff there exist si ∈ ℘fin(OL) (1 ≤ i ≤ n) such that
(s1, . . . , sn, π) |= Γ ; iff Γ is satisfiable inMfin.

Theorem 5.2 Let Γ ⊆ EL. Γ |= f φ⇒ Γ ` φ for allφ iff Γ is finitary. 2

PROOF Let Γ be a finitary theory. In the case that Γ is inconsistent, Γ ` φ
trivially so let Γ be consistent. Let Γ |= f φ. By Lemma 5.1.1 Γ is finitarily open
and thus satisfiable by Theorem 5.1. Γ ∪ {¬φ} is unsatisfiable in Mfin, and
thus not finitarily open. Assume that Γ 6` φ. Then Γ ∪ {¬φ} is finitarily open
by Lemma 5.1.2. The contradiction shows that the assumption must be wrong,
and that Γ ` φ.

For the other direction, let Γ |= f φ⇒ Γ ` φ for allφ, and assume that Γ 6` φ.
Then, Γ 6|= f φ, that is, there is a M = (s1, . . . , sn, π) ∈ modf (Γ) such that M 6|= f
φ. Let Ti (1 ≤ i ≤ n) be terms such that [Ti] = si. M |= f 5iT1 ∧ · · · ∧ 5nTn,
and thus M 6|= f (51T1 ∧ · · · ∧ 5nTn) → φ. By soundness (Corollary 5.1)
Γ 6` (51T1 ∧ · · · ∧ 5nTn)→ φ, showing that Γ is finitary.

5.3.1 Finitaryness of Finite Theories

Theorem 5.2 shows that weak completeness of EC corresponds to finitaryness
of the empty set. The empty set, and thus every finite set, is indeed finitary2.

Lemma 5.2 The empty theory is finitary. 2

PROOF To save space, the proof is delayed until Chapter 6 where a more gen-
eral result is shown. See Lemma 6.10 on p. 75.

Corollary 5.3 (Weak Completeness) EC is weakly complete: |= f φ⇒` φ. 2

2There does not seem to exist a trivial proof of this.
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PROOF Follows immediately from Theorem 5.2 and Lemma 5.2.

Corollary 5.4 All finite theories are finitary. 2

PROOF Follows immediately from Lemma 5.2 and the following Lemma 5.4
(which does not depend on the current corollary).

5.4 Properties of Finitary Theories

Lemma 5.3 Let Γ ⊆ EL. The following statements are equivalent:

1. Γ is finitary.

2. Γ |= f φ⇒ Γ ` φ, for anyφ

3. Γ |= f φ⇒ Γ |= φ, for anyφ

4. (∃M∈mod(Γ)M |= φ)⇒ (∃M∈modf (Γ)M |= f φ), for anyφ

5. Γ 6` φ⇒ Γ ∪ {¬φ} is finitarily open, for anyφ. 2

PROOF

1.⇔ 2.: Theorem 5.2.

2.⇒ 3.: If Γ 6|= φ then Γ 6` φ by soundness (Th. 4.1), and by 2. above Γ 6|= f φ.

3.⇒ 2.: If Γ |= f φ, then Γ |= φ by 3. above, and Γ ` φ by completeness (Th.
4.2).

4.⇒ 2.: Assume that 4. above holds. Let φ be a formula, and assume that
Φ 6` φ. By Theorem 4.2, Φ 6|= φ; there exists M ∈ mod(Φ) such that
M 6|= φ; M |= ¬φ. By 4. above, there exists a M f ∈ modf (Φ) such that
M f |= f ¬φ. Since M f |= f Φ and M f 6|= f φ, Φ 6|= f φ showing 2. above.

2.⇒ 4.: Assume that 2. above holds. Letφ be a formula, and let M ∈ mod(Φ)
be such that M |= φ. Since M |= Φ, Φ 6|= ¬φ and (by Theorem 4.1)
Φ 6` ¬φ. By 2. above, Φ 6|= f ¬φ, i.e. there is a M f ∈ modf (Φ) such that
M f 6|= ¬φ. Then M f |= φ, which shows 4. above.

1.⇒ 5.: Lemma 5.1.2.

5.⇒ 4.: Assume that 4. does not hold; that there is a φ such that Γ ∪ {φ} is
satisfiable inM but unsatisfiable inMfin. Since Γ ∪ {φ} is satisfiable in
M, then Γ 6|= ¬φ. By soundness, Γ 6` ¬φ. Since Γ ∪ {φ} is unsatisfiable
inMfin, Γ ∪ {¬¬φ} is not finitarily open by Theorem 5.1. This shows that
5. does not hold (it does not hold for ¬φ).

Lemma 5.4 If Γ is a finitary theory and ∆ is a finite theory, then Γ ∪ ∆ is a
finitary theory. 2

PROOF If Γ ∪ ∆ |= f φ then Γ |= f
∧

∆ → φ (where
∧

∆ is a conjunction of the
formulae in ∆). By completeness (Th. 5.2) Γ ` ∧

∆ → φ and thus Γ ∪ ∆ ` φ.
By Th. 5.2 Γ ∪ ∆ is finitary.
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5.5 Axiomatization Using Infinite Rules

The reason that the logic EC is complete only for finitary theories, is that we
cannot axiomatize the fact that certain infinite sets of formulae lead to incon-
sistency using only finite deduction rules. Here, I describe the logic using in-
finite deduction rules (and thus infinite proofs) and show that it is sound and
complete for all theories.

The infinite rule we need is

R f =
for all T ∈ TL: Γ ∪ {5iT} ` ⊥

Γ ` ⊥
(where ⊥ is an arbitrary contradiction ⊥ = φ ∧ ¬φ).

I now argue briefly that EC ∪ {R f } is sound and complete with respect to
Mfin, for all theories (most of the proof is identical to parts of the two previous
soundness and completeness proofs, so I refer to those).

5.5.1 Soundness

For soundness we only have to show that R f preserves logical consequence.
Let Γ ∪ {5iT} |= ⊥ for every term T, and assume that M |= Γ where si is the
epistemic state of i in M. Then M 6|= {5iT}, and thus si * [T] for every term T.
Since there is a term T for every set s ∈ ℘fin(OL), this is a contradiction. Thus,
Γ has no models and Γ |= ⊥.

5.5.2 Completeness

We can extend every consistent theory Γ to a maximal consistent theory Γ ′ by
using the same construction as in Lemma 4.7. Since Γ is consistent, there is a
term T′ such that Γ ∪ {5iT′} is consistent (since otherwise R f could be used
to show inconsistency of Γ ). By construction of Γ ′, 5iT′ ∈ Γ ′. Assume that
Γ ′ ` ⊥. If this proof is finite, R f was not applied and we have a contradiction
by compactness (see Lemma 4.7). If the proof of Γ ′ ` ⊥ is infinite, then R f must
have been applied. Γ ′ ∪ {5iT′} ` ⊥ must have been among the premises in
this application, but this is equal to the conclusion Γ ′ ` ⊥. It is thus clear that
we cannot prove the conclusion using R f , and we cannot have a finite proof
either. Thus, Γ ′ is consistent (and clearly maximal).

Clearly, Lemma 4.8 still holds for EC ∪ {R f }. The fact that every maximal
consistent theory are satisfiable inMfin, can now be shown in exactly the same
way as in Lemma 4.9; since the construction of the maximal theory (above)
guarantees that5iT′ ∈ Γ ′ we can “place” the agent at [T′]: sΓ

i = [T′].
It follows that every consistent theory is satisfiable, and thus that EC∪{R f }

is complete (for all theories) by the same argument as in Theorem 4.2.

5.6 Decidability

In this section, some decidability results are shown. It is assumed that Θ is a
recursive set.
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Lemma 5.5 Let T, U ∈ TL be two terms. The question whether [T] = [U] is
decidable. 2

PROOF [T] = [U] iff |= T .= U iff (by completeness of TC) ` T .= U. [T] 6= [U]
iff |= ¬T .= U iff (by completeness of TC) ` ¬T .= U. To check whether
[T] = [U] we can enumerate all proofs in TC, and checking each proof we will
eventually come to a proof of either ` T .= U or ` ¬T .= U.

I now show that the satisfaction problem (inMfin) is decidable.

Lemma 5.6 Let M = (s1, . . . , sn, π) ∈ Mfin andφ ∈ EL. The question whether
M |= φ is decidable. 2

PROOF The proof is by structural induction overφ.
For the first base case, let φ = p ∈ Θ. We can then check whether M |= φ

by checking whether π(p) = true.
For the second base case, let φ = T .= U. M |= φ iff [T] = [U] which is

decidable (Lemma 5.5).
For the third base case, let φ = 4iT. M |= φ iff [T] ⊆ si. si ⊂ OL is a finite

set, and it is easy to see that we can find a term U ∈ TL such that [U] = si in
finite time (write down the set si as a term by choosing an arbitrary ordering
of the elements in the set, and do this recursively for elements containing new
sets . The number of nestings is finite, by construction of OL.). As argued in the
second base case, we can decide whether [T tU] = [U], i.e. whether [T] ⊆ [U],
i.e. whether [T] ⊆ si. For the fourth base case: φ = 5iT, M |= φ iff si ⊆ [T],
which we can decide in a similar way to the third base case.

For the first inductive step, let φ = ¬ψ. M |= φ iff M 6|= ψ which is
decidable by the induction hypothesis. Similarly for the second inductive step:
φ = (ψ1 ∧ψ2). M |= φ iff M |= ψ1 and M |= ψ2 which is decidable by the
induction hypothesis.

Thus, M |= φ is decidable for allφ.

Lemma 5.7 If Γ is finitary and Γ |= f φ, then there exists a decision procedure
that determines the fact that Γ |= f φ. 2

PROOF Since Γ |= f φ, Γ ` φ by completeness since Γ is finitary. We can enu-
merate all proofs Γ ` φ′, and sooner or later we will come to one whereφ′ = φ.
By soundness, this procedure will only answer “yes” if indeed Γ |= f φ.

Lemma 5.8 If Γ ⊆ EL, modf (Γ) is recursive and Γ 6|= f φ, then there exists a
decision procedure that determines the fact that Γ 6|= f φ. 2

PROOF If Γ 6|= f φ then there is a M ∈ modf (Γ) such that M 6|= φ. We can
enumerate all M′ ∈ modf (Γ), and determine whether M′ |= φ (Lemma 5.6),
and sooner or later we will find an M such that M 6|= φ. This procedure will
only answer “yes” if indeed Γ 6|= f φ.

Theorem 5.3 Let Γ be a finitary theory such that modf (Γ) is recursive. The prob-
lem of logical consequence from Γ w.r.t. Mfin, and the problem of provability
from Γ , are decidable. 2
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PROOF By Lemmas 5.7 and 5.8, there are procedures that will answer “yes” if
Γ |= f φ or Γ 6|= f φ respectively. If we run these procedures simultaneously
or, equivalently, alternate between checking a proof and a Γ -model, one of the
procedures will sooner or later answer “yes”.

Corollary 5.5 The problem of validity in Mfin, and the problem of theorem-
hood in EC, are decidable. 2

PROOF modf (∅) = Mfin is recursive since 1) OL is recursive by definition, 2)
the sets of finite subsets of a recursive set is recursive, 3) the set of all truth
assignments is recursive when Θ is, and 4) the Cartesian product of recursive
sets is recursive.

Thus, since ∅ is finitary (Lemma 5.2), the corollary follows from Theorem
5.3.



Chapter 6

Extensions

6.1 Introduction

Epistemic properties of the individual agents can be modeled by imposing con-
straints on the epistemic states. Ideally, such semantic constraints should cor-
respond to the acceptance of certain axioms. In modal epistemic logic, the cor-
respondence between axioms and semantical constraints has been extensively
studied.

In this chapter, I discuss extending the calculus EC with additional axioms
Φ. I first discuss how to construct the model classes mod(Φ) = {M ∈ M :
M |= Φ} and modf (Φ) = {M ∈ Mfin : M |= Φ} in general, before I investigate
the case when Φ describes solely epistemic properties – I call such Φ epistemic
axioms. I show that for epistemic axioms, the corresponding model class can be
obtained by removing illegal epistemic states locally for each agent. In Section
6.6 algebraic conditions on the sets of legal epistemic states which guarantees
that the axioms are finitary are developed. These conditions enables extension
of EC: if the axioms are finitary, then EC extended with the axioms is complete
with respect to the class of models with legal epistemic states. Examples of
extensions with well known epistemic axioms are presented in Section 6.7.

Agents are still assumed to be finite, as described by KSSsMfin with possi-
ble epistemic states S f (Def 5.1). However, the more general semantics, GKSSs
M with possible epistemic states S (Def. 3.8), will be very useful in this chap-
ter. Henceforth the superscript f will be used to denote the finite restriction of
a setM′ ⊆M or a set S ⊆ S :M′ f =M′ ∩Mfin and S f = S ∩ S f .

6.2 Axioms and Model Class Construction

Given a set of axioms Φ, we will construct a class of structuresMΦ such that

MΦ = mod(Φ)

First, the model classMφ for a single formulaφ is constructed:

61
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Definition 6.1 (Mφ) For each formulaφ ∈ EL,Mφ ⊆M is defined by struc-
tural induction overφ as follows:

φ = p ∈ Θ : Mφ = {(s1, . . . , sn, π) ∈ M : π(p) = true}
φ = 4iT : Mφ = {(s1, . . . , sn, π) ∈ M : [T] ⊆ si}
φ = 5iT : Mφ = {(s1, . . . , sn, π) ∈ M : si ⊆ [T]}
φ = ¬ψ : Mφ =M\Mψ

φ = ψ1 ∧ψ2 : Mφ =Mψ1 ∩Mψ2 2

It is easy to see that the corresponding construction of model classes of
formulae including the derived operators is done by taking:

φ = ♦iT : Mφ = {(s1, . . . , sn, π) ∈ M : si = [T]}
φ = ψ1 ∨ψ2 : Mφ =Mψ1 ∪Mψ2

φ = ψ1 → ψ2 = ¬ψ1 ∨ψ2 : Mφ =M\Mψ1 ∪Mψ2

The construction in Def. 6.1 is a straightforward application of the rules of
the semantics, and it is trivial to show thatMφ in fact is the model class ofφ:

Lemma 6.1

Mφ = mod(φ) 2

PROOF I show that
M |= φ⇔ M ∈ Mφ

where M = (s1, . . . , sn, π) by structural induction overφ:

φ = p ∈ Θ: M |= φ⇔ π(p) = true⇔ M ∈ Mφ

φ = 4iT: M |= φ⇔ [T] ⊆ si ⇔ M ∈ Mφ

φ = 5iT: M |= φ⇔ si ⊆ [T]⇔ M ∈ Mφ

φ = ¬ψ: By the induction hypothesis, M |= ψ ⇔ M ∈ Mψ. M |= φ ⇔ M 6|=
ψ⇔ M 6∈ Mψ ⇔ M ∈ Mφ.

φ = ψ1 ∧ψ2: By the induction hypothesis, M |= ψ1 ⇔ M ∈ Mψ1 and M |=
ψ2 ⇔ M ∈ Mψ2 . M |= φ ⇔ M |= ψ1 and M |= ψ2 ⇔ M ∈ Mψ1 and
M ∈ Mψ2 ⇔ M ∈ Mφ.

The model class of a set of formulae Φ is, of course, the intersection of the
model classes for the individual formulae:

MΦ = (
⋂
φ∈Φ

Mφ) ∩M (6.1)

Note thatM∅ =M.
MΦ is all the models of Φ inM, where the agents are not necessarily re-

stricted to finite points. Recall that the models of Φ inMfin, where the agents
are restricted to finite points, is denoted modf (Φ). Clearly,

MΦ = mod(Φ)
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and
MΦ f

= modf (Φ)

When constructing the model classes, the usual care must be taken to spec-
ify whether we want to describe an axiom (a formula) or an axiom schema (a set
of formulae). As a sentence which can be interpreted as both, consider

4iT → 4iU

When this sentence is specified as an axiom, we should construct the model
classMφ taking the unspecified sets T, U and the agent name i as parameters:

Mφ
i =M\{(s1, . . . , sn, π) : [T] ⊆ si} ∪ {(s1, . . . , sn, π) : [U] ⊆ si}

When specified as an axiom schema, we should try to construct the model class
MΦ for the set Φ of all formulae satisfying the schema. In the current case,

MΦ = ∅

(Of course, we may want to fix only some of the parameters in an axiom schema).

6.3 Epistemic Axioms

The most probable reason for extending the system EC by adding new axioms
— or, equivalently, impose semantical constraints by restricting the set of al-
lowed structures — is that we want to model certain epistemic properties of
the agents, e.g. the fact that they will never “know” a contradiction. Not all
formulae in EL should be considered as candidates for describing epistemic
properties. One example is p → 4i{p}. This formula does not solely de-
scribe the agent – it describes a relationship between the agent and the world,
i.e. about an agent in a situation. Another example is ♦i{p} → ♦ j{q}, which
describes a constraint on one agent’s belief set contingent on another agent’s
belief set. Neither of these two formulae describe purely epistemic properties
of an agent. Candidates for epistemic axioms should therefore a) only refer to
epistemic facts and not to external facts and b) only describe one particular
agent. We will call formulae satisfying a) epistemic formulae. In the following
definition, EF is the set of epistemic formulae and Ax is the set of candidate
epistemic axioms.

Definition 6.2 (EF, EFi, Ax)

• EF ⊆ EL is the least set such that

If T ∈ TL then 4iT,5iT ∈ EF (1 ≤ i ≤ n)
Ifφ,ψ ∈ EF then ¬φ, (φ ∧ψ) ∈ EF

• EFi = {φ ∈ EF : Every epistemic operator inφ is an i-op.} (1 ≤ i ≤ n)

• Ax =
⋃

1≤i≤n EFi 2

An example of an epistemic axiom schema is

4i{α ∧β} → 4i{α} ∧4i{β}
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6.3.1 Model Class Construction for Epistemic Axioms

I now show that, in the case that φ ∈ Ax, we can rephrase Def. 6.1 in terms of
sets of legal epistemic states for each agent.

Definition 6.3 (Mφ
Ax, Sφ

i ) For each epistemic formulaφ ∈ EFi,

Mφ
Ax = {(sφ1 , . . . , sφn , π) ∈ M : si ∈ Sφi }

where Sφi is constructed by structural induction overφ as follows:

φ = 4iT : Sφi = {X ∈ S : [T] ⊆ X}
φ = 5iT : Sφi = {X ∈ S : X ⊆ [T]}
φ = ¬ψ : Sφi = S\Sψi

φ = ψ1 ∧ψ2 : Sφi = Sψ1
i ∩ Sψ2

i 2

In the construction of Mφ
Ax we remove the impossible epistemic states by re-

stricting the set of epistemic states to Sφi . The epistemic states which are not
removed are the possible states — an agent can be placed in any of these states
and will satisfy the epistemic axiomφ.

Again, it is easy to see that the corresponding construction of model classes
of formulae including the derived operators is done by taking:

φ = ♦iT : Sφi = {[T]}

φ = ψ1 ∨ψ2 : Sφi = Sψ1
i ∪ Sψ2

i

φ = ψ1 → ψ2 = ¬ψ1 ∨ψ2 : Sφi = S\Sψ1
i ∪ Sψ2

i

Definition 6.4 (MΦ
Ax, SΦ

i ) Let Φ ⊆ Ax.

SΦ
i = (

⋂
φ∈Φ∩EFi Sφi ) ∩ S

MΦ
Ax = {(sΦ

1 , . . . , sΦ
n , π) ∈ M : si ∈ SΦ

i } 2

Lemma 6.2

MΦ
Ax = mod(Φ) 2

PROOF Letφ be a formula. I first show that

M |= φ⇔ M ∈ Mφ
Ax (6.2)

where M = (s1, . . . , sn, π) by structural induction overφ ∈ EFi:

φ = 4iT: M |= φ⇔ [T] ⊆ si ⇔ si ∈ Sφi ⇔ M ∈ Mφ
Ax

φ = 5iT: M |= φ⇔ si ⊆ [T]⇔ si ∈ Sφi ⇔ M ∈ Mφ
Ax

φ = ¬ψ: By the induction hypothesis, M |= ψ ⇔ M ∈ Mψ
Ax. M |= φ ⇔ M 6|=

ψ⇔ M 6∈ Mψ
Ax ⇔ si 6∈ Sψi ⇔ si ∈ S\Sψi = Sφi ⇔ M ∈ Mφ

Ax.
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φ = ψ1 ∧ψ2: By the induction hypothesis, M |= ψ1 ⇔ M ∈ Mψ1
Ax and M |=

ψ2 ⇔ M ∈ Mψ2
Ax. M |= φ ⇔ M |= ψ1 and M |= ψ2 ⇔ M ∈ Mψ1

Ax and
M ∈ Mψ2

Ax ⇔ si ∈ Sψ1
i and si ∈ Sψ2

i ⇔ si ∈ Sψ1
i ∩ Sψ2

i = Sφi ⇔ M ∈
Mφ

Ax.

Clearly,MΦ
Ax = (

⋂
φ∈ΦM

φ
Ax) ∩M, which is equal to (

⋂
φ∈Φ mod(φ)) ∩M

by (6.2) which is equal to mod(Φ).

Note that S∅i = S and, again,M∅
Ax =M.

The corresponding model class inMfin is

MΦ
Ax

f
=MΦ

Ax ∩Mfin = {(sΦ
1 , . . . , sΦ

n , π) : sΦ
i ∈ SΦ

i
f } (6.3)

where SΦ
i

f = SΦ
i ∩ S f . Clearly,

MΦ
Ax

f
= modf (Φ)

Thus, the model class for epistemic axioms is constructed by removing cer-
tain states from the set of legal epistemic states. For example, the schema

4i{α ∧β} → 4i{α} ∧4i{β} (6.4)

corresponds to removing epistemic states where the agent knows a conjunc-
tion without knowing the conjuncts. This would be the case if the agent had
a reasoning mechanism which would never produce a conjunction without si-
multaneously producing the conjuncts.

6.4 Extensions: Soundness and Completeness

In Section 5.3 it was shown that EC is complete with respect toMfin for finitary
premises; i.e. Γ |= f φ ⇒ Γ ` φ iff Γ is finitary. The symbol `Φ is now used to
denote derivability in EC extended by axioms Φ, and |=Φ, f is used to denote
satisfiability/logical consequence in modf (Φ).

The new system is sound and complete with respect to modf (Φ), for theo-
ries Γ such that Φ ∪ Γ is finitary. Particularly, the new system is weakly com-
plete iff Θ is finitary:

Lemma 6.3 `Φ φ⇔|=Φ, f φ for allφ iff Φ is finitary. 2

PROOF Follows directly from Theorem 5.2 and Corollary 5.1.

Thus, if finitaryness of an axiom schema can be shown, the extension of EC
is sound and (weakly) complete with respect to the corresponding model class.
This is similar to the situation in modal logic, where the basic (normal) system
can be extended with certain axiom schemata to obtain (weakly) complete sys-
tems with respect to the corresponding model classes.

A particularly interesting case is epistemic axioms. It was shown in the pre-
vious section that the model classes for epistemic axioms can be constructed
removing certain states from the set of legal epistemic states locally for each
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agent. A system with such a set of axioms added can be used to model agents
with reasoning mechanisms which never can produce certain states. Note that
the adoption of epistemic axioms such as (6.4) does not entail full or partial log-
ical omniscience (Section 2.2.1); they can be explained in terms of a reasoning
mechanism avoiding certain states.

The problem of extension requires a method for deciding finitaryness of ax-
ioms. It turns out that finitaryness is non-trivial to prove. In the next sections,
sufficient finitaryness conditions for the case of epistemic axioms are devel-
oped. Examples of extensions with well known axioms are shown.

6.5 Finitary Structures

The definition of a finitary theory is a syntactic one. Here, a similar semantic
concept is introduced.

I define a notion of finitariness for classes of structures, which is a kind of a
“finite model property”.

Definition 6.5 (Finitary set of GKSSs) A class of general knowledge set struc-
turesM′ ⊆M is finitary iff, for allφ:

∃M∈M′M |= φ

⇓
∃M f∈M′ f M f |= φ 2

Lemma 6.4 Let Γ ⊆ EL. Γ is finitary iff mod(Γ) is finitary. 2

PROOF Follows directly from Def. 6.5 and Lemma 5.3.

6.6 Semantic Finitaryness Conditions for Epistemic
Axioms

In this section, algebraic conditions on sets of epistemic states are defined.
These conditions can be used to show whether a set of epistemic axioms is
finitary. First, two general algebraic conditions on sets are defined.

Definition 6.6 (Directed Set) A set A with a reflexive and transitive relation≤
is directed iff for every finite subset B of A, there is an element a ∈ A such that
b ≤ a for every b ∈ B. 2

When I in the following refer to a set of sets as directed, I implicitly mean with
respect to subset inclusion.

Definition 6.7 (Cover) A family of subsets of a set A whose union includes A
is a cover of A. 2

If B is a cover of A, then ∪B covers A.
The following condition states a collection of conditions on sets of epistemic

states. The main result at the end of this section is that these conditions are
sufficient for the GKSSs spanned out by the sets of epistemic states to be finitary
(as defined in the previous section), and furthermore, if the sets are induced by
epistemic axioms (as defined in Section 6.3), that the axioms are finitary.
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Definition 6.8 (Finitary Set of Epistemic States) If S ⊆ S is a set of epistemic
states and s ∈ ℘(OL), then the set of finite subsets of s included in S is denoted

S| fs = S ∩ ℘ f in(s)

S is finitary iff:

1. For every infinite s ∈ S:

(a) S| fs is directed

(b) S| fs is a cover of s

2. ∀s∪{∗}∈S∀s′∈℘fin(OL)∃α 6∈s′ :

(a) ∃s f∈S∩℘(s∪{α})s
′ ∩ s ⊆ s f

(b) ∃s f∈S∩℘(s∪{α})s
f 6⊆ s′

(c) S ∩ ℘(s ∪ {α}) is directed 2

Now, some properties of sets of finitary epistemic states are shown. Recall
that S f is used to denote the subset of finite epistemic states (without the ∗
element) in a set of epistemic states S.

Lemma 6.5 Let S ⊆ S be a set of epistemic states. Definition 6.8.1 holds iff for
every infinite s ∈ S

∀s′∈℘ f in(s)∃s f∈S f s′ ⊆ s f ⊆ s (6.5)
2

PROOF

⇒) Assume that Def. 6.8.1 holds, and let s′ ∈ ℘ f in(s). s′ is finite, say s′ =
{β1, . . . ,βk}. Because s′ ⊆ s, by Def. 6.8.1.b) s′ ⊆ ⋃

(S ∩ ℘ f in(s)), so for
each β j there is a t j ∈ (S ∩ ℘ f in(s)) such that β j ∈ t j. By Def. 6.8.1.a),
there is a s f ∈ (S ∩ ℘ f in(s)) such that

⋃
1≤ j≤k{t j} ⊆ s f . Then s′ ⊆ s f .

Since s f ∈ (S ∩ ℘ f in(s)), s′ ∈ S f and s f ⊆ s.

⇐) Assume that (6.5) holds.

Def. 6.8.1.a) Let S′ be a finite subset of S ∩ ℘ f in(s). Clearly, s′ =
⋃

S′ ∈
℘ f in(s), and by (6.5) there is a s f ∈ S ∩ ℘ f in(s) such that s′ ⊆ s f .

Def. 6.8.1.b) Let α ∈ s. Because {α} ∈ ℘ f in(s), by (6.5) there is a s f ∈
S ∩ ℘ f in(s) such that {α} ∈ s f . Then, α ∈ ⋃

(S ∩ ℘ f in(s)). Thus,
s ⊆ ⋃

(S ∩ ℘ f in(s)), and Def. 6.8.1.b holds.

Lemma 6.6 Let S ⊆ S be a set of epistemic states. If S is finitary then:

1. For every infinite s ∈ S:

(a) ∃s f∈S f s f ⊆ s

(b) ∀s′∈℘fin(OL)∃s f∈S f (s f ⊆ s and s f 6⊆ s′)
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2. ∀s∪{∗}∈S∀s′∈℘fin(OL)∃α 6∈s′ :

(a) ∀s′′⊆s′ s′′ ⊆ s⇒ ∃s f∈S∩℘(s∪{α})s
′′ ⊆ s f

(b) ∀s′′⊆s′∃s f∈S∩℘(s∪{α})s
f 6⊆ s′′

(c) S ∩ ℘(s ∪ {α}) is directed 2

PROOF 1. Let s ∈ S be infinite.

(a) Follows from Lemma 6.5 by letting s′ = ∅.
(b) Assume that 1b) does not hold for s, i.e. that

∃s′∈℘fin(OL)∀s f∈S f (s f ⊆ s⇒ s f ⊆ s′)

That is, there is a s′ ∈ ℘fin(OL) such that

∀s f∈S∩℘ f in(s)s
f ⊆ s′

in other worlds
(
⋃

(S ∩ ℘ f in(s))) ⊆ s′

Since s is infinite and s′ is finite, s 6⊆ s′ and thus

s 6⊆ (
⋃

(S ∩ ℘ f in(s)))

which contradicts the fact that
⋃

(S ∩ ℘ f in(s)) covers s. Thus, 1b)
must hold.

2. Let s ∪ {∗} ∈ S and s′ ∈ ℘fin(OL), and letα be as defined in Def. 6.8.2.

(a) Let s′′ ⊆ s′ and s′′ ⊆ s. By Def. 6.8.2.a there is a s f ∈ S ∩ ℘(s ∪ {α})
such that s′ ∩ s ⊆ s f . Since s′′ ⊆ s′ ∩ s, s′′ ⊆ s f which proves 2a).

(b) Let s′′ ⊆ s′. By Def. 6.8.2.b there is a s f ∈ S ∩ ℘(s ∪ {α}) such that
s f 6⊆ s′. Then, s f 6⊆ s′′ which proves 2b).

(c) Def. 6.8.2.c.

The following definitions and intermediate results are needed in the main
proof of Lemma 6.8. When φ,ψ are formulae, I use the notation ψ ≤ φ to
denote thatψ is a (not necessarily proper) subformula ofφ. By “subformula” I
mean thatψ occurs outside a term inφ; I do not view AL-formulae inside terms
in φ as subformulae of φ (for example, φ = 41{52{p}} ∧ q has two proper
subformulae –41{52{p}} and q, but52{p} or p are not subformulae ofφ).

Definition 6.9 (sφ
i ) Given a formulaφ ∈ EL,

sφi =
⋃

4iT≤φ or 5iT≤φ
[T]

for each 1 ≤ i ≤ n. 2

Observe that sφi is always finite, since [T] is finite for any term and a formula
only has a finite number of subformulae.
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Lemma 6.7 If i is an agent,φ ∈ EL, S ⊆ S a finitary set of epistemic states and
s = ŝ ∪ {∗} ∈ S, then there exists a

α
φ,s
i,S 6∈ sφi (6.6)

where sφi is defined in Def. 6.9, such that

1. ∀s′′⊆sφi
s′′ ⊆ ŝ⇒ ∃

s f
i ∈S∩℘(ŝ∪{αφ,s

i,S })
s′′ ⊆ s f

i

2. ∀s′′⊆sφi
∃

s f
i ∈S∩℘(ŝ∪{αφ,s

i,S })
s f

i 6⊆ s′′

3. S ∩ ℘ f in(ŝ ∪ {αφ,s
i,S }) is directed

Note that, given i, S, s and φ, there may exist more than oneα ∈ OL satisfying
(6.6) and the tree properties above, but we select one of them (arbitrarily) and
call itαφ,s

i,S . 2

PROOF Follows from Lemma 6.6.2, since S is finitary, ŝ ∪ {∗} ∈ S and sφi ∈
℘fin(OL).

Definition 6.10 (s̃φ,s
i,S ) Let i be an agent, φ ∈ EL, S a finitary set of epistemic

states and s ∈ S.
Let

s̃φ,s
i,S =

{
s if ∗ 6∈ s
(s \ {∗}) ∪ {αφ,s

i,S } if ∗ ∈ s 2

(s̃φ,s
i,S is s possibly with the asterisk replaced byαφ,s

i,S ).

Lemma 6.8 If S1, . . . , Sn are finitary sets of epistemic states (Def. 6.8), then

{(s1, . . . , sn, π) : si ∈ Si , π ∈ Π}

where Π is all truth assignments, is a finitary set of GKSSs (Def. 6.5). 2

PROOF Let S1, . . . , Sn be finitary sets of epistemic states. Let φ be an arbitrary
formula and let (s1, . . . , sn, π) ∈ S1 × · · · × Sn ×Π be such that

(s1, . . . , sn, π) |= φ (6.7)

I show that there are s f
1 , . . . , s f

n ∈ S f
1 × · · · × S f

n such that

(s f
1 , . . . , s f

n, π) |= φ (6.8)

For each si, either ∗ ∈ si or ∗ 6∈ si. When ∗ ∈ si, the following shorthand
notation is used:

αi = α
φ,si
i,Si

whereαφ,si
i,Si

is defined in Lemma 6.7, and

αi 6∈ sφi
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Similarly, taking S = Si and s = si in Def. 6.10, the following shorthand
notation is used:

s̃i = s̃i
φ,si
i,Si

If ψ ∈ EL, let L(ψ) be the following statement

L(ψ) : ∃
s f

1 ,...,s f
n


a) s f

i ∈ S f
i

b) s f
i ⊆ s̃i

c) (s′1, . . . , s′n, π) |= ψ for all s′i s. t. s f
i ⊆ s′i ⊆ s̃i

and let P(ψ) be the following statement

P(ψ) : ψ ≤ φ⇒
{

1) (s1, . . . , sn, π) |= ψ⇒ L(ψ)
2) (s1, . . . , sn, π) |= ¬ψ⇒ L(¬ψ)

If P(φ) holds, then, since φ ≤ φ, L(φ) holds by 1) and (6.7). P(φ) is a
stronger statement than the Lemma, and is needed for the inductive structure
of the proof. By taking s′i = s f

i in c) (in L(φ)), we get that (s f
1 , . . . , s f

n, π) |= φ

for s f
i ∈ S f

i , which proves the Lemma.
Before the main proof of P(φ), one property of Si is shown: for every i ∈

[1, n]:
∃

s f
i ∈S f

i
s f

i ⊆ s̃i (6.9)

To see that (6.9) holds, first consider the case that si is finite. If ∗ 6∈ si, then
s f

i = si ∈ S f
i and s f

i ⊆ s̃i = si. If ∗ ∈ si, then there is a s f
i ⊆ s̃i by Lemma 6.7.2

(with S = Si and s = si, take e.g. s′′ = sφi ) and s f
i ∈ S f

i since s̃i is finite. Second,
in the case that si is infinite then s̃i = si and (6.9) holds by Lemma 6.6.1.a.

I now prove P(ψ) for all formulae ψ ≤ φ (including φ), by induction over
the structure of ψ 1.

ψ = p ∈ Θ:

1. Assume that p ≤ φ, and that (s1, . . . , sn, π) |= p. I show L(p). For
each i there is, by (6.9), a s f

i ∈ S f
i such that s f

i ⊆ s̃i, satisfying a) and
b) for each i. c) holds since π(p) = true.

2. Substitute ¬p for p in the above argument.

ψ = T .= U:

1. Assume that T .= U ≤ φ, and that (s1, . . . , sn, π) |= T .= U. We
show L(T .= U). There exists s f

i satisfying a) and b) by the same
argument as in the ψ = p case, and c) holds since [T] = [U].

2. Substitute ¬T .= U for T .= U and [T] 6= [U] for [T] = [U] in the
above argument.

ψ = 4iT: Assume that 4iT ≤ φ. In both the following cases, let s f
j , j 6= i, be

such that s f
j ∈ S f

j and s f
j ⊆ s̃ j (giving a) and b) for j 6= i) – existence of

such s f
j is given by (6.9) – and let s′j be arbitrary such that s f

j ⊆ s′j ⊆ s̃ j.

1Keep in mind that s1 , . . . , sn , π ,φ, s̃1 , . . . , s̃n, andαi whenever ∗ ∈ si , are fixed before the induc-
tive proof of P.
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1. Assume that (s1, . . . , sn, π) |= 4iT, i.e. [T] ⊆ si. I show L(4iT) in
the following three cases:

i) ∗ 6∈ si and si finite: let s f
i = si, then a), b) and c) hold trivially.

ii) ∗ 6∈ si and si infinite: by Lemma 6.5, since [T] is a finite subset
of si, there is a s f

i ∈ Si ∩ ℘ f in(si), giving a) and b) (s̃i = si), such

that [T] ⊆ s f
i . If s f

i ⊆ s′i ⊆ s̃i, then [T] ⊆ s′i and (s′1, . . . , s′n, π) |=
4iT giving c).

iii) ∗ ∈ si: by Lemma 6.7.1 (with S = Si and s = si), since [T] ⊆ sφi
and [T] ⊆ (si \ {∗}), there is a s f

i ∈ Si ∩ ℘ f in(s̃i), giving a) and

b) for i, such that [T] ⊆ s f
i . If s f

i ⊆ s′i ⊆ s̃i, then [T] ⊆ s′i and
(s′1, . . . , s′n, π) |= 4iT giving c).

2. Assume that (s1, . . . , sn, π) |= ¬4i T, i.e. [T] 6⊆ si. I show L(¬4i T).
By (6.9) there exists a s f

i such that s f
i ∈ S f

i and s f
i ⊆ s̃i, giving a) and

b). Let s′i be such that s f
i ⊆ s′i ⊆ s̃i. First, consider that ∗ 6∈ si. Then

s̃i = si, and since [T] 6⊆ si [T] 6⊆ s′i. Second, consider that ∗ ∈ si.
Assume that [T] ⊆ s′i. Then [T] ⊆ s̃i but, since 4iT ≤ φ, αi 6∈ [T]
by definition of αi, so [T] ⊆ (si \ {∗}). But this is a contradiction,
since (si \ {∗}) ⊂ si and [T] 6⊆ si, so the assumption that [T] ⊆ s′i
is impossible. Thus in either case, [T] 6⊆ s′i, and (s′1, . . . , s′n, π) |=
¬4i T giving c).

ψ = 5iT: Assume that 5iT ≤ φ. In both the following cases, let s f
j , j 6= i, be

such that s f
j ∈ S f

j and s f
j ⊆ s̃ j (giving a) and b) for j 6= i) – existence of

such s f
j is given by (6.9) – and let s′j be arbitrary such that s f

j ⊆ s′j ⊆ s̃ j.

1. Assume that (s1, . . . , sn, π) |= 5iT, i.e. si ⊆ [T]. I show L(5iT).
Simply choosing s f

i = si suffice: a) holds since si ∈ Si and si is finite

since si ⊆ [T]. b) holds since si ⊆ [T] ⇒ ∗ 6∈ si ⇒ s̃i = si = s f
i ⇒

s f
i ⊆ s̃i. Let s′i be such that s f

i ⊆ s′i ⊆ s̃i. Since s f
i = s̃i, s′i = s̃i = si.

s′i ⊆ [T], and (s′1, . . . , s′n, π) |= 5iT.
2. Assume that (s1, . . . , sn, π) |= ¬5i T, i.e. si 6⊆ [T]. I show L(¬5i T)

in the following three cases:

i) ∗ 6∈ si and si finite: let s f
i = si, then a), b) and c) hold trivially.

ii) ∗ 6∈ si and si infinite: s̃i = si. By Lemma 6.6.1.b, since [T] ∈
℘fin(OL), there is a s f

i such that s f
i ∈ S f

i and s f
i ⊂ si = s̃i giving a)

and b), and such that s f
i 6⊆ [T]. If s′i is such that s f

i ⊆ s′i ⊆ s̃i = si,
then s′i 6⊆ [T] and (s′1, . . . , s′n, π) |= ¬5i T giving c).

iii) ∗ ∈ si: Since [T] ⊆ sφi , by Lemma 6.7.2 there is a s f
i such that

s f
i ∈ S f

i and s f
i ⊂ s̃i, giving a) and b), and such that s f

i 6⊆ [T]. If

s′i is such that s f
i ⊆ s′i ⊆ s̃i, then s′i 6⊆ [T] and (s′1, . . . , s′n, π) |=

¬5i T giving c).

ψ = ¬ψ1: The induction hypothesis is P(ψ1). Assume that ¬ψ1 ≤ φ; then also
ψ1 ≤ φ.
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1. Assume that (s1, . . . , sn, π) |= ¬ψ1. Then, since ψ1 ≤ φ, L(¬ψ1) =
L(ψ) holds by P(ψ1) 2).

2. Assume that (s1, . . . , sn, π) |= ¬¬ψ1. Then, (s1, . . . , sn, π) |= ψ1 and
sinceψ1 ≤ φ, L(ψ1) holds by P(ψ1) 1). By the definition of L, L(ψ1)
holds iff L(¬ψ) = L(¬¬ψ1) holds.

ψ = ψ1 ∧ψ2: The induction hypotheses are P(ψ1) and P(ψ2). Assume that
ψ1 ∧ψ2 ≤ φ.

1. Assume that (s1, . . . , sn, π) |= ψ1 ∧ψ2. ψ1 ∧ψ2 ≤ φ implies that
ψ1 ≤ φ, and (s1, . . . , sn, π) |= ψ1 ∧ψ2 implies that (s1, . . . , sn, π) |=
ψ1, and thus, by P(ψ1), L(ψ1) holds. That is, there exist, for each
agent i, s f

1,i ∈ S f
i such that s f

1,i ⊆ s̃i and for all s′1,i such that s f
1,i ⊆

s′1,i ⊆ s̃i, (s′1,1, . . . , s′1,n, π) |= ψ1. Similarly, by P(ψ2), L(ψ2) holds;

there exist, for each agent i, s f
2,i ∈ S f

i such that s f
2,i ⊆ s̃i and for

all s′2,i such that s f
2,i ⊆ s′2,i ⊆ s̃i, (s′2,1, . . . , s′2,n, π) |= ψ2. I show

L(ψ1 ∧ ψ2). Since Si ∩ ℘ f in(s̃i) is directed (by Def. 6.8.1.a when
∗ 6∈ si and by Lemma 6.7.3 when ∗ ∈ si (recall that si is finite when
∗ ∈ si)) and s f

1,i , s f
2,i ∈ Si ∩ ℘ f in(s̃i), there exists, for each i a s f

i ∈
Si ∩ ℘ f in(s̃i) such that s f

1,i , s f
2,i ⊆ s f

i . a) holds since s f
i ∈ Si is finite,

and b) holds since s f
i ∈ ℘ f in(s̃i). Let, for each i, s′i be such that

s f
i ⊆ s′i ⊆ s̃i. Because s f

1,i ⊆ s f
i ⊆ s′i ⊆ s̃i, s f

1,i ⊆ s′i ⊆ s̃i and, by L(ψ1),

(s′1, . . . , s′n, π) |= ψ1. Similarly, because s f
2,i ⊆ s f

i ⊆ s′i ⊆ s̃i, s f
2,i ⊆

s′i ⊆ s̃i and, by L(ψ2), (s′1, . . . , s′n, π) |= ψ2. Thus, (s′1, . . . , s′n, π) |=
ψ1 ∧ψ2, and c) holds.

2. Assume that (s1, . . . , sn, π) |= ¬(ψ1 ∧ψ2); (s1, . . . , sn, π) |= ¬ψ1 ∨
¬ψ2; (s1, . . . , sn, π) |= ¬ψ1 or (s1, . . . , sn, π) |= ¬ψ2. Assume the
first case (the proof in the second case is symmetrical). ψ1 ∧ψ2 ≤ φ
implies that ψ1 ≤ φ and since (s1, . . . , sn, π) |= ¬ψ1, L(¬ψ1) holds
by P(ψ1). That is, there exist s f

i ∈ S f
i such that s f

i ⊆ s̃i and for all s′i
such that s f

i ⊆ s′i ⊆ s̃i, (s′1, . . . , s′n, π) |= ¬ψ1. But then we also have

that (s′1, . . . , s′n, π) |= ¬(ψ1 ∧ψ2) (i.e. s f
i , the witness in L(¬ψ1), is

also a witness in L(¬(ψ1 ∧ψ2))).

Recall that a set Φ of epistemic axioms induces sets of legal epistemic states
SΦ

i (Defs. 6.3 and 6.4).

Theorem 6.1 If Φ is a set of epistemic axioms such that SΦ
1 , . . . , SΦ

n are finitary
sets of epistemic states, then Φ is finitary. 2

PROOF Since Φ are epistemic axioms, MΦ
Ax = {(sΦ

1 , . . . , sΦ
n , π) ∈ M : sΦ

i ∈
SΦ

i }. Since all SΦ
i are finitary, by Lemma 6.8 MΦ

Ax is a finitary set of GKSSs.
SinceMΦ

Ax = mod(Φ) (Lemma 6.2), Φ is finitary by Lemma 6.4.

Theorem 6.1 shows that the conditions in Def. 6.8 on the set of legal epis-
temic states induced by epistemic axioms are sufficient to conclude that the
axioms are finitary.
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6.6.1 Stronger Conditions

I have (Def. 6.8) given sufficient conditions on the sets of epistemic states
induced by epistemic axioms, for the axioms to be finitary. In this section, I
present several alternative sufficient conditions which are stronger (i.e. imply
Def. 6.8).

Lemma 6.9 A set of epistemic states S ⊆ S is finitary if

1. For every infinite s ∈ S:

(a) S| fs is directed

(b) S| fs is a cover of s

2. ∀s∪{∗}∈S∀s′∈℘fin(OL)∃α 6∈s′ :

(a) S| fs∪{α} is directed

(b) S| fs∪{α} is a cover of s ∪ {α} 2

PROOF It must be shown that 2 in this Lemma implies 2 in Def. 6.8. Assume
that 2 holds, and let s ∪ {∗} ∈ S, s′ ∈ ℘fin(OL) andα as described in 2 above.

Def. 6.8.2a) s′ ∩ s is finite, say s′ ∩ s = {β1, . . . ,βk}. By 2b), s ∪ {α} ⊆ ⋃
(S ∩

℘ f in(s ∪ {α})). Since s′ ∩ s ⊆ s ∪ {α}, {β1, . . . ,βk} ⊆
⋃

(S ∩ ℘ f in(s ∪
{α})). That is, there exist s j ∈ S ∩ ℘ f in(s ∪ {α}) for 1 ≤ j ≤ k such that
β j ∈ s j. By 2a), there is a s f ∈ S ∩ ℘ f in(s ∪ {α}) such that

⋃k
j=1 s j ⊆ s f .

Since {β1, . . . ,βk} ⊆
⋃k

j=1 s j, s′ ∩ s ⊆ s f and Def. 6.8.2a) holds.

Def. 6.8.2b) Assume that Def. 6.8.2b) does not hold, i.e. that ∀s f∈S∩℘(s∪{α})s
f ⊆

s′. Then,
⋃

(S ∩ ℘ f in(s ∪ {α})) ⊆ s′. Since α 6∈ s′, s ∪ {α} 6⊆ s′ and
s ∪ {α} 6⊆ ⋃

(S ∩ ℘ f in(s ∪ {α})), contradicting 2b) of this Lemma. Thus,
Def. 6.8.2b) must hold.

Def. 6.8.2c) 2a) of this Lemma.

Corollary 6.1 Let S ⊆ S be a set of epistemic states. The following are condi-
tions on S together with implications on the conditions in Lemma 6.9:

1. If S| fs is directed for all s ⊆ OL:

• Lemma 6.9.1a) holds

• Lemma 6.9.2a) holds (for allα)

2. If S| fs is a cover of s for all s ⊆ OL:

• Lemma 6.9.1b) holds

• Lemma 6.9.2b) holds (for allα)

3. If {α} ∈ S for everyα ∈ OL:
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• Lemma 6.9.1b) holds

• Lemma 6.9.2b) holds (for allα)

4. If ∀s∪{∗}∈S∀s′∈℘fin(OL)∃α 6∈s′ s ∪ {α} ∈ S:

• Lemma 6.9.2 holds 2

PROOF

1. Follows immediately (in Lemma 6.9.2a: for anyα ∈ OL)

2. Follows immediately (in Lemma 6.9.2b: for anyα ∈ OL)

3. Lemma 6.9.1b) : Let s ∈ S be infinite. If {β} ∈ s, then β ∈ ℘ f in(s) and
{β} ∈ S, thus s ⊆ ⋃

(S ∩ ℘ f in(s)).

Lemma 6.9.2b) : Let s ∪ {∗} ∈ S, s′ ∈ ℘fin(OL) and α ∈ OL be arbitrary
such that α 6∈ s′. If β ∈ s ∪ {α}, then {β} ∈ ℘ f in(s ∪ {α}) and
{β} ∈ S, thus s ∪ {α} ⊆ ⋃

(S ∩ ℘ f in(s ∪ {α})).

4. Let s ∪ {∗} ∈ S, s′ ∈ ℘fin(OL) and α ∈ OL be such that α 6∈ s′ and
s ∪ {α} ∈ S.

Let s f = s ∪ {α}. Clearly, s f ∈ S ∩ ℘ f in(s ∪ {α}), and if s1, s2 ∈ S ∩
℘ f in(s ∪ {α}) then s1, s2 ⊆ s f and Lemma 6.9.2a) holds.

Lemma 6.9.2b) holds trivially, since s ∪ {α} ⊆ ⋃
(S ∩ ℘ f in(s ∪ {α})).

The following corollary collects some of the possible combinations of the
conditions.

Corollary 6.2 A set of epistemic states S ⊆ S is finitary if either one of the
following three conditions hold:

1. For every s ⊆ OL:

(a) S| fs is directed

(b) S| fs is a cover of s

2. (a) S| fs is directed for every s ⊆ OL

(b) {α} ∈ S for everyα ∈ OL

3. (a) S| fs is directed for every infinite s ∈ S

(b) {α} ∈ S for everyα ∈ OL

(c) ∀s∪{∗}∈S∀s′∈℘fin(OL)∃α 6∈s′ s ∪ {α} ∈ S 2

PROOF

1. Follows from Lemma 6.9 and Corollary 6.1.1 and 2.

2. Follows from Lemma 6.9 and Corollary 6.1.1 and 3.

3. Follows from Lemma 6.9 and Corollary 6.1.3 and 4.
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Finitaryness of the Empty Theory

In Chapter 5 the result that the empty set is finitary, and hence that the calculus
EC is weakly complete, was stated (Lemma 5.2) without proof. The result is
now proved by using the finitaryness conditions developed in this section.

Lemma 6.10 (Lemma 5.2) The empty theory is finitary. 2

PROOF I use Corollary 6.2.1 to show that S , the set of all epistemic states, is
finitary. Let s ⊆ OL. S| fs = S ∩ ℘ f in(s) = ℘ f in(s). ℘ f in(s) is directed, because
for every finite subset B ⊂ ℘ f in(s), ∪s′∈Bs′ ∈ ℘ f in(s). ℘ f in(s) is a cover of s,
because s ⊆ ⋃

℘ f in(s).
Thus, by Corollary 6.2.1, S is finitary. By definition (Def. 6.2) the empty set

is a set of epistemic axioms, and S∅i = S for each i (Def. 6.4). By Theorem 6.1,
∅ is finitary.

6.7 Examples

In this section, I look at some examples of extensions of the basic framework.
For selected axioms, I construct the model classes as described in Section 6.3.1
and investigate finitaryness properties as discussed in Section 6.6.

Written in SSEL notation, the commonly used axioms of modal epistemic
logic discussed in Section 2.1 are:

4i {(α → β)} → (4i{α} → 4i{β}) Distribution Ki

4i {α} → ¬4i {¬α} Consistency Di

4i {α} → α Knowledge Ti

4i {α} → 4i{4i{α}} Positive Introspection 4i

¬4i {α} → 4i{¬4i {α}} Negative Introspection 5i

In order to construct the model classes for these axioms, except for Ti which is
not an epistemic axiom, we can interpret the axioms as schemata over both the
agent index i and AL formulaeα,β. These axiom schemata must be viewed as
sets of axioms:

K = {Ki(α,β) : 1 ≤ i ≤ n,α,β ∈ AL}
where Ki(α,β) = 4i{(α → β)} → (4i{α} → 4i{β})

D = {Di(α) : 1 ≤ i ≤ n,α ∈ AL}
where Di(α) = 4i{α} → ¬4i {¬α}

4 = {4i(α) : 1 ≤ i ≤ n,α ∈ AL}
where 4i(α) = 4i{α} → 4i{4i{α}}

5 = {5i(α) : 1 ≤ i ≤ n,α ∈ AL}
where 5i(α) = ¬4i {α} → 4i{¬4i {α}}

The model classes are defined by (see Section 6.3.1)

MΦ
Ax = {(sΦ

1 , . . . , sΦ
n , π) : sΦ

i ∈ SΦ
i }
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for Φ ∈ {K, D, 4, 5}, where:

SKi(α,β)
i = S \ {X ∈ S : [α → β] ∈ X} ∪ (S \ {X ∈ S : [α] ∈ X}

∪{X ∈ S : [β] ∈ X})
= S \ {X ∈ S : ([α]→ [β]), [α] ∈ X, [β] 6∈ X}

SDi(α)
i = S \ {X ∈ S : [α] ∈ X} ∪ S \ {X ∈ S : ¬[α] ∈ X}

= S \ {X ∈ S : [α],¬[α] ∈ X}
S4i(α)

i = S \ {X ∈ S : [α] ∈ X} ∪ {X ∈ S : 4i{[α]} ∈ X}
= S \ {X ∈ S : [α] ∈ X,4i{[α]} 6∈ X}

S5i(α)
i = S \ (S \ {X ∈ S : [α] ∈ X}) ∪ {X ∈ S : ¬4i {[α]} ∈ X}

= S \ {X ∈ S : [α] 6∈ X,¬4i {[α]} 6∈ X}
SK

i =
⋂

Ki(α,β)∈K SKi(α,β)
i =

S \ {X ∈ S : ∃α,β ∈ AL(([α]→ [β]), [α] ∈ X, [β] 6∈ X)}
SD

i =
⋂

Di(α)∈D SDi(α)
i = S \ {X ∈ S : ∃α ∈ AL([α],¬[α] ∈ X)}

S4
i =

⋂
4i(α)∈4 S4i(α)

i = S \ {X ∈ S : ∃α ∈ AL([α] ∈ X,4i{[α]} 6∈ X)}
S5

i =
⋂

5i(α)∈5 S5i(α)
i = S \ {X ∈ S : ∃α ∈ AL([α] 6∈ X,¬4i {[α]} 6∈ X)}

I next investigate the finitaryness of these axioms.

Lemma 6.11

1. K is a finitary theory

2. D is a finitary theory

3. 4 is not a finitary theory

4. 5 is not a finitary theory 2

PROOF 1. I show that SK
i is finitary for arbitrary i, by using Corollary 6.2.3.

K is then finitary by Theorem 6.1.

Corollary 6.2.3.(a): I show that SK
i |

f
s is directed for infinite s ∈ SK

i . Let
s′, s′′ ∈ SK

i ∩ ℘ f in(s), and let:

s0 = s′ ∪ s′′

s j = s j−1 ∪ {[β] : [α → β], [α] ∈ s j−1} 0 < j
s f =

⋃
j s j

If there are formulae α → β,α such that [α] → [β], [α] ∈ s f , then
there are sl and sm such that [α] → [β] ∈ sl and [α] ∈ sm. Then,
[β] ∈ smax(l,m)+1 and [β] ∈ s f . Thus, s f ∈ SK

i .

I show that s j ∈ ℘ f in(s) for every j by induction over j. s0 ∈ ℘ f in(s),
since s′, s′′ ∈ ℘ f in(s). Assume that s j−1 ∈ ℘ f in(s), j > 0. If s j = s j−1

then s j ∈ ℘ f in(s). Otherwise, let [β] ∈ s j such that [β] 6∈ s j−1 and
[α] → [β], [α] ∈ s j−1 for some α. Since s j−1 ⊆ s, [α] → [β], [α] ∈ s,
and since s ∈ SK

i , [β] ∈ s. Since [β] ∈ s for every [β] ∈ s j \ s j−1 and
s j−1 ⊆ s, s j ⊆ s. Furthermore, s j \ s j−1 is finite since s j is finite, and
therefore s j ∈ ℘ f in(s). Thus, s j ∈ ℘ f in(s) for every j, and s f ⊆ s.
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It is easy to see that [β] ∈ s j \ s j−1 if and only if there is a [α0] →
([α1] → . . . → ([αp] → [β]) · · · ) ∈ s0 for some p. Since s0 is finite,
there is a k > 0 such that s j \ s j−1 = ∅ for all j ≥ k. s f is the union of
a finite number of finite sets, so s f is finite. Thus, s f ∈ ℘ f in(s).

Since s′, s′′ ⊆ s f and s f ∈ SK
i ∩ ℘ f in(s), SK

i |
f
s is directed.

Corollary 6.2.3.(b): Clearly, {α} ∈ SK
i for everyα ∈ OL.

Corollary 6.2.3.(c): Let s ∪ {∗} ∈ SK
i and s′ ∈ ℘fin(OL). Let α ∈ OL be

such that:

• α → β 6∈ s for any β ∈ OL
• α 6∈ s′

• The main connective inα is not implication

It is easy to see that there exist infinitely many α satisfying these
three conditions; there are infinitely many α ∈ OL without implica-
tion as main connective, and both s and s′ are finite.
I show that s ∪ {α} ∈ SK

i . Let α′ → β,α′ ∈ s ∪ {α}. Since α does
not have implication as main connective, α′ → β ∈ s. Since α is
such that α → β′ 6∈ s for any β′, α′ 6= α and α′ ∈ s. Then, since
s ∪ {∗} ∈ SK

i , β ∈ s. Thus, s ∪ {α} ∈ SK
i .

2. I show that SD
i is finitary for arbitrary i, by using Corollary 6.2.3. D is

then finitary by Theorem 6.1.

Corollary 6.2.3.(a): I show that SD
i |

f
s is directed for infinite s ∈ SD

i . Let
s′, s′′ ∈ SD

i ∩ ℘ f in(s), and let s f = s′ ∪ s′′. If there is a β such that
[β],¬[β] ∈ s f , then [β],¬[β] ∈ s, which is impossible since s ∈ SD

i .
Thus, s f ∈ SD

i . Since s′, s′′ ∈ ℘ f in(s), s f ∈ ℘ f in(s).

Thus, there is a s f ∈ SD
i ∩ ℘ f in(s) such that s′, s′′ ⊆ s f .

Corollary 6.2.3.(b): Clearly, {α} ∈ SD
i for everyα ∈ OL.

Corollary 6.2.3.(c): Let s ∪ {∗} ∈ SD
i and s′ ∈ ℘fin(OL). Let α ∈ OL be

such that:

• ¬α 6∈ s
• α 6∈ s′

• α does not start with negation

It is easy to see that there exist infinitely many α satisfying these
three conditions; there are infinitely manyα ∈ OL without negation
as main connective, and both s and s′ are finite.
I show that s ∪ {α} ∈ SD

i . Assume the opposite, i.e. that β,¬β ∈
s ∪ {α}. Sinceα does not start with negation, ¬β ∈ s. Since ¬α 6∈ s,
β 6= α andβ ∈ s. But since s ∈ SD

i it is a contradiction thatβ,¬β ∈ s.
Thus, s ∪ {α} ∈ SD

i .

3. Let 1 ≤ i ≤ n, and let M = (s1, . . . , sn, π) ∈ Mfin such that M |= f 4.
Clearly, si must be the empty set – otherwise it would not be finite. Thus,
4 |= f 5i∅. 4 does, however, have infinite models, so 4 6|= 5i∅. Lemma
5.3 gives that 4 is not finitary.
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4. It is easy to see that 5 is not satisfiable in Mfin (i.e. that a model for 5
must be infinite). By Theorem 5.1 and Lemma 5.1, 5 is not finitary.

Since we only have semantic finitaryness conditions for epistemic axioms,
we cannot use them to decide the finitaryness of T, which is not a set of epis-
temic axioms.
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A Dynamic Logic of Finite
Syntactic Epistemic States
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Chapter 7

Language and Semantics

7.1 Introduction

In Part II a logic of syntactic epistemic states at a given point in time was pre-
sented. Agents were represented as points in the lattice of sets of object for-
mulae, and the logical language could express facts about their knowledge.
Contrary to other epistemic formalisms, it does not follow from only the fact
that agents know certain formulae that they also must know — now or in the
future — certain other formulae. In Part III, the language will now be extended
to be able to express that agents can know rules in addition to formulae. In ad-
dition, temporal operators are added to express facts about possible futures.
Together, the facts that an agent knows certain formulae and certain rules may
imply that he can come to know other formulae in the future. Or, the facts that
he does not know certain formulae now and only knows certain rules may imply
that he cannot know some other formulae in the future.

Semantically, the formalism is extended to consider more than one given
point in the lattice for each agent by allowing the agents to move in the lat-
tice. The language which constitutes the agents’ epistemic states (OL) (and thus
its syntactic representation AL) is not changed from Part II, and the epistemic
states are required to be finite. The following additional semantic assumptions
are made. Time is discrete. An agent’s epistemic state can change between
points in time. In addition to a syntactical storage of formulae, each agent has
a mechanism for transforming sets of formulae — e.g. making deductions, be-
lief revision, forgetting, etc. In addition to reasoning, the mechanism can also
do communication; e.g. send (syntactic) formulae to other agents. Communica-
tion is seen as a generalization of reasoning. Between two points in time, all
agents use their mechanisms simultaneously1.

Since agents can know several rules and their mechanisms are not required
to be deterministic, the future is not deterministic. Thus a logic of future epis-
temic states should be a branching time logic in which e.g. what may happen
and what must happen can be expressed. Since agents can communicate, they
can cooperate. For example, if an agent knows modus ponens and the formula
p → q and another agent knows the formula p, the two agents can cooperate

1Asynchronous systems can be modelled with the help of mechanisms which do not always
change the current epistemic state.

81
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to make the first agent know q. This type of branching time cooperation logic
is exactly what ATL (see Section 2.3) is. The logic developed in the current
chapter is an ATL logic, in the sense that the language can be interpreted as an
ATL language and mechanisms as concurrent game structures (integration of
epistemic logic and ATL is not a new idea; see Section 9.4).

In the next section, the two new parts of the logical language are introduced:
rules for reasoning and communication and ATL type temporal connectives for
expressing facts about (branching time) futures. The interpretation of rules as
a relation between epistemic states is defined in Section 7.3. In Section 7.4 the
properties of the concurrent game structures we are interested in are discussed,
followed by a model of agents’ mechanism and a definition of the concurrent
game structure induced by a mechanism in Section 7.5. In Section 7.6 satis-
fiability in a mechanism is defined as satisfiability in the induced concurrent
game structure and the relation between the notions of having a mechanism
and knowing a set of rules is discussed in detail. The resulting logic is called
Dynamic Syntactic Epistemic Logic (DSEL). An example study is presented in
Chapter 8.

As already mentioned, DSEL is an extension of SSEL (Static Syntactic Epis-
temic Logic) from Part II both syntactically and semantically: the logical lan-
guage is an extension of EL and each point in time is a structure for EL. The
extended formalism is not developed to the same extent, however; a calculus
is left for future work.

7.2 Language

In Part II I defined a logical meta-language and an agent language. I now
extend the meta language for expressing dynamical properties of reasoning
and communication, while keeping the same agent language.

The syntax of rules is defined, and the meta language extended with

1. Epistemic operators for rules

2. Temporal connectives

Both the epistemic rule operators and temporal connectives can express prop-
erties of an agent’s mechanism which allows him to change his own and other
agents’ epistemic states. The new epistemic operators allow us to express that
an agent knows a rule (e.g. modus ponens). The new temporal operators allow
us to express statements about the future, e.g. that an agent may get to know a
certain formula.

7.2.1 Rules

Rules are defined over two new sets of variables: VF = {a, b, c, . . .} and VT =
{t, u, v, . . .}, used as placeholders for formulae and terms respectively. A rule
consists of an antecedent and a consequent; both representing sets of formulae —
possibly containing variables. Examples of rules are:

R1 =
t t {a→ b, a}

t t {b} R2 =
t t {p}

t t {4 j{p}}
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The intended meaning of “knowing a rule” is that if the current epistemic state
matches the antecedent, then it can be changed to an epistemic state matching
the consequent.

Rules are used in the meta-language by introducing new epistemic opera-
tors for rules.

;

4i{R1}
denotes the fact that agent i knows at least the rule R1 (but it may know more
rules), and

;

5i{R1, R2, R3}
denotes the fact that at most rules R1, R2 and R3 are known by i (but it may be
the case that i does not know all of them).

Even though 4i and
;

4
i

(5i and
;

5
i
) are similar in appearance and have

similar meanings, rules are not formulae — they have a different ontological sta-
tus. Hence, it is not possible to write e.g. 4i{p, R1} to denote the fact that
agent i knows both the proposition p and the rule R1 — this fact should be

written 4i{p} ∧
;

4
i
{R1}. Furthermore, unlike formulae rules are not closed

under propositional connectives;
;

4
i
{R1 ∧ R2} is not a well formed formula.

Rules only appear as arguments to the operators
;

4
i
,
;

5
i
, and they cannot be

nested – the agent language is not extended with rule operators. For example,
the formula

4i{
;

4
j
{R1}}

is not well formed.

Reasoning and Communication

We want to model agents’ abilities to both reason and communicate. We also
want to express these abilities in the logical language. The ability to reason is
expressed by the epistemic rule operators; they are used to express the fact that
an agent can go from one epistemic state (matching the antecedent) to another
(matching the consequent). The ability to communicate can be expressed in a
very similar manner: agent i can in a certain epistemic state perform a com-
munication action resulting in a change in the epistemic state of agent j. Thus,
communication can be seen as a generalization of reasoning.

To be able to express communication, the
;

4-operator just introduced is gen-
eralized to taking two subscripts:

;

4i j{R1}

means that agent i knows at least the rule R1 for communication to agent j.
;

5i j{R1}

means that agent i knows at most the rule R1 for communication to agent j.

Note that
;

5i j{R1} does not say anything about agent i’s ability to communi-
cate with agent k when k 6= j. The exact meaning of these rule operators will
become clear in the following section.
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The first version, denoting reasoning, is defined as a short-hand notation

for the second;
;

4i ≡
;

4ii. Similarly for
;

5i.

7.2.2 Temporal Connectives

Three ATL-type temporal connectives (see Section 2.3) is introduced into the
logical language, illustrated by the following examples. Let φ,ψ be formulae,
and A a set of agents. The following are all well formed formulae.

〈〈A〉〉©φ

〈〈A〉〉2φ
〈〈A〉〉φUψ

Full nesting and propositional combinations of temporal formulas are allowed
in the meta language but not in the agent language – the agent language is
not extended with temporal connectives. The intended semantics is as in ATL:
〈〈A〉〉 mens that “agents A can together make the following true”, © means
next, 2 means globally, U means until. Derived connective:

〈〈A〉〉Fψ ≡ 〈〈A〉〉trueUψ

(the semantics of U requires ψ to eventually be true).

7.2.3 Example

The following is an example of a well formed formula, where p, q ∈ Θ, t ∈ VT
and a, b ∈ VF:

(41{p} ∧42{p→ q}

∧ 〈〈∅〉〉2
(

;

412{
t t {a}
{a} } ∧

;

422{
t t {a, a→ b}

t t {a, a→ b, b}} ∧
;

422{
t
t
}
)

)

→ 〈〈{1, 2}〉〉F 42 {q}

The intended meaning of this formula is that if agent 2 knows the rule
modus ponens and the formula p→ q, and agent 1 knows the formula p and a
rule for communicating any formula to 2, then agents 1 and 2 can cooperate to
make 2 know the formula q in the future.

The use of the operator 〈〈∅〉〉2 was mentioned in Section 2.3.2 (p. 21), and
it means that the following formula will always be true. Here, the consequence
is that the rules will be remembered in the future. The use of the rule t

t for
agent 2 has the consequence that he can go to a new state without doing any
inferences.

7.2.4 Formal Definitions

Here, the logical language TEL (Temporal Epistemic Language) is defined.
To this end, several intermediate languages are defined. Formally, these lan-
guages are only used to define (and prove properties of) TEL and are not used
as logical languages alone. The following convention is used for naming lan-
guages: a “V” subscript is used to denote a language extended with variables
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(representing formulae which are consequents and antecedents of rules), a “T”
subscript is used to denote the term language (representing sets of formulae)
induced by a language. Table 7.1 shows a summary of the formal language
definitions which follow, and an example of the role of each of these interme-
diate languages in a TEL formula is shown in Fig. 7.1. Fig 7.2 further illustrates
the relationships between the languages.

Language Description

TEL (Temporal) Epistemic Language. The logical (meta) language.
AL The agent language, representing formulae agents can know.

ALT Terms representing sets of AL formulae.
ALV AL extended with formula-variables, used in antecedents and

consequents of rules.
ALVT Terms representing sets of ALV formulae.
TRL (Temporal) Rule Language. A rule consists of two ALVT

terms: the consequent and the antecedent.
TRLT Terms representing sets of TRL rules.

Table 7.1: Overview and description of the formal language definitions in-
volved in the definition of the main logical language TEL.

;

4
i
{

ALVT︷ ︸︸ ︷
{a,

ALV︷ ︸︸ ︷
a→ b}

b︸ ︷︷ ︸
TRL

}

︸ ︷︷ ︸
TRLT︸ ︷︷ ︸

TEL

} ∧4i

ALT︷ ︸︸ ︷
{p,

AL︷ ︸︸ ︷
p→ q}︸ ︷︷ ︸

TEL

Figure 7.1: Illustration of the syntax of a TEL formula.

Θ

AL ALT TEL TRLT TRL ALVT ALV

VT VF

Figure 7.2: Relationships between the intermediate languages used to define
TEL. An arrow A −→ B indicates that the language A is used directly in the
definition of the language B.
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Def. 3.2 provides a term language TL(L) representing finite sets of a set of
formulae L. In order to incorporate term-variables into terms, that definition is
slightly extended2 in the following one.

Definition 7.1 (TL(L, S)) Given a set of formulae L and a set of (atomic) terms
S, the term language TL(L, S) is the least set such that

• S ⊆ TL(L, S)

• Ifα1, . . . ,αk ∈ L then {α1, . . . ,αk} ∈ TL(L, S)

• If T, U ∈ TL(L, S) then (T tU)
(T uU)

}
∈ TL(L, S) 2

The following are definitions of the languages, except for AL which is de-
fined in Def. 3.5. Note that ALT was called TL in Chapter 3 (the more general
naming convention is used here for clarity).

All the following definitions are implicitly parameterized by a number n
and a set Θ of primitive propositions, and all except AL and ALT in addition
by two sets VF and VT of variables. For brevity I drop a notation with explicit
parameters.

Definition 7.2 (Term Languages)

• ALT ≡ TL(AL)

• ALVT ≡ TL(ALV , VT)

• TRLT ≡ TL(TRL) 2

Definition 7.3 (ALV ,TRL) ALV is the least set such that:

• Θ ∪VF ⊆ ALV

• If TV , UV ∈ ALVT then TV .= UV ∈ ALV

• If TV ∈ ALVT then

– 4iTV ∈ ALV

– 5iTV ∈ ALV

• IfαV ,βV ∈ ALV then

– (αV → βV) ∈ ALV

– ¬αV ∈ ALV

TRL is the least set such that:

• If TV , UV ∈ ALVT then TV

UV ∈ TRL 2

Definition 7.4 (TEL) TEL is the least set such that:

• Θ ⊆ TEL
2TL(L) = TL(L, ∅).
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• If T, U ∈ ALT then T .= U ∈ TEL

• If T ∈ ALT then

– 4iT ∈ TEL
– 5iT ∈ TEL

• If TR ∈ TRLT then

–
;

4
i
TR ∈ TEL

–
;

5
i
TR ∈ TEL

• Ifα,β ∈ TEL then

– (α → β) ∈ TEL
– ¬α ∈ TEL

• Ifα,β ∈ TEL and G ∈ ℘({1, . . . , n}) then

– 〈〈A〉〉©α ∈ TEL
– 〈〈A〉〉2α ∈ TEL
– 〈〈A〉〉αUβ ∈ TEL 2

Note that Θ ⊂ AL ⊂ ALV ⊃ VF and ALT ⊂ ALVT ⊃ VT .
As in Part II the following notation will be used for meta variables: φ,ψ, . . .

for elements in TEL, α,β, . . . for elements in AL and T, U, . . . for elements in
ALT. In addition, αV ,βV , . . . will be used for elements in ALV, TV , UV , . . . for
elements in ALVT, R1, R2, . . . for elements in TRL, TR

1 , TR
2 , . . . for elements in

TRLT, a, b, . . . for elements in VF and t, u, . . . for elements in VT .

7.2.5 Substitutions

A substitution Ω is a pair of functions

ΩF : VF → AL
ΩT : VT → ALT

mapping each formula-variable a ∈ VF to an agent formula and each term-
variable t ∈ VT to an term for a set of agent formulae. The set of all substitu-
tions is called Subst. In the following, we abuse notation and write only Ω for
both ΩF and ΩT . Sometimes the notation

Ω[x/y]

is used, where x ∈ VF and y ∈ AL, or x ∈ VT and y ∈ ALT, to denote the
substitution Ω′ where:

Ω′(x′) =
{

y x = x′

Ω(x′) otherwise

Substitutions will be used to define instances of a rule R ∈ TRL — i.e. to
identify agent formulae matching the antecedent and consequent of the rule.

Definition 7.5 (TV
Ω) Let Ω ∈ Subst and TV ∈ ALVT. TV

Ω is the result of replac-
ing every variable x ∈ VF ∪ VT occurring in TV with Ω(x). Clearly, TV

Ω ∈
ALT. 2
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7.3 Interpretation of Rules

In order to define a semantical interpretation of rules, first the interpretation of
a syntactical rule term as a set of rules is defined, in the same manner as for
terms of formulae in Chapter 3.

Definition 7.6 (Interpretation of Rule Terms) The interpretation [TR] ∈
℘fin(TRL) of a rule term TR ∈ TRLT is defined by Def. 3.3 by taking
L = S = TRL and [] : TRL→ TRL to be the identity function. 2

The semantics of a rule term is defined by combining all substitutions with
all rules in the interpretation of the rule term.

Definition 7.7 ([[TR]]) Let TR ∈ TRLT be a rule term. [[TR]] is the following
relation:

[[TR]] = {([TA
Ω ], [TC

Ω]) :
TA

TC ∈ [TR], Ω ∈ Subst}

I will write [[TR]](s) for {s′ : (s, s′) ∈ [[TR]]}. 2

In the above definition, TA, TC ∈ ALVT , TA
Ω , TC

Ω ∈ ALT and [TA
Ω ], [TC

Ω] ⊆ ℘fin(OL).

Example 7.1

[[
t t {a, a→ b}

t t {b} ]](s) = {s′ ∪{β} : s = s′ ∪{α,α → β}, s′ ∈ ℘fin(OL),α,β ∈ OL}

[[
t t {a, a→ b}

t t {a, a→ b, b} ]](s) = {s ∪ {β} : α,α → β ∈ s}

Note an important property of the t operator: it denotes not necessarily dis-
joint union. Thus, the variable t in the first rule can denote a set which includes
the premises denoted by the expressions a and a → b in the premise. These
two rules will be discussed further in Section 7.6.1. 2

Informally, the intended meaning of “knowing rules TR” is to have a mech-
anism which in a state s, for each s′ ∈ [[TR]](s), can make the next state, for the
agent itself in case of reasoning or for another agent in case of communication,
to be at or above s′. Before defining this formally in Section 7.5, a closer look at
concurrent game structures is taken.

7.4 Concurrent Game Structures and Strategies

The ATL framework (Section 2.3) is chosen as a framework for the logic and
concurrent game structures will be used to model the temporal dimension of
the agent system. Before the model is formally presented, let us briefly look at
some properties of the concurrent game structures which we are interested in.

First, we require the (“global”) states to be a composition of k “local” states
– one epistemic state (or point in the ℘fin(OL) lattice) for each agent. This is the
first condition for Moore synchronous game structures (see Section 2.3.3). Sec-
ond, we require that the number of possible moves for an agent is a function
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of the agent’s local state. An agent’s mechanism can allow it to make several
decisions based on its local state, but the possible decisions do not depend on
the local states of the other agents. Formally da(q1, . . . , qk) = da(q′1, . . . , q′k)
whenever qa = q′a . We do not in general require that the second condition for
Moore synchronous game structures holds because we will allow communica-
tion between agents, but we do consider the special case without communica-
tion, where precisely this condition holds, in Section 7.7. Third, we require a
specific state space for the local states, namely ℘fin(OL). Fourth, we require a
fixed δ. This δ determines how the agents’ decisions about how to use their
mechanisms transform one tuple of local states to another. The actual function
δ is discussed below.

These four requirements define the subset of concurrent game structures
that will be uses to model the agent systems.

In addition, we must restrict the notion of a strategy. In ATL a strategy
is defined as a function mapping a history of global states to a decision. This
definition is too general for two reasons. First, an agent cannot discern between
two global states in which (only) the epistemic states of other agents differ.
Second, in order to take seriously the idea of an epistemic state as “everything
an agent knows”, we must let the agent’s strategy depend upon only the current
state rather than the history of states. If we want the agent to be able to model
recollection of past states (e.g. perfect recall, a common assumption in game
theory), we must encode that knowledge in the agent language. Thus, a valid
strategy maps a local state to one of the possible decisions in that state.

In addition to the specializations just discussed, a slight generalization of
the concept of concurrent game structures, as defined in Section 2.3.1, is needed.
The reason is that in the original definition, concurrent game structures are
finitely restricted in several ways3. For example, the cardinality of the state space
is required to be finite. These restrictions do not hold, however, in the model
we want to use of transitions between epistemic states where e.g., although the
epistemic states themselves are required to be finite, the number of possible
epistemic states is infinite.

7.4.1 Concurrent Game Structures Generalized

The concept (Def. 2.1) of a concurrent game structure is redefined as follows.

Definition 7.8 A concurrent game structure is a tuple

(k, Q, Π, π ′, ACT, d, δ)

where

• k > 0 is a natural number of players

• Q is a set of states

• Π is a set of propositions

• π ′(q) ⊆ Π for each q ∈ Q; the labeling function

3One reason for these restrictions in the original definition of concurrent game structures is that
ATL is presented, and often used, for model checking. The restrictions ensure decidability and
desirable complexity properties of model checking.
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• ACT is a set of actions

• For each player a ∈ {1, . . . , k} and state q ∈ Q, da(q) ⊆ ACT is the set of
moves available to player a in q. D(q) = d1(q)× · · · × dn(q) is the set of
move vectors in q.

• For each move vector v ∈ D(q) in a state q ∈ Q, δ(q, v) ∈ Q; the transition
function. 2

The following are changed from Def. 2.1. Q and Π can be infinite in order
to allow for infinite state spaces and infinitely many primitive propositions,
respectively. The function da is changed to map to a general set of actions ACT.
The only requirement on ACT is that it is a set. The reason for this change
is twofold. First, it makes it easy to define the concept of choosing the same
action in two different states by simply comparing the action names. This can
also be done with action numbers, but the assumption that actions with the
same numbers in different states should be the same action seems less natural4.
Second, it allows us to model a situation where an agent has an infinite number
of available actions. This will be the case in the situations we want to model
here.

The concept of a strategy is redefined accordingly: a strategy for player i is
a function fi : Q+ → ACT where fi(q0 · · · qm) ∈ di(qm).

The concepts of a computation and a set of strategy vectors, and the func-
tion out, are not changed (see Section 2.3.1). Henceforth, the notions “con-
current game structure” and “strategy” will refer to the new definitions here,
unless otherwise noted. The definition of satisfiability of an ATL formula φ in
state q of a concurrent game structure S,

S, q |= φ

remains the same (Def. 2.2) despite the slight change in the definitions of con-
current game structures and strategies.

7.4.2 Concurrent Game Structures with Incomplete Informa-
tion

Clearly, in the concurrent game structures of interest, the players have incom-
plete information about the current (global) state. Two natural restrictions on
such structures, and their associated strategies, are the following:

1. An agent must have the same actions available in two states which are
indiscernible for that agent.

2. A strategy must map indiscernible histories of states to the same action.

In the paper presenting ATL, Alur, Henzinger, & Kupferman (1997) propose
a definition, including the two mentioned restrictions, of game structures with
incomplete information only in the turn-based synchronous case (see Section
2.3.3). Jamroga (2003) generalizes this idea to AETSs (see Section 9.4.1); the new
definition corresponds exactly to the two restrictions above. The following is a
further generalization, of a general requirement of concurrent game structures
with incomplete information.

4The use of a set ACT is suggested by Jamroga (2003) for among others this reason.
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Definition 7.9 A game structure with incomplete information is a concurrent game
structure (k, Q, Π, π , ACT, d, δ) together with a set Πa ⊆ Π for each player a
such that

da(q) = da(q′)

for any states q, q′ ∈ Q such that

πa(q) = πa(q′)

where we write πa(q′′) = π(q′′) ∩Πa for any q′′ ∈ Q. 2

πa(q) is the set of formulae which is both true in q and observable by a.
A strategy for a player a in a concurrent game structure with incomplete

information is a strategy with the following restriction:

fa(q1 · · · qm) = fa(q′1 · · · q′m)

for any m ≥ 0 and qi ∈ Q having

πa(qi) = πa(q′i)

for all 1 ≤ i ≤ m. Thus, for satisfiability with respect to a concurrent game
structure with incomplete information only these restricted strategies will be
considered.

Clearly, the definitions are very general adaptions of the turn-based case.
Turn-based synchronous game structures with incomplete information are

also restricted so that an agent can only influence observable propositions, and
semantics are only defined for a syntactically restricted subset of the ATL lan-
guage (see Section 2.3.3). It is not clear, however, that these restrictions are
necessary. Consider a case with two players, 1 and 2, where p stands for the
proposition “player 1 knows that player 1’s hat is white”. Intuitively, p should
not be considered as an observable proposition for player 2. Nevertheless, if
we model a system in which there are communication actions, a formula such
asφ = 〈〈2〉〉 © p, which would be left out of the restricted language just men-
tioned, makes sense5. Thus, I disagree with the syntactical restriction and will
hence consider the semantics of the full ATL language with respect to concur-
rent game structures with incomplete information.

Non-perfect Recall

The above definitions implicitly assume, similarly to previous proposals for
modelling incomplete information in the ATL framework, that agents have
perfect recall, by allowing a strategy to map indiscernible states with differ-
ent histories to different actions.

Non-perfect recall can be modelled by further restricting the strategies. For
satisfiability of an ATL formula in a concurrent game structure with incomplete
information without perfect recall, the set of strategies is restricted as follows:

fa(q1 · · · qm) = fa(q′1 · · · q′o)
5It can be argued that p becomes observable by player 2 when he makes the communication

action. I do not agree with this either; if player 2 does not know that the communication is reliable
he may not know whether his action was successful. The formula still makes sense.



92 CHAPTER 7. LANGUAGE AND SEMANTICS

for any m, o ≥ 0 having
πa(qm) = πa(q′o)

In the next section, I will describe a class of concurrent game structures with
incomplete information and use them in the context of non-perfect recall.

7.5 Mechanisms

A mechanism is a model of an agent’s reasoning and communication abilities.

Definition 7.10 (Mechanism) A mechanism (for n agents) is a tuple

R = (R1, . . . , Rn)

where
Ri ⊆ ℘fin(OL)× (℘fin(OL))n

and
Ri(s) = {g : (s, g) ∈ Ri} 6= ∅

for every s ∈ ℘fin(OL). 2

We write Ri(s) j for the set of j-projections of the tuples Ri(s):

Ri(s) j = {s j : (s1, . . . , sn) ∈ Ri(s)}

Agent i having mechanism Ri is intended to model the fact that in a state
of the system where agent i has local epistemic state si, he can force the system
into a new state in which each agent j (including i) is at or above, depending
on the other agents’ mechanisms and decisions, the state s′j where Ri(si) =
(s′1, . . . , s′n) in the lattice of possible epistemic states. Note that it is required
that Ri(s) always assigns a tuple to a state, it can e.g. be the case that Ri(s)
assigns s to agent i – meaning “no change”.

The semantics of the temporal parts of the language is defined in relation to
a mechanism, in terms of the concurrent game structure which is induced by
the mechanism.

7.5.1 Induced Concurrent Game Structure

In Chapter 3 semantics of the language EL was defined in relation to a set of
points and a truth assignment of Θ. The new language TEL is an extension
of EL with rule operators and temporal connectives, and the semantics can be
extended for these new elements by adding a mechanism. The mechanism de-
scribes possible future states, while the states themselves describe the seman-
tics of the EL subset of the language. This semantics can be easily described by
a concurrent game structure.

Definition 7.11 (Ind. Conc. Game Structure with Incomplete Inform.) Given
a mechanism for n agents, R = (R1, . . . , Rn), and a truth assignment π : Θ →
{true, false} of Θ, the induced concurrent game structure with incomplete informa-
tion is the concurrent game structure

−→
R π = (n, Q, Π, π ′, ACT, d, δ)
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together with sets Πa of observable propositions for each agent 1 ≤ a ≤ n
where

• Q = (℘fin(OL))n

• Π = Θ

∪ {T .= U : T, U ∈ ALT}
∪ {4iT,5iT : T ∈ ALT , 1 ≤ i ≤ n}
∪ {

;

4
i
TR,

;

5
i
TR : TR ∈ TRLT , 1 ≤ i ≤ n}

• Let q = (s1, . . . , sn) ∈ Q. Letφ ∈ Π.

– φ = p ∈ Θ: φ ∈ π ′(q) iff π(p) = true.
– φ = T .= U: φ ∈ π ′(q) iff [T] = [U].
– φ = 4iT: φ ∈ π ′(q) iff [T] ⊆ si.
– φ = 5iT: φ ∈ π ′(q) iff si ⊆ [T].

– φ =
;

4i jTR: φ ∈ π ′(q) iff

s′ ∈ [[TR]](si) and (s′1, . . . , s′n) ∈ Ri(si)
⇓

(s′′1 , . . . , s′′n) ∈ Ri(si) where s′′k =
{

s′ k = j
s′k otherwise

– φ =
;

5i jTR: φ ∈ π ′(q) iff (s′1, . . . , s′n) ∈ Ri(si)⇒ s′j ∈ [[TR]](si)

• ACT = (℘fin(OL))n

• Let q = (s1, . . . , sn) ∈ Q and 1 ≤ a ≤ n. da(q) = Ra(sa) ⊆ ACT.

• Let q = (s1, . . . , sn) ∈ Q and v = (g1, . . . , gn) ∈ D(q) = R1(s1)× · · · ×
Rn(sn) where gi = (si

1, . . . , si
n). Then,

δ(q, v) = (
n⋃

i=1

si
1, . . . ,

n⋃
i=1

si
n)

• Let i ∈ [1, n]. Πi = {4iT,5iT : T ∈ ALT} 2

The set of actions available in a state, da(q), is the set described by a’s mech-
anism. π ′ extends the truth assignment of Θ to a truth assignment for all the
EL-formulae, in addition to the new rule formulae, relative to a state. The rule
formulae are also evaluated in a state, but relative to the mechanism. The se-
mantics of rule formulae is discussed in detail in the next section, but note that
knowing “at least” a rule for communication to an agent requires that the rule
can be used together with all other possibilities for communication with the
other agents. As discussed in Section 7.4, the set of possible decisions and the
choice in a strategy should not depend on the other agents’ states – incomplete
information. δ maps an action (si

1, . . . , si
n) for each agent i to a new tuple of

epistemic states (∪n
i=1si

1, . . . ,∪n
i=1si

n). In other words, that agent i uses action
(si

1, . . . , si
n) means that he “sends” si

j to each agent j – including himself – and

thereby forces the new epistemic state of j to be at or above si
j. Observable

propositions are exactly those which describe the agent’s epistemic states:



94 CHAPTER 7. LANGUAGE AND SEMANTICS

Lemma 7.1 If
−→
R π = (n, Q, Π, π ′, ACT, d, δ) is an induced concurrent game

structure, then (πa(s) = Πa ∩ π ′(s)):

πa(s1, . . . , sn) = πa(s′1, . . . , s′n)⇔ sa = s′a 2

PROOF If πa(s1, . . . , sn) = πa(s′1, . . . , s′n), let T ∈ ALT be such that [T] = sa.
4aT,5aT ∈ πa(s1, . . . , sn), so 4aT,5aT ∈ πa(s′1, . . . , s′n) and thus s′a = [T] =
sa. The other direction follows directly from the definition.

It is easy to see that Def. 7.11 is proper:

Lemma 7.2 If R is a mechanism, then
−→
R π is a concurrent game structure with

incomplete information. 2

PROOF It is easy to see from the definition that
−→
R π is a concurrent game struc-

ture. Let πa(q) = πa(q′). For incomplete information, it must be the case
that da(q) = da(q′), i.e. that Ra(sa) = Ra(s′a) where q = (s1, . . . , sn) and
q′ = (s′1, . . . , s′n), which follows directly from Lemma 7.1.

Since the induced concurrent game structure is defined with incomplete infor-
mation, the notion of a strategy will be restricted accordingly (see Sec. 7.4.2).

A computation λ in the induced concurrent game structure is a sequence of
states where for every j ≥ 0 λ[ j + 1] = (∪n

i=1si
1, . . . ,∪n

i=1si
n) where (si

1, . . . , si
n) ∈

Ri(λ[ j]i) for all i ∈ [1, n], where λ[ j]i is the jth component of λ[ j]. A computa-
tion in

−→
R π is called a R-computation.

The notion of truth for the different parts of the language is discussed in
further details in the following section.

7.6 Satisfiability

TEL can be seen as an ATL language over the set of propositions Π defined in
the construction of the induced concurrent game structure in the previous sec-
tion, and satisfiability of a formula in a mechanism can thus be defined as sat-
isfiability of the formula in the induced concurrent game structure, as defined
in Section 2.3.2. Note that the game structure has incomplete information, and
that we also restrict the strategies further by not allowing perfect recall.

The logic, in a broad use of the concept, over the language TEL defined by
the satisfiability definition below is called DSEL — Dynamic Syntactic Epistemic
Logic.

Definition 7.12 (Satisfiability of TEL) A formulaφ ∈ TEL is satisfied by a mech-
anism R and a KSS M = (s1, . . . , sn, π) ∈ Mfin written

R, M |= φ

iff −→
R π , (s1, . . . , sn) |= φ

without perfect recall. 2
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As usual,
R |= φ

means that R, M |= φ for all M. For brevity, a tuple (s1, . . . , sn) will sometimes
be written~s. In addition, the jth component of a tuple will sometimes be ref-
erenced by using j as a superscript. For example, if λ is a computation then
λ[k] j = s j where λ[k] = (s1, . . . , sn) ∈ (℘fin(OL))n.

The reason for using the induced concurrent game structure without perfect
recall is, as discussed in Section 7.4, that we want all the agents’ knowledge to
be encoded in their epistemic states.

In the definition of satisfiability of TEL strategies are restricted by incom-
plete information and non-perfect recall. A strategy is a function fi : Q+ →
ACT with fi(q0, . . . , qm) ∈ di(qm) and fi(q0, . . . , qm) = fi(q′0, . . . , q′m) when-
ever πi(qm) = πi(q′m) which is exactly when i has the same state in qm and q′m
(Lemma 7.1). A strategy can thus be written as a function

fi : ℘fin(OL)→ (℘fin(OL))n

having fi(s) ∈ Ri(s). Henceforth we will use this shorthand definition of a
strategy. Strategies are defined for a particular concurrent game structure. This
will sometimes be made explicit by using the notation Str(G, R) for the set of
strategies for agents G in

−→
R π (arbitrary π , strategies do not depend on π);

Str(G) is used when no confusion can occur.
Similarly, the function out is also defined for a particular structure. Let G

be a set of agents, R = (R1, . . . , Rn) a mechanism, ~s ∈ (℘fin(OL))n, and ~fG ∈
Str(G, R). The explicit notation outR(~fG ,~s), will sometimes be used6. It is easy
to see (see Section 2.3.1) that λ ∈ out(~fG ,~s) iff

1. λ[0] =~s

2. ∀ j≥0λ[ j + 1] = (∪n
i=1si

1, . . . ,∪n
i=1si

n) where

• For all i ∈ [1, n]: (si
1, . . . , si

n) ∈ Ri(λ[ j]i)

• For all i ∈ G: (si
1, . . . , si

n) = fi(λ[ j]i)

Note the special situation when G = ∅: Str(∅, R) = ~f∅ (the unique empty
strategy vector), out(~f∅,~s) is the set of all computations λ with λ[0] = ~s, and
R, (~s, π) |= 〈〈∅〉〉2φ implies that R, (λ[k], π) |= φ for any k and any R-computations
λ with λ[0] =~s. Also, R |= φ⇒ R |= 〈〈∅〉〉2φ.

The induced concurrent game structure provides semantics for EL formu-
lae and for formulae starting with the new rule operators via π ′; the latter is
discussed in further details in the following subsection. For formulae starting
with the new temporal operators, the semantics are defined for the correspond-
ing ATL formulae in terms of strategies and computations.

An example is presented after discussions about the relation between mech-
anisms and rules, and between rules and temporal properties.

6In the definition of satisfiability of ATL formulae in a concurrent game structure (Section 2.3.2)
the notation Str(G) and out(q, ~f ) is used without explicit reference to the structure. Of course, for
satisfiability in an induced concurrent game structure

−→
R π , Str(G) = Str(G, R) and out(q, ~f ) =

outR(q, ~f ).
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7.6.1 Mechanisms and Rules

Rules, together with the rule operators, express properties of a mechanism.
Such properties are investigated in this section.

As already mentioned, the expressions for knowing (at least or at most)
a set of formulae and knowing (at least or at most) a set of rules are quite
similar. The two concepts they denote, however, are fundamentally different.
Knowing a set of formulae is a syntactic notion, while knowing a set of rules is a
semantic notion. The former is defined as membership in the agent’s (syntactic)
epistemic state, while the latter is defined as a property of the mechanism. An
agent does not have a syntactic representation of rules; it only has a syntactic
representation of formulae together with a mechanism for manipulating them.
Consider first rules used for reasoning (as opposed to communication). “Agent
j knows at least Modus Ponens” can be expressed by the formula

φ1 =
;

4 j j{
t t {a, a→ b}

t t {a, a→ b, b}}

If this formula is true and p → q, p is in j’s epistemic state s j, then j’s mech-
anism can assign a new epistemic state to j which is s j extended with q (s j ∪
{q} ∈ R j(s j) j) (see Example 7.1 on p. 88). Moreover, the mechanism can assign
this state to the agent independently of the states it assigns to other agents. Note
that the assigned state is not necessarily the new epistemic state; the latter can
also be influenced by communication as will be discussed below. A slightly
different version ofφ1 is:

φ2 =
;

4 j j{
t t {a, a→ b}

t t {b} }

(again, see Example 7.1). With the new rule, j’s mechanism can still produce
the state s j ∪ {q} – but it can also produce e.g. (s j \ {p})∪ {q}. In other words,
the agent may forget one of the modus ponens premises, both of them, or none
of them.

An agent will in the general case know infinitely many rules. For example,
he will know every rule with an antecedent which does not match the agent’s
epistemic state. Also, knowing a rule may imply knowing several more specific
rules. For example,

|= φ2 → φ1

(where φ1 and φ2 are as defined above). That is, if a mechanism can do all the
things expressed by φ2 in a certain epistemic state, it can also do all the things
expressed byφ1 in the same state.

Rules used for communication work in exactly the same way: agent i know-
ing the rule “if I know the formula p then I can tell it to agent j” is expressed
as

φ3 =
;

4i j{
t t {p}
{p} }

This rule requires that i’s mechanism can assign the partial state {p} to agent
j. Although there is no significant semantical difference between knowing a
rule for reasoning and knowing a rule for communication, the use of them will
typically be different. Rules for reasoning will typically be monotone; the conse-
quent will preserve (parts of) the antecedent. Monotonicity is discussed below.
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A rule such as the one inφ3 will make more sense as a rule for communication
than for reasoning, while the reasoning rules in φ1 and φ2 will not be typi-
cal communication rules. The rule in φ3 used as a reasoning rule would loose
all information except p; the rules in φ1 and φ2 used as communication rules
would send the entire epistemic state to the other agent. If an agent knows
rules for both reasoning and for communication, the mechanism must be able
to produce all combinations of the rule applications (more on this below).

Knowing at least a rule means to be able to use the rule in all possible
“ways”. Knowing at most a rule means that everything that can be done with
the mechanism is an application of the rule (but it is not necessary that all ap-
plications of the rule can be used). For example, the formula

φ4 =
;

5i j{
t

4i{a}
}

means that agent i can only communicate facts on the form “I know that α”,
where α is a formula in i’s epistemic state, to agent j. Of course, the argument
to both types of rule operators is a term, so the following is well formed:

φ5 =
;

5i j{
t

4i{a}
,

t
5iu
}

expressing the fact that i can only tell j “I know that α” or “I know at most
X”, where α/X is a formula/finite set of formulae in i’s epistemic state. Note
that5i jTR with a non-singular rule term TR, as inφ5, means that all that i can
communicate to j is described by the “union” of all the rules in the rule term.

As for the epistemic operators, a derived rule operator is defined:

;

♦i jTR ≡
;

4i jT
R ∧

;

5i jT
R

Note that
;

♦i jTR does not necessarily mean that i knows only the rules TR.
For example, as discussed above,

|=
;

♦ j j{
t t {a, a→ b}

t t {b} } → φ1

(whereφ1 is as defined above).
The following Lemma states some results about the relation between know-

ing rules and having a mechanism.

Lemma 7.3 Let R = (R1, . . . , Rn) be a mechanism, M = (s1, . . . , sn, π) ∈ Mfin

and TR, TR
1 , . . . , TR

n ∈ TRLT.

1. (R, M |=
;

4i jTR)⇒ [[TR]](si) ⊆ Ri(si) j.

2. (R, M |=
;

5i jTR)⇔ Ri(si) j ⊆ [[TR]](si).

3. (R, M |=
;

♦i jTR)⇒ Ri(si) j = [[TR]](si).

4. (R, M |= ∧
j∈[1,n]

;

♦i jTR
j )⇔ Ri(si) = [[TR

1 ]](si)× · · · × [[TR
n ]](si).
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5. If Ri(si) = X1 × · · · × Xn where X j = [[TR]](si) then R, M |=
;

♦i jTR 2

PROOF

1. Let R, M |=
;

4i jTR, and let s′ ∈ [[TR]](si). Since Ri(si) 6= ∅ (by definition),
there is an element (s′1, . . . , s′n) ∈ Ri(si). By the definition of satisfiability

of
;

4i jTR, there must be a (s′′1 , . . . , s′′n) ∈ Ri(si) such that s′′j = s′. Thus,

s′ ∈ Ri(si) j.

2. Follows immediately from the definition of satisfiability of
;

5i jTR.

3. Follows immediately from 1. and 2.

4. ⇒) Let R, M |= ∧
j∈[1,n]

;

♦i jTR
j .

⊆) Let (s′1, . . . , s′n) ∈ Ri(si). By 2. for each j, s′j ∈ [[TR
j ]](si).

⊇) Let (s′1, . . . , s′n) ∈ [[TR
1 ]](si)× · · · × [[TR

n ]](si). By definition, there

is a (s′′1 , . . . , s′′n) ∈ Ri(si). By the definition of sat. of
;

4i j,
(s′1, s′′2 , . . . , s′′n) ∈ Ri(si), and so on, and (s′1, . . . , s′n) ∈ Ri(si) (by
repeating the argument n times).

⇐) Let Ri(si) = [[TR
1 ]](si) × · · · × [[TR

n ]](si), and let j ∈ [1, n]. If s′ ∈
[[TR

j ]](si) and (s′1, . . . , s′n) ∈ Ri(si), then also (s′1, . . . , s′n) with s′j re-

placed by s′must be in Ri(si). Thus, R, M |=
;

4i jTR
j for any j. For ev-

ery (s′1, . . . , s′n) ∈ Ri(si), s′j ∈ [[TR
j ]](si) for every j, so R, M |=

;

5i jTR
j

for any j.

5. Follows immediately from the definition of satisfiability of
;

4i jTR and
;

5i jTR.

Lemma 7.3 shows that if agents are described with
;

4/
;

5, we can deter-
mine a minimal/maximal mechanism satisfying the description — provided
that it exists. Particularly, lemma 7.3.4 shows that certain mechanisms can be
completely described by sets of rules. Mechanisms are more general than rules:
knowing exactly a set of rules corresponds to having a certain mechanism, but
having a certain mechanism does not necessarily correspond to knowing a set
of rules. Mechanisms are more general because they allow a state to map to
any set of tuples, while in a mechanism completely described by a set of rules a
state must map to a specific Cartesian product (Lemma 7.3.4). A consequence
of this is a restriction in the expressiveness of the language: we can express ex-
actly the possibilities an agent has to communicate to another agent in a certain
state, but we cannot express restrictions on the relation between what an agent
sends to one agent and to another agent. For example, if agent i knows one
rule for communicating to agent j and another for communicating to agent k,
the agent will necessarily have the ability to use the two rules simultaneously.

Note that the other direction of Lemma 7.3.1 does not hold, and thus neither
does point 3 of the same Lemma. As a counter example, consider a case where
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n = 2, Θ = {p, q}, s1 = {p}, TR = { p
q } and R1(s1) = {({p}, {q}), ({q}, {p})}.

[[TR]](s1) = {{q}} ⊆ R1(s1)2 = {{q}, {p}}, but R, M 6|=
;

412TR because {q} ∈
[[TR]](s1) and ({q}, {p}) ∈ R1(s1) but ({q}, {q}) 6∈ R1(s1).

Of course, not all sets of rules can be used to describe mechanisms. Those
which can are called complete.

Definition 7.13 (Complete rules) A rule term TR is complete iff for all s ∈
℘fin(OL), [[TR]](s) 6= ∅. 2

Lemma 7.4 Let TR
1 , . . . , TR

n ∈ TRLT and i ∈ [1, n]. TR
1 , . . . , TR

n are complete iff
there exists a mechanism R such that

R |=
∧

j∈[1,n]

;

♦i jTR
j

2

PROOF Let TR
1 , . . . , TR

n be complete and let R = (R1, . . . , Rn) be such that
for any s ∈ ℘fin(OL), Ri(s) = [[TR

1 ]](s) × · · · × [[TR
n ]](s) and R j(s), j 6= i, is

arbitrary but non-empty. Since [[TR
j ]](s) are non-empty for each j, Ri(s) is

also non-empty and thus R is a mechanism. For any M = (s1, . . . , sn, π),

R, M |= ∧
j∈[1,n]

;

♦i jTR
j by Lemma 7.3.4. The other direction follows by the

same Lemma; since Ri(s) = [[TR
1 ]](s)× · · · × [[TR

n ]](s) for any s and Ri(s) 6= ∅,
[[TR

j ]](s) 6= ∅ for any s.

Intuitively, a rule can be used in several different ways, depending on the
rule and the current epistemic state. Deterministic rules can always be used in
only one way.

Definition 7.14 (Deterministic rules) A rule term TR ∈ TRLT is deterministic
iff [[TR]](s) is singular for every s. 2

The following example illustrates the use of rules.

Example 7.2 The formula in the example in Section 7.2.3 is valid:

|= (41{p} ∧42{p→ q}

∧ 〈〈∅〉〉2
(

;

412{
t t {a}
{a} } ∧

;

422{
t t {a, a→ b}

t t {a, a→ b, b}} ∧
;

422{
t
t
}
)

)

→ 〈〈{1, 2}〉〉F 42 {q}

Let n = 2, R = (R1, R2) be a mechanism and M = (s1, s2, π) ∈ Mfin, and let

R, M |= 41{p} ∧42{p→ q}

∧ 〈〈∅〉〉2
(

;

412{
t t {a}
{a} } ∧

;

422{
t t {a, a→ b}

t t {a, a→ b, b}} ∧
;

422{
t
t
}
)

Since R, M |= 41{p} ∧42{p→ q}, p ∈ s1 and p→ q ∈ s2. Note that

R, M |=
;

412{
t t {a}
{a} } ∧

;

422{
t t {a, a→ b}

t t {a, a→ b, b}} ∧
;

422{
t
t
}
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Let f1 : ℘fin(OL)→ (℘fin(OL))2 be such that for any s, f1(s) ∈ R1(s), where

f1(s1) = (s1
1, {p})

where s1
1 is arbitrary. If s 6= s1 then f1(s) ∈ R1(s) is arbitrary (R1(s) 6= ∅ for all

s). Since R, M |=
;

412{
tt{a}
{a} }, [[

tt{a}
{a} ]](s1) = {{α} : α ∈ s1} ⊆ R1(s1)2 (Lemma

7.3.1) and since R, M |= 41{p}, {p} ∈ R1(s1)2. Thus, f1 is well defined.
Let f2 : ℘fin(OL)→ (℘fin(OL))2 be such that for any s, f2(s) ∈ R2(s), where

f2(s2) = (s2
1, s2)

f2(s2 ∪ {p}) = (s′1, s2 ∪ {p})

where s2
1 and s′1 are arbitrary. If s 6= s2 and s 6= s2 ∪ {p} then f2(s) ∈ R2(s) is

arbitrary (R2(s) 6= ∅ for all s). Since R, M |=
;

422{ t
t}, [[ t

t ]](s2) = {s2} ⊆ R j(s2)2

(Lemma 7.3.1), so f2(s) is well defined when s = s2.
Let λ be such that λ[0] = (s1, s2) and λ[1] = (s1

1 ∪ s2
1, {p} ∪ s2). Since

(s1
1, {p}) ∈ R1(s1) and (s2

1, s2) ∈ R2(s2), λ is an R-computation. Since7

R, M |= 〈〈∅〉〉2
;

422 {
tt{a,a→b}

tt{a,a→b,b}}, R, (λ[1], π) |=
;

422{
tt{a,a→b}

tt{a,a→b,b}}. Thus,

[[ tt{a,a→b}
tt{a,a→b,b} ]]({p} ∪ s2) = {{p} ∪ s2 ∪ {β} : α,α → β ∈ {p} ∪ s2} ⊆ R2({p} ∪

s2)2 (see Example 7.1 on p. 88). Since p → q ∈ s2, s2 ∪ {p, q} ∈ R2({p} ∪ s2)2,
so f j(s) is also well defined when s = s2 ∪ {p}.

Since these functions are well defined, ~f{1,2} ∈ Str({1, 2}, R) by definition.
Let λ be as described above with λ[2] = ( f1(λ[1]1)1 ∪ f2(λ[1]2)1, f1(λ[1]1)2 ∪
f2(λ[1]2)2). Clearly, λ ∈ outR((s1, s2), ~f{1,2}) and q ∈ f2(λ[1]2)2, so

R, M |= 〈〈{1, 2}〉〉F 42 {q} 2

In Chapter 8, a more involved example is presented.

Monotonicity

Mechanisms are quite general; there are no restrictions on the possible new
epistemic states. For example, a new state is not required to be an extension of
the current state – an agent can forget. The formula

;

4ii{
t t {a}

t
}

describes an agent who may forget a single formula between the current and
the next state. A common use of “forgetting” formulae is belief revision.

Often there is a need to model agents with monotone knowledge; i.e. agents
with mechanisms which always extend the current state.

Definition 7.15 (Monotone Mechanism) If R = (R1, . . . , Rn) is a mechanism,
then Ri is monotone iff for all s ∈ ℘fin(OL):

s′ ∈ Ri(s)i ⇒ s ⊆ s′

If Ri is monotone, R is i-monotone. R is monotone iff it is i-monotone for
each i ∈ [1, n]. 2

7See a brief discussion on page 95.
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We can axiomatize monotone mechanisms in the following way.

Lemma 7.5 Let R be a mechanism and t, u ∈ VT .

R |=
;

5ii{
t

t t u
} ⇔ R is i-monotone (7.1)

2

PROOF By Lemma 7.3.2 the left side of (7.1) holds iff Ri(s)i ⊆ [[TR]](s) for
every s ∈ ℘fin(OL), so it suffices to assume that s′ ∈ Ri(s)i and show that
s ⊆ s′ ⇔ s′ ∈ [[TR]](s). s′ ∈ [[TR]](s) ⇔ ∃Ω∈Substs = [tΩ] and s′ = [(t t u)Ω] =
[tΩ] ∪ [uΩ]⇔ ∃T∈ALT ,U∈ALT s = [T] and s′ = [T] ∪ [U] iff s ⊆ s′.

The consequence for computations is obvious:

Lemma 7.6 If R is i-monotone and λ is a computation in R, then λ[k]i ⊆ λ[k +
1]i for all k ≥ 0. 2

PROOF Follows directly from the definition of a computation (see p. 94) and
of monotonicity.

Example 7.3 Another version of the formula from Example 7.2 (p. 99) is:

(41{p} ∧42{p→ q}

∧ 〈〈∅〉〉2
(

;

412{
t t {a}
{a} } ∧

;

422{
t t {a, a→ b}

t t {b} } ∧
;

522{
t

t t u
}
)

)

→ 〈〈{1, 2}〉〉F 42 {q}

The difference is that in the first version, it is required that agent 2 can do mono-
tone reasoning – more precisely either monotone modus ponens or recall of
current state without new inferences. In the current version, it is required that
agent 2 must do monotone reasoning. Thus, the modus ponens rule in the
current version need not specify explicitly that the two arguments in the an-
tecedent must be remembered – but they will always be remembered also in
this example.

It is easy to see that also the current version is valid. 2

Rules which imply monotonicity are called monotone rules:

Definition 7.16 (Monotone Rules) A rule term TR ∈ TRLT is monotone iff

|=
;

5iiT
R →

;

5ii{
t

t t u
}

2

The following lemma follows directly.

Lemma 7.7 If R |=
;

5iiTR and TR is monotone, then R is i-monotone. 2

In particular, if TR
1 , . . . , TR

n are complete and monotone, there exists an i-monotone

mechanism R such that R |= ∧ j∈[1,n]
;

♦i jTR
j .

A common pattern of specifying monotone rules is

t t T
t t T t S
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for some T, S, illustrated e.g. by the modus ponens rule in Example 7.2 on p.
99. The following is defined as a shorthand notation for this pattern:

T
S
≡ t t T

t t T t S

The type of monotonicity discussed above is monotonicity of knowledge. It
is also possible to talk about monotonicity of rules. Consider an agent with
monotone knowledge. If the agent can use a rule R in state s, it is not neces-
sarily the case that he can use the same rule in the same way in a state s′ ⊇ s
even if he knows the rule in both states. The reason is that the antecedents of
rules match complete epistemic states. Typically, we want to use rule-monotone
rules to model mechanisms — rules which can be used in the same way in an
extension of a state. A possible definition of rule-monotonicity of a rule term
TR ∈ TRLT, is that each rule TA

TC is on the form

t t T
(t uV) tU

where t does not occur in T, U or V. According to this definition, a monotone
rule can be used in the “same” way in an extended state – the only additional
formulae in the consequent is formulae already in the extended state. It is easy
to see that if TR is a rule-monotone term, according to the mentioned definition,
then s ⊆ r and s′ ∈ [[TR]](s) implies that there is a r′ ∈ [[TR]](r) such that s′ ⊆ r′.
Monotonicity of rules will not be discussed further here.

7.6.2 Rules and Temporal Properties

Like rules, formulae with temporal connectives can express facts about the
mechanism.

A TEL formula is a statement about a particular state; the contents of the
state (expressed with EL formulae) and/or how that state relates to other states
(expressed with rule- or temporal connectives). For example, we use41{p} to
say that agent 1 knows p now. We can use 〈〈1〉〉241 {p} to say that agent 1 can
ensure that he will always know p. If we want to say that agent 1 always will

know p, we must use 〈〈∅〉〉241 {p}. The same is the case for rules.
;

4i jTR only
means that agent i knows the rules TR now. Although an agent’s mechanism is
fixed, an agent may know different rules in different states. For example, there
are rules TR such that

6|=
;

4i jT
R → 〈〈{i}〉〉©

;

4i jT
R

If we want to say that an agent will know a rule always in the future, we must

use an expression like the one for knowledge: 〈〈∅〉〉2
;

4i j TR. The formula in
Example 7.2 (p. 99) expresses that the agents know certain formulae in the
current state, and that they know certain rules and will remember them in the
future.

There is, however, a circumstance in which an agent implicitly will know
in a future state a rule it knows in the current state: if the future epistemic state
is equal to the current epistemic state for the agent. From the agent’s point of
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view, the world is the same in the two states – he cannot discern between the
current state and the future state. Being at the same point in the lattice, by the
definition of a mechanism (as relation on epistemic states), he must thus be
able to do exactly the same actions. Formally, let 1 ≤ i ≤ n:

Lemma 7.8

|= ♦iT → (
∧

1≤ j≤n

;

♦i jTR
j ↔ 〈〈∅〉〉2(♦iT →

∧
1≤ j≤n

;

♦i jTR
j ))

2

PROOF Let R = (R1, . . . , Rn) and M = (s1, . . . , sn, π). If R, M |= ♦iT ∧
∧1≤ j≤n

;

♦i jTR
j then si = [T] and Ri([T]) = [[TR

1 ]]([T])× · · · × [[TR
n ]]([T]) (Lemma

7.3.4). If λ is a computation and R, (λ[k], π) |= ♦iT, then also R, (λ[k], π)) |=
∧1≤ j≤n

;

♦i jTR
j . The other direction (to the left) of the double implication is (also)

trivial.

Lemma 7.8 is a syntactic statement about incomplete information, as defined
semantically in Def. 7.9 on p. 91 (see also the introduction in Section 7.4). It is
discussed further in Section 9.4.

The rule formula
;

4i jTR is a statement about agent i’s capability to enforce
certain properties of the next state of the system — an informal description also

often stated about an ATL formula such as 〈〈{i}〉〉 ©φ. For example,
;

4i j{
p
q }

and4i{p} → 〈〈{i}〉〉©4 j{q}may seem to express the same thing. However,
they are not equivalent. One direction holds:

|=
;

4i j{
p
q
} → (4i{p} → 〈〈{i}〉〉©4 j{q})

but not the other:

6|=
;

4i j{
p
q
} ← (4i{p} → 〈〈{i}〉〉©4 j{q})

The reason for this is that
;

4i j{
p
q } is indeed a statement about i’s mechanism,

while 〈〈{i}〉〉©4 j{q} is not necessarily. For example, it may be the case that

R, M |= 〈〈∅〉〉©4 j{q}

which implies that R, M |= 〈〈{i}〉〉©4 j{q}, because some other agent’s mech-
anism always sends q to j. In other words, rule connectives express something
about an agent’s mechanism and therefore about possible future states, while
temporal connectives express something about future states without regards to
how these states come about. This point is discussed further in a comparison
with ATEL in Section 9.4. The following holds:

|= (4i{p} → (〈〈{i}〉〉©4 j{q} ∧ ¬〈〈∅〉〉©4 j{q}))→
;

4i j{
p
q
}

but now the opposite direction does not hold:

6|= (4i{p} → (〈〈{i}〉〉©4 j{q} ∧ ¬〈〈∅〉〉©4 j{q}))←
;

4i j{
p
q
}
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Another important way in which rules are more general than temporal for-
mulae is that due to the use of variables, an infinite number of temporal for-
mulae may be needed to express the equivalent of a single rule. For example,
monotonicity can be expressed with the following schema:

4iT → 〈〈∅〉〉24i T

Of course, rule- and temporal formulae may together be inconsistent. For
example,

|= ¬(4i{p} ∧
;

5ii{
t

t t u
} ∧ 〈〈{i}〉〉© ¬4i {p})

Communication

Semantically, communication is defined via the definition of the new epistemic
state of an agent as the union of all the agents’ choices for that agent. Here, we
look at some syntactic expressions of the properties of communication.

One property of communication is that an agent cannot force another agent
to forget something, since he can only add to the next epistemic state of the other
agent. Of course, that agent i cannot force j to forget p only makes sense if j
can remember p in the first place. This property can be expressed as

〈〈{ j}〉〉©4 j{p} → [[{i}]]©4 j{p}

(the dual path quantifier [[A]] is defined in Section 2.3.2). Forgetting means here
not only not remembering the formulae from the current epistemic state, but
also not remembering communication from other agents between the current
and the next state. The property above is an instance of the following Lemma
7.9.1.

Lemma 7.9

1. When i 6∈ Γ :
|= 〈〈Γ 〉〉©4 jT → [[{i}]]©4 jT

2. When Γ ∩ Γ ′ = ∅:

(〈〈Γ 〉〉©4 jT ∧ 〈〈Γ ′〉〉©4 jT′)→ 〈〈Γ ∪ Γ ′〉〉©4 j(T t T′) 2

PROOF

1. If R, (s1, . . . , sn, π) |= 〈〈Γ 〉〉©4 jT, then for eachα ∈ [T] there is a kα ∈ Γ

such that α ∈ dkα (skα ). If R, (s1, . . . , sn, π) |= 〈〈{i}〉〉 © ¬4 j T, there is
a strategy fi for i such that the next epistemic state of j does not include
[T] no matter what the other agents do. But each kα can choose dkα (skα ),
so R, (s1, . . . , sn, π) |= ¬〈〈{i}〉〉© ¬4 j T.

2. Obvious: agents in Γ can use the strategy they can use to enforce that j
knows at least [T] and agents in Γ ′ can use the strategy they can use to
enforce that j knows at least [T′].
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7.7 No Communication

In the special case of agents who only reasons but do not communicate, the
framework can be simplified.

A mechanism R = (R1, . . . , Rn) is without communication iff

Ri(s) j = {∅}

for all i 6= j, s.
Since R is completely determined by Ri(s)i, for all i and s, we can abuse

notation and write si ∈ Ri(s) for a tuple (∅, . . . , si , . . . , ∅) ∈ Ri(s). Similarly for
strategies; we write fi(s) = s1 as a shorthand for fi(s) = (∅, . . . , si , . . . , ∅). The
transition function is also simplified; δ(q, (s1, . . . , sn)) = (s1, . . . , sn).

The satisfaction relation restricted to mechanisms with no communication
is denoted |=nc.

Clearly, if R is a mechanism without communication, then the induced con-
current game structure is Moore synchronous (see sec. 2.3.3)8.

Mechanisms with no communication are illustrated in the example in the
next section.

7.7.1 Example: Three Wise Men

The Three Wise Men puzzle is a well known example of reasoning about knowl-
edge in multi-agent systems.9

In this Section, a selected aspect of this puzzle is modeled in order to demon-
strate reasoning with rules in DSEL. First, the problem is reviewed.

Example 7.4 (Three Wise Men) A certain king wishes to test his three wise
men. He arranges them in a circle so that they can see and hear each other
and tells them that he will put a white or black spot on each of their foreheads
but that at least one spot will be white. In fact all three spots are white. He then
repeatedly asks them, “Do you know the color of your spot?” What do they
answer? 2

SOLUTION All the three wise men answer “no” the first two times, and “yes”
the third. Each wise man reasons as follows. Right after the first question, he
perceives the color of the spots on the two other men, but this is not enough
to deduce the color of his own spot so he answers “no”. Then he hears the
answers from the two other wise men. When the second man answers “no”,
the first man knows that at least one of his own and the third man’s spot must
be white or else the second man would have answered “yes” since it is com-
mon knowledge that at least one spot is white. Similarly, from the third man’s
answer, the first man gains the information that his own or the second man’s
spot (or both) must be white. This is still not enough information to deduce his

8In addition, the intention of the first condition on turn-based structures with incomplete infor-
mation, i.e. that a player can only affect his observable propositions, holds, as mentioned in the
introduction to Sec. 7.4.

9This problem belongs to a class of similar puzzles from the folklore, including The Muddy
Children Puzzle, The Cheating Wives Puzzle and Conway’s Paradox, among others. The version given
here is from McCarthy (1978), one of the first appearances of the problem in the computer science
literature.
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own color, so he answers “no” to the second question too. The first man knows
that the second man reasons exactly as he does, thus he now knows that the
second man knows that either the first or the second man (or both) has a white
spot. When the second man answers “no” to the second question, the first man
knows that his own color must be white since otherwise the second man would
have answered “yes”. The first wise man therefore answers “yes” to the third
question.

The selected, in order to focus on reasoning rather than communication,
aspect of the solution modeled below is the reasoning of the first wise man
immediately after the second question is answered by all the wise men.

Axiomatization

The situation is modeled by three agents representing the wise men, and three
primitive propositions p1, p2, p3 where pi means that agent i has a white spot.

In Figure 7.3 a rule term is presented. It includes rules for doing proposi-
tional reasoning, and for reasoning about other agents’ reasoning. These rules
have been selected in order to demonstrate meaningful reasoning in this small
example.

In addition to giving agents rules, initial knowledge and knowledge ob-
tained through observation must be defined. This includes facts such as

¬p1 → 42{¬p1}

(agent 2 can observe agent 1), but also nested knowledge such as

43{¬p1 → 42{¬p1}}

(agent 3 knows the previous fact). Usually, this type of knowledge is mod-
eled as common knowledge. Since the concept of common knowledge entails
partial logical omniscience, nested knowledge is here modeled explicitly.

The situation being modeled here is the situation immediately after the sec-
ond question is answered. Then, agent 1 knows that

• agent 2 does not know p2, from observing agent 2’s answer to the second
question

• agent 2 knows that 3 does not know p3, from observing that agent 2 ob-
served agent 3’s answer to the first question

These observations are collected in Figure 7.4, which presents a term T repre-
senting the initial knowledge of an agent (for brevity, only observations needed
in the following proof is included).

It is assumed that the agents do not communicate in this part of the puz-
zle, therefore they will be modeled by mechanisms without communication as
presented above.

A Result

I show that with the given rules and initial knowledge, agent 1 can deduce the
colour of his own spot, i.e. that:

|=nc (♦1T ∧
;

♦11TR)→ 〈〈1〉〉F 41 {p1} (7.2)
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TR =

{
{a, a→ b}
{b}

}
(MP)

t
{

{4 j{a→ b}}
{4 j{a} → 4 j{b}}

: j ∈ [1, 3]

}
(Distr2)

t
{

{4 j{4k{a→ (b→ c)}}}
4 j{4k{a} → (4k{b} → 4k{c})}}

: k, j ∈ [1, 3]

}
(Distr3)

t
{
{a→ b, b→ c}
{a→ c}

}
(Trans)

t
{
{4 j{a→ b},4 j{b→ c}}

{4 j{a→ c}} : j ∈ [1, 3]

}
(Trans2)

t
{
{¬a→ b}
{¬b→ a}

}
(Prop1)

t
{
{4 j{a→ (b→ c)}}
{4 j{b→ (a→ c)}} : j ∈ [1, 3]

}
(Prop2)

t
{
{4 j{c→ (¬b→ a)}}
{4 j{c→ (¬a→ b)}} : j ∈ [1, 3]

}
(Prop3)

t
{

{4 j{4k{a ∨ b ∨ c}}}
{4 j{4k{¬a→ (¬b→ c)}}} : k, j ∈ [1, 3]

}
(Prop4)

Figure 7.3: The rule term TR. Recall the underlined notation, as a shorthand
for monotone rules, introduced on p. 102.

T ={¬ph → 4g{¬ph} : g, h ∈ [1, 3], g 6= h} (Obs1)
t{4 j{¬ph → 4g{¬ph}} : j, g, h ∈ [1, 3], g 6= h} (Obs2)

t{4 j{4k{p1 ∨ p2 ∨ p3}} : k, j ∈ [1, 3]} (Obs3)

t{¬4 j {p j} : j ∈ [1, 3]} (Obs4)

t{4 j{¬4k {pk}} : k, j ∈ [1, 3]} (Obs5)

Figure 7.4: Initial knowledge: the term T
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Let R, (~s, π) |=nc (♦1T ∧
;

♦11TR). Let f1 : ℘fin(OL) → ℘fin(OL) be such
that f1(s) ∈ R1(s) for all s and f1(xi) = xi+1 for i ∈ [0, 13] where xi is defined
below (explanation follows):

x0 = [T] (1)
= x0∪{42{43{p1 ∨ p2 ∨ p3}}} Obs3 (2)

x1 = x0∪{42{43{¬p1 → (¬p2 → p3)}}} Prop4, (2) (3)
x2 = x1∪{42{43{¬p1} → (43{¬p2} → 43{p3})}}Distr3, (3) (4)

= x2∪{42{¬p1 → 43{¬p1}}} Obs2 (5)
x3 = x2∪{42{¬p1 → (43{¬p2} → 43{p3})}} Trans2, (4), (5) (6)
x4 = x3∪{42{43{¬p2} → (¬p1 → 43{p3})}} Prop2, (6) (7)

= x4∪{42{¬p2 → 43{¬p2}}} Obs2 (8)
x5 = x4∪{42{¬p2 → (¬p1 → 43{p3})}} Trans2, (7), (8) (9)
x6 = x5∪{42{¬p1 → (¬p2 → 43{p3})}} Prop2, (9) (10)
x7 = x6∪{42{¬p1 → (¬43 {p3} → p2)}} Prop3, (10) (11)
x8 = x7∪{42{¬43 {p3} → (¬p1 → p2)}} Prop2, (11) (12)
x9 = x8∪{42{¬43 {p3}} → 42{¬p1 → p2}} Distr2, (12) (13)

= x9∪{42{¬43 {p3}}} Obs5 (14)
x10 = x9∪{42{¬p1 → p2}} MP, (13), (14) (15)

x11 = x10∪{42{¬p1} → 42{p2}} Distr2, (15) (16)
= x11∪{¬p1 → 42{¬p1}} Obs1 (17)

x12 = x11∪{¬p1 → 42{p2}} Trans, (16), (17) (18)
x13 = x12∪{¬42 {p2} → p1} Prop1, (18) (19)

= x13∪{¬42 {p2}} Obs4 (20)
x14 = x13∪{p1} MP(19, 20) (21)

This list defines the sets x0, . . . , x14 through which agent 1 will step consecu-
tively in his reasoning. Some sets are listed more than once in order to present
several formulas within the set, with an explanation in the middle column. It
is easy to see that these sets are all different, so that f1 is well defined. It is
easy to see, by the explanation in the middle column, that f (xi) ∈ R1(xi) for
i ∈ [0, 13], since R1(xi)1 = [[TR]](xi). Thus, f1 ∈ Str({1}, R).

Let λ ∈ outR({ f1},~s). It is easy to see that since agent 1 uses the strategy f1
and since λ[0]1 = s1 = [T] = x0, λ[k]1 = xk for k ∈ [0, 14] and thus that

R, (λ[14], π) |=nc 41{p1}

Thus, (7.2) holds.



Chapter 8

Example: The Byzantine
Generals Problem

8.1 Introduction

The Byzantine Generals Problem (Lamport, Shostak, & Pease, 1982) is used to dis-
cuss properties of systems of communicating processors, some of which may
be faulty.

The problem is as follows. A commanding general and a group of n − 1
other generals are camped outside a city, and can only communicate via di-
rect and reliable messages. Some of the generals are traitors and the others are
called loyal generals, but no one knows who the traitors are or who the loyal
generals are. The commanding general sends a message to the other generals
which is either to attack or not to attack. The loyal generals must agree, possi-
bly after some communication, on a common plan: to attack or not to attack.
Thus, if the commanding general is loyal, all other loyal generals must obey
the message he sends. The traitors may try to confuse the other generals in or-
der to make them fail in finding a common plan. The problem is: is it possible
to equip the loyal generals with algorithms (or “protocols”) which ensure that
they will agree on a common plan no matter what the traitors do?

It is well known that the answer is “yes” if and only if more than two thirds
of the generals are loyal. The purpose of the case study in this chapter is to
illustrate some aspects of the logic DSEL defined in Chapter 7 such as expres-
siveness; the results which are shown are well known and the proofs of the re-
sults are partly adaptions of proofs from the literature to the DSEL framework.
“Partly”, because the DSEL framework requires a very detailed modeling of
reasoning and communication and several assumptions made implicit in other
higher level proofs must be made explicit in DSEL.

8.2 Axiomatization

“Agreeing on a common plan” by communication is called reaching interactive
consistency. Interactive consistency for a group G of loyal generals, IC(G), is
defined as follows.

109
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Let the generals be named Ags = {1, . . . , n} and let cg ∈ Ags be the com-
manding general.

Definition 8.1 (IC(G,α), IC(G)) Given a group of agents G and a formulaα ∈
AL, the formula IC(G,α) is the conjunction of the following formulae:

1.
∧

i∈G((4i{α} ∨4i{¬α}) ∧ ¬(4i{α} ∧4i{¬α}))

2.
∧

i, j∈G(4i{α} ↔ 4 j{α})

IC(G,4cg{attack}) is abbreviated IC(G). 2

IC(G) means that the loyal generals G have interactive consistency about the
commanding general’s decision. Here, having decided is modeled as having
deduced a formula. Knowing the formula 4cg{attack} means knowing that
the commanding general has decided to attack, knowing ¬4cg {attack}means
knowing that he has not decided to attack. The first part of IC(G) ensures
that all loyal generals have consistently decided whether to attack or not, the
second part that they have made the same decision. When the commanding
general is loyal, interactive consistency implies that every loyal general will
obey him.

In the following definition Γ describes the starting conditions. They in-
clude the fact that the commanding general knows what he has decided, so
that we can defined interactive consistency as shared knowledge of the for-
mula 4cg{attack} or ¬4cg {attack}. In addition, a few more assumptions are
made regarding the commanding general’s initial state. These are made in or-
der to simplify the proof; they are not strictly necessary and could be modeled
with reasoning steps, but the focus in this example is on communication.

Definition 8.2 (Γ) Let Γ be the conjunction of the following formulae:

1. ♦cg{4cg{attack},4cg{¬¬attack}} ∨ ♦cg{¬4cg {attack},4cg{¬attack}}

2.
∧

i 6=cg5i∅ 2

Γ states that the commanding general has decided, and that the other generals
(loyal or not) have empty epistemic states. The latter is required, since we
want to model a starting situation in which the generals have not exchanged
any information yet.

A formal description of the problem has many aspects, and one of them is
the type of communication allowed — i.e. which kinds of messages the agents
can send. First, a formulation without any restrictions on communication; such
restrictions will be discussed shortly.

The problem can be formulated as follows: does there exist complete, mono-
tone and deterministic rules Ti j for all i, j ∈ [1, n] such that for certain groups
of agents G,

|=

〈〈∅〉〉2 ∧
i∈G, j∈Ags

;

♦i jTi j

→ (Γ → 〈〈G〉〉F IC(G)) (8.1)

holds? In this formulation, G plays the role of the loyal agents, and there are
less than or equal to n− |G| traitors. The formula must be valid for all of the
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“certain groups” G. Informally: does there exist rules such that for any G (in
the “certain groups”), if the rules completely describe the mechanisms of the
agents in G, G can cooperate to achieve interactive consistency from the situa-
tion described by Γ no matter what the other agents do? The rules are required
to be:

• Complete: the rules should describe what the agents should do in any
situation.

• Monotone: we assume that agents remember; a not unreasonable as-
sumption about the power of the reasoning mechanisms.

• Deterministic: the rules must be deterministic in order to illustrate the
problem faithfully. The formula (8.1) is universally quantified over the
“certain groups”; it is required to hold for the same rules Ti j for different
G. This is crucial, because the generals should not be able to take different
actions based upon how many traitors there are or other facts which they
do not know — they should act based only on their epistemic states. The
problem is whether there is a protocol which describes what they should
do in each epistemic state, and such a protocol is modeled by (complete
and) deterministic rules1.

However, considering the nature of communication in DSEL the answer to
the problem as stated above is clearly “no”, since traitors can potentially “in-
sert” any formula into the epistemic states of the generals. Thus, a restriction
on the messages is needed. I model this restriction as oral messages.

8.2.1 Oral Messages

The concept of oral messages is as follows. First, every message that is sent
must be delivered correctly. This can be modelled by letting a message be a for-
mula α, and an agent i sends a message to j by choosing an action (s1, . . . , sn)
where s j = {α}. Second, the receiver of a message should know who sent it.
This can be modeled by restricting the communication part of the mechanisms
for all agents. Formally, let Oral(i, j) be the following rule term (explanation
follows):

Oral(i, j) = { t
4 j{¬¬4i {a}}

,
t

4 j{¬4i {a}}
,

t
∅}

The following is required to hold:

∧
i, j

;

5i jOral(i, j)

This restriction on messages may seem confusing, but it is just a way of encod-
ing the fact that “this is something I received from i” in j’s epistemic state, in
the available language. The use of the double negation is a technical device to
support this encoding. An agent i can only send messages which are formulae

1A consequence of determinism is that the notion of strategies for the agents G becomes unnec-
essary. In fact the operator 〈〈G〉〉 in eq. (8.1) can be written as 〈〈∅〉〉 since G have deterministic
mechanisms.



112 CHAPTER 8. EXAMPLE: THE BYZANTINE GENERALS PROBLEM

on the form 4 j{¬¬4i {α}} or 4 j{¬4i {α}}, where α is a formula (not nec-
essarily known by i) to agent j — or send nothing at all. Agent j can then inter-
pret the formulae as messages from i. The encoding ensures that messages will
not be confused with inferences in the model that will be constructed shortly.
This also allows the third assumption on oral messages to hold: the absence of
a message can be detected.

A rule term TR ∈ TRLT is oral iff

|=
;

5i jT
R →

;

5i jOral(i, j) (8.2)

Thus, the formulation of the problem with restrictions on the messages is
obtained by requiring that the Ti j be oral (for all i 6= j) in addition to being
complete, deterministic and monotone, and by also restricting the traitors to
oral messages:

|= 〈〈∅〉〉2

 ∧
i∈G, j∈Ags

;

♦i jTi j ∧
∧

i∈(Ags\G), j∈Ags

;

5i jOral(i, j)

→ (Γ → 〈〈G〉〉F IC(G))

In the next section, I show that the formula does not hold for all |G| ≥ b 2n
3 c,

while in Section 8.4 a related positive result is shown.

8.3 An Impossibility Result

The following is a statement of the impossibility result: it is not possible to
equip agents with rules so that even if at least two thirds of the agents are loyal
they are always guaranteed to be able to obtain interactive consistency. The
proof is an adaption of a proof by Pease, Shostak, & Lamport (1980).

Theorem 8.1 There does not exist a combination of complete and deterministic
rules Ti j for every agent i and j such that Tii is monotone for each i, Ti j is oral
for each i 6= j and for every G ⊆ Ags such that |G| ≥ b 2n

3 c

|= 〈〈∅〉〉2

 ∧
i∈G, j∈Ags

;

♦i jTi j ∧
∧

i∈(Ags\G), j∈Ags

;

5i jOral(i, j)

→ (Γ → 〈〈G〉〉F IC(G))

(8.3)
2

PROOF Assume the opposite, i.e. that there exist complete and deterministic
{Ti j : 1 ≤ i ≤ n, 1 ≤ j ≤ n} such that Tii is monotone for each i, Ti j oral for
i 6= j and (8.3) holds for every |G| ≥ b 2n

3 c.
Divide the n agents into three groups A, B and C such that A∪ B∪C = Ags,

cg ∈ C and |X| ≤ d n
3 e for each X ∈ {A, B, C}. It is easy to see2 that:

|A ∪ C| ≥
⌊

2n
3

⌋
|A ∪ B| ≥

⌊
2n
3

⌋
|B ∪ C| ≥

⌊
2n
3

⌋
I now construct a mechanism RAC which, informally speaking, is the least

restrictive mechanism (maximal model) in which the mechanisms of each agent

2Since n− d n
3 e = b 2n

3 c.



8.3. AN IMPOSSIBILITY RESULT 113

i ∈ A ∪ C is described by Ti j (for each j ∈ Ags) and the mechanisms of
the agents in B are only restricted to oral messages. Formally, let RAC =
(RAC

1 , . . . , RAC
n ) where

RAC
i (s) =

{
[[Ti1]](s)× · · · × [[T1n]](s) i ∈ A ∪ C
[[Oral(i, 1)]](s)× · · · × [[Oral(i, n)]](s) otherwise

RAC
i is a mechanism since each Ti j is complete and thus [[Ti j]](s) 6= ∅.

Similarly, I construct mechanisms RAB and RBC in which A ∪ B are de-
termined by Ti j and C are only restricted to oral messages, and B ∪ C deter-
mined by Ti j and A only restricted to oral messages, respectively. Let RAB =
(RAB

1 , . . . , RAB
n ) where

RAB
i (s) =

{
[[Ti1]](s)× · · · × [[T1n]](s) i ∈ A ∪ B
[[Oral(i, 1)]](s)× · · · × [[Oral(i, n)]](s) otherwise

Let RBC = (RBC
1 , . . . , RBC

n ) where

RBC
i (s) =

{
[[Ti1]](s)× · · · × [[T1n]](s) i ∈ B ∪ C
[[Oral(i, 1)]](s)× · · · × [[Oral(i, n)]](s) otherwise

Let i ∈ A ∪ C and 1 ≤ j ≤ n, and let ~s = (s1, . . . , sn) and π be arbitrary. By
Lemma 7.3.5

RAC , (~s, π) |=
;

♦i jTi j (~s, π , j arbitrary, i ∈ A ∪ C) (8.4)

Since, for each i ∈ A ∪ C, RAC |=
;

5iiTii and Tii is monotone, by Lemma 7.7

RAC
i is monotone when i ∈ A ∪ C (8.5)

It is easy to see that

RAC |=

 ∧
i∈A∪C, j∈Ags

;

♦i jTi j ∧
∧

i∈(Ags\(A∪C), j∈Ags

;

5i jOral(i, j)


And (see the brief discussion on page 95)

RAC |= 〈〈∅〉〉2

 ∧
i∈A∪C, j∈Ags

;

♦i jTi j ∧
∧

i∈(Ags\(A∪C), j∈Ags

;

5i jOral(i, j)

 (8.6)

Similarly for RAB and RBC:

RAB
i is monotone when i ∈ A ∪ B (8.7)

RBC
i is monotone when i ∈ B ∪ C (8.8)

RAB, (~s, π) |=
;

♦i jTi j (~s, π , j arbitrary, i ∈ A ∪ B) (8.9)

RBC , (~s, π) |=
;

♦i jTi j (~s, π , j arbitrary, i ∈ B ∪ C) (8.10)

RAB |= 〈〈∅〉〉2

 ∧
i∈A∪B, j∈Ags

;

♦i jTi j ∧
∧

i∈(Ags\(A∪B), j∈Ags

;

5i jOral(i, j)

 (8.11)

RBC |= 〈〈∅〉〉2

 ∧
i∈B∪C, j∈Ags

;

♦i jTi j ∧
∧

i∈(Ags\(B∪C), j∈Ags

;

5i jOral(i, j)

 (8.12)
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Note that the interpretation of the rule term Oral(i, j) does not depend on
the state (because nothing in the antecedent appears in the consequent of any
of the rules); I henceforth write [[Oral(i, j)]] for [[Oral(i, j)]](s). To see that the
fact that the Ti js are oral implies that

[[Ti1]](s)× · · · × [[Tin]](s) ⊆ [[Oral(i, 1)]]× · · · × [[Oral(i, n)]] (8.13)

for any s, let R be such that R1(s) = [[Ti1]](s)× · · · × [[Tin]](s) for all s. R, M |=∧
j∈[1,n]

;

5i jTi j for all M, so R, M |= ∧
j∈[1,n]

;

5i jOral(i, j) for all M by the def-
inition of oral rule terms. If (s′1, . . . , s′n) ∈ [[Ti1]](s) × · · · × [[Tin]](s) for some
s, then (s′1, . . . , s′n) ∈ Ri(s) and by Lemma 7.3.2 s′j ∈ [[Oral(i, j)]] since R, M |=
;

5i jOral(i, j) for some M with state s for i. Thus, (s′1, . . . , s′n) ∈ [[Oral(i, 1)]] ×
· · · × [[Oral(i, n)]] and (8.13) holds.

(8.13) implies that

RAC
i (s) ⊆ [[Oral(i, 1)]]× · · · × [[Oral(i, n)]] for all s and all i ∈ A ∪ C (8.14)

RAB
i (s) ⊆ [[Oral(i, 1)]]× · · · × [[Oral(i, n)]] for all s and all i ∈ A ∪ B (8.15)

RBC
i (s) ⊆ [[Oral(i, 1)]]× · · · × [[Oral(i, n)]] for all s and all i ∈ B ∪ C (8.16)

I now construct vectors of epistemic states. Let~sAC , sAB and~sBC be defined
by the following components:

sAC
i =

{
{4cg{attack},4cg{¬¬attack}} i = cg

∅ otherwise (8.17)

sAB
i =

{
{4cg{attack},4cg{¬¬attack}} i = cg

∅ otherwise (8.18)

sBC
i =

{
{¬4cg {attack},4cg{¬attack}} i = cg

∅ otherwise (8.19)

Clearly RAC , (~sAC , π) |= Γ , RAB, (~sAB, π) |= Γ and RBC , (~sBC , π) |= Γ (π arbi-
trary) and it follows from (8.3) and (8.6), (8.11) and (8.12) that

RAC , (~sAC , π) |= 〈〈A ∪ C〉〉F IC(A ∪ C) (8.20)

RAB, (~sAB, π) |= 〈〈A ∪ B〉〉F IC(A ∪ B) (8.21)

RBC , (~sBC , π) |= 〈〈B ∪ C〉〉F IC(B ∪ C) (8.22)

Thus, there exist

~f AC ∈ Str(A ∪ C, RAC) (8.23)
~f AB ∈ Str(A ∪ B, RAB) (8.24)
~f BC ∈ Str(B ∪ C, RBC) (8.25)

such that, for arbitrary π and computations λ1, λ2, λ3:

λ1 ∈ outRAC (~f AC ,~sAC)⇒ ∃k1 RAC , (λ1[k1], π) |= IC(A ∪ C) (8.26)

λ2 ∈ outRAB(~f AB,~sAB)⇒ ∃k2 RAB, (λ2[k2], π) |= IC(A ∪ B) (8.27)

λ3 ∈ outRBC (~f BC ,~sBC)⇒ ∃k3 RBC , (λ3[k3], π) |= IC(B ∪ C) (8.28)
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Computations λ1, λ2, λ3 are defined as follows. Recall that λ[ j]k denotes the
kth component of λ[ j].

• λ1[0] =~sAC λ2[0] =~sAB λ3[0] =~sBC

• λ1[ j + 1] = (s1, . . . , sn) where si = ∪n
k=1sk

i and

– k ∈ A ∪ C: (sk
1, . . . , sk

n) = f AC
k (λ1[ j]k)

– k ∈ B: (sk
1, . . . , sk

n) = f AB
k (λ2[ j]k)

• λ2[ j + 1] = (s1, . . . , sn) where si = ∪n
k=1sk

i and

– k ∈ A ∪ B: (sk
1, . . . , sk

n) = f AB
k (λ2[ j]k)

– k ∈ C:
∗ a ∈ A: sk

a = f AC
k (λ1[ j]k)a

∗ b ∈ B: sk
b = f BC

k (λ3[ j]k)b

∗ c ∈ C: sk
c = ∅

• λ3[ j + 1] = (s1, . . . , sn) where si = ∪n
k=1sk

i and

– k ∈ B ∪ C: (sk
1, . . . , sk

n) = f BC
k (λ3[ j]k)

– k ∈ A: (sk
1, . . . , sk

n) = f AB
k (λ2[ j]k)

I now show that

λ1 ∈ outRAC (~f AC ,~sAC) λ2 ∈ outRAB(~f AB,~sAB) λ3 ∈ outRBC (~f BC ,~sBC)
(8.29)

(see the definition of out on p. 95).

• λ1 ∈ outRAC (~f AC ,~sAC):

1. λ1[0] =~sAC.
2. Let j ≥ 0. λ1[ j + 1] = (∪n

i=1si
1, . . . ,∪n

j=is
i
n).

– Let i ∈ [1, n]. If i ∈ A ∪ C, (si
1, . . . , si

n) = f AC
i (λ1[ j]i) and thus

(si
1, . . . , si

n) ∈ RAC
i (λ1[ j]i) since ~f AC ∈ Str(G, RAC). If i ∈ B,

(si
1, . . . , si

n) = f AB
i (λ2[ j]i) ∈ RAB

i (λ2[ j]i) ⊆ [[Oral(i, 1)]]× · · · ×
[[Oral(i, n)]] = RAC

i (s) by (8.15).
– Let i ∈ A ∪ C. (si

1, . . . , si
n) = f AC

i (λ1[ j]i).

• λ2 ∈ outRAB(~f AB,~sAB):

1. λ2[0] =~sAB.
2. Let j ≥ 0. λ2[ j + 1] = (∪n

i=1si
1, . . . ,∪n

j=is
i
n).

– Let i ∈ [1, n]. If i ∈ A ∪ B, (si
1, . . . , si

n) = f AB
i (λ2[ j]i) and thus

(si
1, . . . , si

n) ∈ RAB
i (λ2[ j]i) since ~f AB ∈ Str(G, RAB). If i ∈ C: for

a ∈ A, si
a = f AC

i (λ1[ j]i)a ∈ RAC
i (λ1[ j]i)a ⊆ [[Oral(i, a)]] by (8.14);

for b ∈ B, si
b = f BC

i (λ3[ j]i)b ∈ RBC
i (λ3[ j]i)b ⊆ [[Oral(i, b)]] by

(8.16); for c ∈ C, si
c = ∅ ∈ [[Oral(i, c)]] by definition of Oral(i, c);

thus (si
1, . . . , si

n) ⊆ [[Oral(i, 1)]] × · · · × [[Oral(i, n)]] = RAB
i (s)

when i ∈ C.
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– Let i ∈ A ∪ B. (si
1, . . . , si

n) = f AB
i (λ2[ j]i).

• λ3 ∈ outRBC (~f BC ,~sBC):

1. λ1[0] =~sBC.

2. Let j ≥ 0. λ3[ j + 1] = (∪n
i=1si

1, . . . ,∪n
j=is

i
n).

– Let i ∈ [1, n]. If i ∈ B ∪ C, (si
1, . . . , si

n) = f BC
i (λ3[ j]i) and thus

(si
1, . . . , si

n) ∈ RBC
i (λ3[ j]i) since ~f BC ∈ Str(G, RBC). If i ∈ A,

(si
1, . . . , si

n) = f AB
i (λ2[ j]i) ∈ RAB

i (λ2[ j]i) ⊆ [[Oral(i, 1)]]× · · · ×
[[Oral(i, n)]] = RBC

i (s) by (8.15).

– Let i ∈ B ∪ C. (si
1, . . . , si

n) = f BC
i (λ3[ j]i).

The following states that the computations λ1 and λ2 are equal for all the
agents in A:

For all k and all a ∈ A: λ1[k]a = λ2[k]a (8.30)

I show (8.30) by induction over k.

• k = 0: Let a ∈ A. λ1[0]a = sAC
a = ∅ = sAB

a = λ2[0]a (since cg 6∈ A).

• k = k′ + 1: Let a ∈ A. λ1[k′ + 1]a = ∪n
j=1s j

a and λ2[k′ + 1]a = ∪a
j=1

˜
s j

a. I

show that s j
a = ˜

s j
a for every j ∈ [1, n]:

– j ∈ B: s j
a = f AB

j (λ2[k′] j)a = ˜
s j

a.

– j ∈ C: s j
a = f AC

j (λ1[k′] j)a = ˜
s j

a.

– j ∈ A: (s j
1, . . . , s j

n) = f AC
j (λ1[k′] j) ∈ RAC

a (λ1[k′]a). ( ˜
s j

1, . . . ,
˜

s j
n) =

f AB
j (λ2[k′] j) ∈ RAB

a (λ2[k′]a). By the induction hypothesis λ1[k′]a =
λ2[k′]a = s. Since a ∈ A, RAC

a (s) = [[Ta1]](s) × · · · [[Tan]](s) =
RAB

a (s). Because all Ta j are deterministic, each [[Ta j]] is singular, and
thus f AC

j (λ1[k′] j) = f AB
j (λ2[k′] j). s j

a = f AC
j (λ1[k′] j)a = f AB

j (λ2[k′] j)a =
˜
s j

a.’

Similarly, the computations λ2 and λ3 are equal for all the agents in B:

For all k and all b ∈ B: λ2[k]b = λ3[k]b (8.31)

The proof is completely symmetric to the proof of (8.30):

• k = 0: Let b ∈ B. λ2[0]b = sAB
b = ∅ = sBC

b = λ3[0]b (since cg 6∈ B).

• k = k′ + 1: Let b ∈ B. λ2[k′ + 1]b = ∪n
j=1s j

b and λ3[k′ + 1]b = ∪b
j=1

˜
s j

b. I

show that s j
b = ˜

s j
b for every j ∈ [1, n]:

– j ∈ A: s j
b = f AB

j (λ2[k′] j)b = ˜
s j

b.

– j ∈ C: s j
b = f BC

j (λ3[k′] j)b = ˜
s j

a.
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– j ∈ B: (s j
1, . . . , s j

n) = f AB
j (λ2[k′] j) ∈ RAB

b (λ2[k′]b). ( ˜
s j

1, . . . ,
˜

s j
n) =

f BC
j (λ3[k′] j) ∈ RBC

b (λ3[k′]b). By the induction hypothesis λ2[k′]b =
λ3[k′]b = s. Since b ∈ B, RAB

b (s) = [[Tb1]](s)×· · · [[Tbn]](s) = RBC
a (s).

Because all Tb j are deterministic, each [[Tb j]] is singular, and thus
f AB

j (λ2[k′] j) = f BC
j (λ3[k′] j). s j

b = f AB
j (λ2[k′] j)b = f BC

j (λ3[k′] j)b =
˜
s j

b.

Since λ1 is a RAC-computation and RAC
i is monotone when i ∈ A ∪ C (8.5),

λ1[k]i ⊆ λ1[k + 1]i when i ∈ A ∪ C (8.32)

for all k ≥ 0 by Lemma 7.6. Similarly,

λ2[k]i ⊆ λ2[k + 1]i when i ∈ A ∪ B (8.33)

λ3[k]i ⊆ λ3[k + 1]i when i ∈ B ∪ C (8.34)

Finally, the computations λ1, λ2 and λ3 are used to show a contradiction.
Let a ∈ A and b ∈ B, and let π be arbitrary. (Note that some of the following
facts are named by equation numbers in single parentheses in the rightmost
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column, and the middle column is used for justification).

RAC , (λ1[0], π) |= 4cg{4cg{attack}} (λ1[0] =~sAC)

RAC , (λ1[k1], π) |= 4cg{4cg{attack}} ((8.32), cg ∈ A ∪ C)

RAC , (λ1[k1], π) |= IC(A ∪ C) ((8.26))

RAC , (λ1[k1], π) |= 4cg{4cg{attack}} ↔ 4a{4cg{attack}} (a, cg ∈ A ∪ C)

RAC , (λ1[k1], π) |= 4a{4cg{attack}} ↔ ¬4a {¬4cg {attack}} (a ∈ A ∪ C)

RAC , (λ1[k1], π) |= 4a{4cg{attack}}
RAC , (λ1[k1], π) |= ¬4a {¬4cg {attack}}
4cg {attack} ∈ λ1[k1]a (8.35)
¬4cg {attack} 6∈ λ1[k1]a (8.36)

RBC , (λ3[0], π) |= 4cg{¬4cg {attack}} (λ3[0] =~sBC)

RBC , (λ3[k3], π) |= 4cg{¬4cg {attack}} ((8.33), cg ∈ B ∪ C)

RBC , (λ3[k3], π) |= IC(B ∪ C) ((8.28))

RBC , (λ3[k3], π) |= 4cg{¬4cg {attack}} ↔ 4b{¬4cg {attack}} (b, cg ∈ B ∪ C)

RBC , (λ3[k3], π) |= 4b{4cg{attack}} ↔ ¬4b {¬4cg {attack}} (b ∈ B ∪ C)

RBC , (λ3[k3], π) |= 4b{¬4cg {attack}}
RBC , (λ3[k3], π) |= ¬4b {4cg{attack}}
¬4cg {attack} ∈ λ3[k3]b (8.37)

4cg {attack} 6∈ λ3[k3]b (8.38)

RAB, (λ2[k2], π) |= IC(A ∪ B) ((8.27))

RAB, (λ2[k2], π) |= 4a{4cg{attack}} ↔ 4b{4cg{attack}} (a, b ∈ A ∪ B)

RAB, (λ2[k2], π) |= 4a{4cg{attack}} ∨4a{¬4cg {attack}} (a ∈ A ∪ B)

RAB, (λ2[k2], π) |= 4b{4cg{attack}} ∨4b{¬4cg {attack}} (b ∈ A ∪ B)

RAB, (λ2[k2], π) |= 4b{¬4cg {attack}} ↔ ¬4b {4cg{attack}} (b ∈ A ∪ B)

4cg {attack} ∈ λ2[k2]a ⇔ 4cg{attack} ∈ λ2[k2]b (8.39)
4cg {attack} ∈ λ2[k2]a or ¬4cg {attack} ∈ λ2[k2]a (8.40)

4cg {attack} ∈ λ2[k2]b or ¬4cg {attack} ∈ λ2[k2]b (8.41)

¬4cg {attack} ∈ λ2[k2]b ⇒ 4cg{attack} 6∈ λ2[k2]b (8.42)
4cg {attack} ∈ λ2[k1]a ((8.30), (8.35)) (8.43)

If k2 ≥ k1 then λ2[k1]a ⊆ λ2[k2]a by monotonicity of RAB
a . If k2 < k1 then ¬4cg

{attack} 6∈ λ2[k2]a because if ¬ 4cg {attack} ∈ λ2[k2]a then ¬ 4cg {attack} ∈
λ1[k2]a by eq. (8.30) and¬4cg {attack} ∈ λ1[k1]a by monotonicity of RAC

a which
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is a contradiction by eq. 8.36. By 8.40,4cg{attack} ∈ λ2[k2]a. In either case:

4cg{attack} ∈ λ2[k2]a (8.44)

4cg{attack} ∈ λ2[k2]b((8.39)) (8.45)

¬4cg {attack} ∈ λ2[k3]b((8.37), (8.31)) (8.46)

By the same reasoning as above: If k2 ≥ k3 then λ2[k3]b ⊆ λ2[k2]b by mono-
tonicity of RAB

b . If k2 < k3 then4cg{attack} 6∈ λ2[k2]b because if4cg{attack} ∈
λ2[k2]b then 4cg{attack} ∈ λ3[k2]b by eq. (8.31) and 4cg{attack} ∈ λ3[k3]b by
monotonicity of RBC

b which is a contradiction by eq. 8.38. By (8.41), ¬ 4cg

{attack} ∈ λ2[k2]b. In either case:

¬4cg {attack} ∈ λ2[k2]b (8.47)

4cg{attack} 6∈ λ2[k2]b(eq.(8.42)) (8.48)

which is a contradiction by eq. (8.45).
Thus, the theorem must be true.

8.4 A Possibility Result

If the traitors are restricted to oral messages, there exists a protocol the agents
can use successfully if more than two thirds of the generals are loyal.

The result in this section is a formulation of a result from Lamport, Shostak,
& Pease (1982). The presentation differs from the one of the negative result in
the previous section in two important ways. First, the formulation of the main
result, Theorem 8.2, is not on the form of Theorem 8.1 but has a more meta
logical flavour. Second, the proof of the result, which again is an adaption of
a known proof, and is found in an appendix, is not presented as rigorously
as the proof of the impossibility result in the previous section. The reason for
these differences is that proving validity in the presented semantics for DSEL
can be very extensive and technical (see e.g. the proof of the small modus
ponens result in Example 7.2 on page 99), and the model of the problem is
quite complex.

In the following theorem, R is a general mechanism which allows agents

to do any reasoning actions, modeled by
;

♦ii{ t
u} (recall that t, u are term vari-

able), and any communication actions restricted to oral messages. A monotone
strategy is a strategy ~f where s ⊆ fi(s)i for each i and each s. Γ was defined in
Def. 8.2 on p. 110.

Theorem 8.2 Let

R |=
∧

i∈Ags

;

♦ii{
t
u
} ∧

∧
i 6= j∈Ags

;

♦i jOral(i, j)

(note that R is unique by Lemma 7.3.4). Let

R, (~s, π) |= Γ
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There exists monotone ~fAgs ∈ Str(Ags, R) such that for all G ⊆ Ags with |G| >
2n
3 , for all λ ∈ outR(~fG ,~s) there exists a k such that

R, (λ[k], π) |= IC(G) 2

PROOF Appendix D.

~fG ⊆ ~fAgs are the strategies in ~fAgs only for G ⊆ Ags.
As mentioned, this result is more meta logical than the result in the previous

section; it uses the semantical concept of strategies instead of the syntactical
concept of rules. Theorem 8.2 essentially says that the loyal agents, if many
enough, have a strategy to achieve interactive consistency. If that strategy can
be described by a set of (deterministic) rules, the reverse of the impossibility
result holds, as shown in the following subsection.

8.4.1 Rules

Conjecture 8.1 Let ~fAgs be as defined in Th. 8.2. There exist Ti j, i, j ∈ [1, n],
such that for all s:

[[Ti j]](s) = { fi(s) j} 2

Corollary 8.1 (Based on Conjecture 8.1) There exist a combination of complete
and deterministic rules Ti j for every agent i and j such that Tii is monotone for
each i, Ti j is oral for each i 6= j and for every G ⊆ Ags such that |G| > 2n

3

|= 〈〈∅〉〉2

 ∧
i∈G, j∈Ags

;

♦i jTi j ∧
∧

i∈(Ags\G),i∈Ags

;

5i jOral(i, j)

→ (Γ → 〈〈G〉〉F IC(G))

(8.49)
2

PROOF Let Ti j be as in Conjecture 8.1; each Ti j is clearly both complete and
deterministic, Tii is monotone since fi is monotone and Ti j, i 6= j, is oral since
fi is restricted to oral messages. Let G ⊆ Ags such that |G| > 2n

3 , and let

R′, (~s′, π ′) |= 〈〈∅〉〉2

 ∧
i∈G, j∈Ags

;

♦i jTi j ∧
∧

i∈(Ags\G),i∈Ags

;

5i jOral(i, j)

 ∧ Γ

Let R,~s and ~fAgs be as defined in Th 8.2. By construction of Γ , ~s′ = ~s. Let ~f ′G
be defined as follows: if s = λ[p]i for any R′-computation λ with λ[0] = ~s
and any p then f ′i (s) = fi(s), otherwise f ′i (s) is arbitrary such that f ′i (s) ∈
R′i(s) (R′i(s) 6= ∅). ~fG ∈ Str(G, R). To show that ~f ′G ∈ Str(G, R′), we must
show that ~f ′i (s) ∈ R′i(s) for all s and i ∈ G. Let i ∈ G. If s = λ[p]i for a R′-
computation λ with λ[0] = ~s and some p (otherwise ~f ′i (s) ∈ R′i(s) trivially),

then, since R′, (λ[p], π ′) |= ∧ j∈Ags
;

♦i jTi j, R′i(s) = [[Ti1]](s)× · · · × [[Tin]](s) by
Lemma 7.3.4. By assumption of Ti j, R′i(s) = {( fi(s)1, . . . , fi(s)n)}, so f ′i (s) =
fi(s) ∈ R′i(s). Thus, ~f ′G ∈ Str(G, R′).
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Let λ ∈ outR′(~f ′G ,~s). Since ~f ′G and ~fG agrees for all R′-computations starting
in~s and R′i(λ[p]i) ⊆ Ri(λ[p]i) (apply Lemma 7.3, points 2 and 4) for all i ∈ Ags\
G and all p, it is easy to see that λ ∈ outR(~fG ,~s). Since R, (λ[k], π) |= IC(G),
R′, (λ[k], π ′) |= IC(G) (IC(G) does not depend on R or π), and thus

R′, (~s′, π ′) |= 〈〈G〉〉F IC(G)
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Chapter 9

Comparison to Earlier Work

9.1 Introduction

The work presented in Parts II and III of this thesis can respectively be com-
pared to different kinds of earlier work.

The idea of representing knowledge syntactically is of course not new, and
in Section 9.2 the theory from Part II is compared to earlier work. The con-
cept of “only knowing” was a motivation for the 5i operator, and is briefly
reviewed from the literature in Section 9.3.

The rest of the sections in this chapter compare models of knowledge evolv-
ing over time as a result of reasoning and communication with DSEL from Part
III. The literature here is quite extensive, so only a few selected approaches are
discussed. One approach close to DSEL is Alternating-time Temporal Epistemic
Logic (ATEL), which is another integration of ATL with epistemic logic — al-
beit with implicit knowledge. ATEL is discussed in Section 9.4. In Section 9.5
DSEL is compared with the extensive framework for modeling interpreted sys-
tems presented in the book “Reasoning about Knowledge” (Fagin et al., 1995).
Instead of using a temporal logic to model reasoning, dynamic logic can be
used. One such approach is discussed in Section 9.6. The last section briefly
discusses the extensive first order framework called Active Logics (formerly
“Step Logics”).

Among the approaches not discussed further are the following. In Kono-
lige’s deduction model (Konolige, 1984, 1985, 1986a) agents are modeled by a be-
lief set and a set of deduction rules where the former is closed under the latter
rather than under logical consequence and full logical omniscience is avoided
by using incomplete deduction rules1. Active Logics provide a similar model
which is more fine grained. Moses (1988), Halpern, Moses, & Vardi (1994) and
Duc (1997a) present different approaches to reasoning bounded by the algo-
rithms available to the agent and/or the complexity of reasoning.

1Wooldridge (1995a) generalizes this model by replacing deduction rules with a binary relation.

125
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9.2 Syntactic Representations

Syntactic approaches are suggested by Eberle (1974), and Moore & Hendrix
(1979). Halpern & Moses (1990) present such an approach within the possible
worlds framework as a general model for knowledge in distributed systems,
suggesting that a general model is needed for, for example, cases where knowl-
edge is dependent on the processors’ computational powers. The following
presentation is taken from Fagin et al. (1995). The idea is, for each state, to as-
sign a truth value to any formula independently. A syntactic structure M is a
pair (S,σ), where S is a set of states and σ is a standard syntactic assignment.
A standard syntactic assignment σ gives a mapping σ(s) for each state s ∈ S
from the set of well-formed formulae to the set {true, false}. Constraints are
imposed on the standard syntactic assignment to preserve the standard propo-
sitional semantics. For all standard syntactic assignments σ and well-formed
formulaeφ and ψ:

σ(s)(φ) = true⇔ σ(s)(¬φ) = false (9.1)

σ(s)(φ ∧ψ) = true⇔ σ(s)(φ) = true and
σ(s)(ψ) = true

(9.2)

A well-formed formulaφ is true in a state s in the syntactic structure M, written
(M, s) |= φ if and only if σ(s)(φ) = true. Syntactic structures are generaliza-
tions of Kripke structures2.

9.2.1 Comparison

Clearly, syntactic structures are closely related to the framework for syntactic
knowledge presented in Part II. Although agents described by syntactic struc-
tures are not partially omniscient, they can have infinite knowledge.

It is easy to see that GKSSs (KSSs possibly with infinite knowledge) are at
least3 equivalent to syntactic structures or, alternatively, that KSSs are equiv-
alent to syntactic structures restricted to assigning finite knowledge to each
agent, in the following way. If we define satisfiability of Ln(Φ) (see p. 9)
in a (G)KSS by interpreting the Ki operator as the 4i operator, then for ev-
ery syntactic structure M = (S,σ) and state s ∈ S there is a (G)KSS M′ =
(s1, . . . , sn, π) such that4 for anyφ ∈ Ln(Φ)

M, s |= φ⇔ M′ |= φ

2As pointed out by Fagin et al. (1995), syntactic structures are also generalizations of Montague-
Scott (MS) structures (Montague, 1968, 1970; Scott, 1970). An MS structure is a tuple M =
(S, π , C1 , . . . , Cn), where S is a set of states, π(s) is a truth assignment to the primitive proposi-
tions in each state s, and Ci(s) (1 ≤ i ≤ n) is a set of subsets of S representing the intentions of the
propositions agent i knows in state s. (M, s) |= Kiφ if and only if {s′ : (M, s′) |= φ} ∈ Ci(s). Unlike
in syntactic structures, knowledge is closed under logical equivalence.

Vardi (1986) finds MS structures unsatisfying because it is not clear what the possible worlds
are, and proposes a constructive definition of belief worlds (called knowledge structures by Fagin,
Halpern, & Vardi (1991)) instead.

3GKSSs are strictly more general, because of the ∗ element.
4Note that the definition of satisfiability with respect to two components, a “structure” and a

“state”, for syntactic structures is superficial: like for (G)KSSs satisfiability depends only on one
state; the definition is not recursive.
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by taking
π(p) = σ(s)(p)

si = {φ : σ(s)(Kiφ) = true}

Since (G)KSSs are almost identical to syntactic structures, the possible nov-
elty of the logic SSEL must be discussed. The main difference between the
language EL and Ln(Φ) is the5i operator. It allows expressing in a single for-
mula certain facts which would have needed infinitely many Ln(Φ) formulae.
For example, the fact that agent i does not know α for any α 6= p is expressed
in EL as

5i{p}

but must be expressed in Ln(Φ) as the infinite set of formulae

{¬Kiα : α 6= p} (9.3)

Another example of the expressiveness introduced by the5i operator is the
following

4i{5 j{p}}

which expresses the fact that agent i knows that agent j does not know any-
thing else than p. The intent of this formula is not expressible in Ln(Φ). The
reason for this is that such an expression would be on the form Kiφ, whereφ is
a conjunction of the set in eq. (9.3) — but this set is infinite.

Other new aspects in SSEL as a logic of syntactic knowledge is the abil-
ity to express sets as terms in the language, a sound and complete calculus
for terms, a semantics for possibly infinite agents with a sound and complete
axiomatization, a finite semantics (which corresponds to finitely restricted syn-
tactic structures), and a characterization of the finitary theories for which the
axiomatization is complete w.r.t. the finite semantics which among other things
can help extend the axiomatization with additional restrictions on the syntactic
structures while retaining completeness.

9.2.2 The Logic of General Awareness

A well-known approach which combines a syntactical and a semantical ap-
proach should also be mentioned: the logic of general awareness (Fagin & Halpern,
1988). The authors argue that one source of logical non-omniscience is the lack
of awareness, i.e. that in order to say that an agent knows a fact φ, 1) φ must
follow from the agent’s information and 2) it must be aware of φ. They use
three different modalities in the language to account for these notions. The
knowledge5 operators Ki and Xi are meant to capture express implicit and ex-
plicit knowledge, respectively. The awareness operator Ai is used to express
the awareness of agent i of some formula φ; Aiφ. Fagin & Halpern (1988) do
not attach any fixed meaning to this notion of awareness, but leave it open to
interpretation. Their approach extends the possible worlds framework with
a syntactic awareness function. Formally, a Kripke structure for general aware-
ness is a tuple M = (S, π ,K1, . . . ,Kn,A1, . . . ,An) where (S, π ,K1, . . . ,Kn) is a

5This approach is described in terms of belief rather than knowledge in (Fagin & Halpern, 1988).
The distinction is not important here.
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Kripke structure6 and Ai a function from S to the set of all sets of well-formed
formulae. The set Ai(s) denotes the formulae agent i is aware of. The satis-
fiability relation is defined as usual for atomic propositions, the propositional
connectives and the (implicit) knowledge operators Ki (eqs. 2.1 – 2.4) and as
follows for the new connectives:

(M, s) |= Aiφ⇔ φ ∈ Ai(s) (9.4)
(M, s) |= Xiφ⇔ (M, s) |= Aiφ and (M, s) |= Kiφ (9.5)

Thus, an agent explicitly knows a fact if he implicitly knows it (it is true in all
the worlds he considers possible) and he is aware of it. Note that if an agent is
aware of all his implicit knowledge, explicit and implicit knowledge coincide.
A sound and complete logical system is given by adding the axiom

Xiφ↔ (Aiφ ∧ Kiφ) (9.6)

to a sound and complete system with respect to Kripke semantics, e.g. S5n (or
KD45n for belief).

As Konolige (1986b) points out, the logic of general awareness characterizes
the agents as perfect reasoners restricted to considering only a subset of all
possible sentences7. It is like syntactic structures restricted to assign truth to
formulae which actually follows. It is therefore more interesting to compare
SSEL to syntactic structures than to the logic of general awareness.

9.3 Only Knowing

Several authors have analyzed the knowledge state of an agent who knows
a (set of) formula(e) (Konolige, 1982; Moore, 1983; Halpern & Moses, 1985;
Halpern, 1997). Levesque (1990) introduced a logic in which only knowing can
be expressed in the logical language. Briefly speaking, Levesque’s language
is of first order8 and has two unary epistemic connectives B and O.9 Semanti-
cally, a world is a truth assignment to the primitive sentences, and satisfaction
of a formula is defined relative to a pair W, w where W is the set of worlds the
agent considers possible and w is the “real” world10 (the world correspond-
ing to the correct state of affairs). A sentence Bα is true in W, w iff α is true
in W, w′ for every w′ ∈ W; B is the traditional belief/knowledge operator in
modal epistemic logic. A sentence Oα is true in W, w iff Bα is true in W, w and
w′ ∈ W for every w′ such that α is true in W, w′. Oα expresses that the agent
only knows α; the set of possible worlds is as large as possible consistent with
believingα. It is shown that the O operator can be modeled by a “natural dual”
to the B operator — an operator N. The intended meaning of Nα is that α at
most is believed to be false, and Nα is true in W, w iff w′ ∈W for every w′ such

6In the paper, the relations in the structure are required to be equivalence relations (serial, transi-
tive and Euclidean for belief). There is no reason not to consider the general case without requiring
certain properties of knowledge.

7See also (Hadley, 1986, 1988) for a critique of the notion of “awareness” and the axiom (9.6).
8The logic was only shown to be complete for the unquantified version of the language, the full

version was later shown to be incomplete (Halpern & Lakemeyer, 1995).
9Levesque only considers a single agent, but his approach has later been extended to the multi-

agent case (Halpern & Lakemeyer, 1996)
10Note that this corresponds to the semantical assumptions of the modal logic S5 for one agent.
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that α is false in W, w′. Then, Oα is true iff Bα and N¬α is true; B specifies a
lower bound and N specifies an upper bound on what is believed.

Levesque’s approach suffers from the logical omniscience problem. The O
operator tells which equivalence class of formulae the agent knows; knowl-
edge is closed under logical equivalence — a clearly unrealistic assumption.
Lakemeyer (1996) combines only knowing with Levesque’s concept of explicit
knowledge (Levesque, 1984a) as described in Section 2.2.2. Since the latter ap-
proach is not a logic about syntactic explicit knowledge, but about a weaker
closure of knowledge than logical consequence, the concept of explicitly only
knowing in this context is quite different from the concept of explicitly only
knowing a set of formulae (5iX) introduced in this thesis.

9.4 Alternating-time Temporal Epistemic Logic

In Section 2.3, ATL was presented as a generalization of CTL for multi-agent
systems. van der Hoek & Wooldridge (2002) have extended ATL with epis-
temic modalities, into Alternating-time Temporal Epistemic Logic (ATEL). The ex-
tension is twofold: concurrent game structures are extended to alternating epis-
temic transition systems (AETS), and the language of ATEL is the language of
ATL extended with epistemic operators.

An AETS is a tuple

(Σ, Q, Π, π , δ,∼1, . . . ,∼n)

where

• Σ = {a1, . . . , an} is a set of agents

• Q is a finite, non-empty set of states

• Π is a finite, non-empty set of propositions

• π : Q→ 2Π

• δ : Q × Σ → 22Q
; the transition function. It is required that, for every

q ∈ Q, a ∈ Σ and Qa ∈ δ(q, a): | ∩a∈Σ Qa| = 1.

• For each a ∈ Σ, ∼a⊆ Q × Q; the epistemic accessibility relation. ∼a is
required to be an equivalence relation.

The definition of AETSs is based on a previous version (Alur, Henzinger, &
Kupferman, 1999) of concurrent game structures, called alternating transition
systems (ATS), which is slightly different from the one presented in Section 2.3
(Alur, Henzinger, & Kupferman, 2002). The difference is that there is no da in
ATSs, and δ(q, a) is a subset of ℘(Q). The transition function in ATSs gives
a set of choices for each agent in each state, where a choice is a set of states.
The system is completely controlled by the agents, and the result of each agent
making a choice is the single state in the intersection of the choices. The notions
of a computation and a strategy is accordingly different: a computation is a
sequence of states q0q1 · · · such that for each k, for each a ∈ Σ there is a Qa ∈
δ(qk, a) such that qk+1 ∈ Qa, and a strategy is a function fa : Q+ → 2Q such that
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fa(λq) ∈ δ(q, a). The function out still gives the set of possible computations
for a given set of strategies and a start state.

The extension consists of a reflexive, symmetric, and transitive accessibility
relation for each agent.

The language of ATEL is the language of ATL with the following exten-
sions:

• Ifφ is a formula and a ∈ Σ, then Kaφ is a formula

• Ifφ is a formula and A ⊆ Σ, then CAφ and EAφ are formulae.

The meaning of the three operators is (implicit) knowledge, common knowl-
edge and “everyone knows”. The definition of satisfiability of an ATL formula
in a state q in a concurrent game structure is extended to satisfiability of an
ATEL formula in a AETS S = (Σ, Q, Π, π , δ,∼1, . . . ,∼n) as follows:

• S, q |= Kaφ iff for all q′ such that q ∼a q′: S, q′ |= φ

• S, q |= EAφ iff for all q′ such that q ∼E
A q′: S, q′ |= φ

• S, q |= CAφ iff for all q′ such that q ∼C
A q′: S, q′ |= φ

where ∼E
A=

⋃
a∈A ∼a and ∼C

A is the transitive closure of ∼E
A.

Note that knowledge in ATEL has the S5 properties since the accessibility
relations are equivalence relations.

9.4.1 A Problem with Incomplete Information

As pointed out by Jamroga (2003), ATEL does not seem to integrate the se-
mantics of knowledge with the ATL semantics properly: an agent can have a
strategy which gives different choices for indiscernible states. In other words, if
q, q′ ∈ Q, q 6= q′ and q ∼i q′, agent i can have a strategy fi with fi(λq) 6= fi(λq′)
for some λ. The fact that agents can base their choices on the state of the whole
system, seems to contradict the premise of epistemic logic: that agents have
incomplete information.

Jamroga (2003) argues that a natural solution of the problem would be to
require that a strategy should specify the same action in indiscernible states,
but that this constraint is difficult to express due to the way choices are defined
in AETS. This, again, is due to the subtle difference between the two definitions
of concurrent game structures discussed above. Jamroga therefore proposes an
improved version of an AETS which is based on the latest version of concurrent
game structures (with action names instead of numbers):

(Σ, Q, Π, π ,∼1, . . . ,∼n, ACT, d, δ)

where ACT, d and δ is as defined in Definition 7.8 (p. 89), and to restrict d such
that the same actions are available in indiscernible states:

q ∼i q′ ⇒ di(q) = di(q′)

Now, strategies can be restricted such that they specify the same action for
indiscernible (histories of) states:

∀ j∈[0,k](q j ∼i q′j)⇒ fi(q0 · · · qk) = fi(q′0 · · · q′k)

Jamroga notes that these proposals does not solve all problems with the inte-
gration of knowledge and action in ATEL.



9.4. ALTERNATING-TIME TEMPORAL EPISTEMIC LOGIC 131

9.4.2 Syntactic Characterization of Incomplete Information

van der Hoek & Wooldridge (2003, p. 144) very briefly comment on the prob-
lem identified by Jamroga (2003) in a discussion on how to apply ATEL to
games involving knowledge, and propose to solve it in a similar way in that
specific context. They claim that the semantic requirement

q ∼a q′ ⇒ δ(q, a) = δ(q′, a) (9.7)

is captured by the syntactic property

〈〈{a}〉〉Tφ↔ Ka〈〈{a}〉〉Tφ (9.8)

where T ∈ {©, 2,F}.
However, this claim is false. (9.8) is neither a necessary nor a sufficient condi-

tion for (9.7). The following is a counter-example for the latter. Let φ = p. I
show that there is an AETS S where (9.7) holds for all states q, q′ and agents a,
but where there is a state q1 such that

S, q1 6|= 〈〈{a}〉〉© p→ Ka〈〈{a}〉〉© p (9.9)

S is illustrated on Fig. 9.1. S = (Σ, Q, Π, π , δ,∼a,∼b) where

• Σ = {a, b}

• Q = {q1, q2, q3, q4}

• Π = {p}

• π(q) =
{
{p} q ∈ {q1, q2, q3}
∅ q = q4

• δ(q1, a) = δ(q3, a) = { {q2, q4} }

• δ(q1, b) = { {q2} }

• δ(q3, b) = { {q4} }

• δ(q2, a) = δ(q2, b) = { {q2} }

• δ(q4, a) = δ(q4, b) = { {q4} }

• ∼a= {(q1, q3), (q3, q1), (q1, q1), (q2, q2), (q3, q3), (q4, q4)}

• ∼b is the identity relation on Q

Clearly, S is an AETS: for every q ∈ Q if Qa ∈ δ(q, a) and Qb ∈ δ(q, b) then
|Qa ∩ Qb| = 1, and ∼a and ∼b are equivalence relations. (9.7) holds for any
q ∈ Q (and for both a and b). To see that

S, q1 |= 〈〈{a}〉〉© p (9.10)

holds, let fa : Q+ → 2Q be a strategy such that fa(q1) = {q2, q4}, and let
λ ∈ out(q1, { fa)}. Clearly, since the only choice available to b in q1 is {q2},
{λ[1]} = {q2, q4} ∩ {q2} = {q2}. S, λ[1] |= p, so (9.10) holds. Assume that

S, q1 |= Ka〈〈{a}〉〉© p (9.11)
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¬p

q1 q3

q2 q4

∼a

p

p p

Figure 9.1: The AETS S.

Since q1 ∼a q3, S, q3 |= 〈〈{a}〉〉 © p. Let fa be any strategy for a. fa(q3) =
{q2, q4} since δ(q3, a) is singular. Let λ′ ∈ out(q3, fa). Since δ(q3, b) is singular,
{λ′[1]} = {q2, q4} ∩ {q4} = {q4}. Then, S, λ′[1] |= p which contradicts the fact
that p 6∈ π(q4). Thus, (9.11) does not hold, which shows (9.9).

As mentioned, not only is (9.7) not a sufficient condition for (9.8); it is also
not a necessary condition. I now show this by constructing an AETS S′ which
is a model for (9.8) for any a, T and φ, for which (9.7) does not hold. S′ is
illustrated on Fig. 9.2. S′ = (Σ, Q, Π, π , δ′,∼a,∼b) where

• δ′(q, a) =
{
{ {q2} } q = q3
δ(q, a) otherwise

• δ′(q, b) =
{
{ {q2} } q = q3
δ(q, b) otherwise

and Σ, Q, Π, π , δ,∼a and ∼b is as defined above. Clearly, S′ is still an AETS.

¬p

q1 q3

q2 q4

∼a

p

p p

Figure 9.2: The AETS S′.

Let T ∈ {©, 2, F} and φ be a formula. To show that S′, q |= 〈〈{a′}〉〉Tφ ↔
Ka〈〈{a′}〉〉Tφ for any q ∈ Q and a ∈ {a, b}, it suffices to show that

S′, q1 |= 〈〈{a}〉〉Tφ⇔ S′, q3 |= 〈〈{a}〉〉Tφ (9.12)

since it follows trivially for a′ = a and q ∈ {q2, q4} and for a′ = b for any q.
It is easy to see that the only computation starting in q1 is λ1 = q1q2q2 · · · and
the only computation starting in q3 is λ2 = q3q2q2 · · · . Satisfaction of a formula
ψ in a state q depends only on i) π(q), ii) the states accessible for each agent
from q and iii) the set of possible remaining computations starting in q. For q1
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and q3, i) π(q1) = π(q3), ii) q1 ∼a′ q′ iff q3 ∼a′ q′ for a′ ∈ {a, b} and iii) the
set of possible remaining computations starting in q1 or q3 is {q2q2 · · · }. Thus,
S′, λ1[k] |= φ iff S′, λ2[k] |= φ for any k, and (9.12) holds. However, (9.7) does
not hold for S′: q1 ∼a q3 but δ′(q1, a) 6= δ′(q3, a).

In other words; there are models of the schema (9.8) in which (9.7) do not
hold, and there are structures in which (9.7) hold which are not models of the
schema (9.8).

One reason that (9.8) may intuitively seem to describe (9.7) is that e.g.
〈〈{a}〉〉 © φ may be interpreted as a statement about agent a’s capabilities.
This is an imprecise interpretation, as discussed in Section 7.6.2. It may be that
〈〈{a}〉〉 ©φ holds because the rest of the system will deterministically make
φ true in the next state — no matter what agent a does. In other words, it may
be that 〈〈∅〉〉 ©φ holds — which trivially implies 〈〈{a}〉〉 ©φ. For example,
(9.10) above holds because the system will deterministically go to state q2 from
q1. a’s capabilities in q1, described by δ(q1, a), is to take the system either to
a state where p is true (q2) or to a state where p is false (q4), which contrasts
with the intuitive interpretation of (9.10) as a statement about a’s capabilities.

This inability to syntactically express “local” properties of the agents’ capa-
bilities, i.e. about δ(q, a) in AETSs or about da(a) in concurrent game structures,
is inherent in ATL. A solution to this problem is rules and rule operators. Unlike
the temporal operators, the rule operators express “local” properties about the
agents’ capabilities, e.g. about their mechanisms. I now argue that we can
characterize incomplete information better in DSEL by using rule operators.
A syntactic property similar to (9.8) with rule operators instead of temporal
operators is

♦iT → (
∧

1≤ j≤n

;

♦i jTR
j ↔ 〈〈∅〉〉2(♦iT →

∧
1≤ j≤n

;

♦i jTR
j )) (9.13)

(9.13) says that if agent i have the capabilities expressed by the rules TR
j in a

state q, then he will have the same capabilities in every future state he cannot
discern from q (e.q. where his local epistemic state is the same). Of course, the
ATEL property (9.7), in DSEL expressed as

si = s′i ⇒ di(s) = di(s′) (9.14)

with s = (s1, . . . , sn), s′ = (s′1, . . . , s′n), already holds by definition. (9.13) is
valid (Lemma 7.8).

The next question is, of course, whether (9.14) is a necessary condition for
(9.13). The answer is “no”, and the reason is twofold. First, rule operators can
only be used to describe mechanisms which are Cartesian products. Second,
(9.13) only describes possible future states, not all states. If we imagine that the
mechanisms were defined as relations over global states rather than as relations
between local states and global states, the semantic condition

If there are TR
j such that

−→
R π , s |= ∧

1≤ j≤n
;

♦i jTR
j

then for all s′ reachable from s : si = s′i ⇒ di(s) = di(s′)

where s′ is reachable from s iff s′ is a state in a computation starting in s, is a
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necessary condition for (9.13)11.
In summary; we have looked at syntactic expressions of the property that

an agent should be able to do the same thing in indiscernible states. In ATEL,
(9.8) was suggested, but this property is not necessarily true even if (9.7) is true.
In DSEL we proposed to use (9.13) which is always true when the semantic
condition (9.14) is true. This comparison illustrates the fact that rule operators
adds expressiveness to the language, because they can express properties of
the capabilities of single agents which cannot necessarily be expressed with
temporal operators.

9.4.3 Comparison

An obvious observation when comparing DSEL with ATEL, is that if formulae
starting with epistemic operators or rule operators are viewed as atomic propo-
sitions, DSEL is an ATEL logic (with unspecified accessibility relations) since it
is an ATL logic12 and ATEL is a generalization of ATL. Although both logics
are integrations of epistemic logics and ATL, the concept of “knowledge” in
the two logics are fundamentally different. Incorporating these two concepts
into a logic of implicit and explicit knowledge by basing DSEL on ATEL in-
stead of ATL seems to be quite straightforward — the accessibility relations in
the structure induced by a mechanism would relate states with the same local
state and would describe implicit knowledge with S5 properties.

Of course, a comparison of the two types of “static” knowledge, i.e. knowl-
edge in a fixed state, is exactly the same as a comparison between the semantics
of SSEL and Kripke semantics. “Dynamic” knowledge in DSEL is intended to
model, in addition to belief revision and communication, “static” knowledge
in ATEL (or in Kripke semantics in general). For example, in modal epistemic
logic and ATEL,

(Ki p ∧ Ki(p→ q))→ Kiq

holds, expressing the fact that the agent’s knowledge is closed under modus
ponens, while in DSEL

(4i{p, p→ q} ∧
;

4ii{
t t {a, a→ b}

t t {b} })→ 〈〈{i}〉〉©4i{p}

holds, expressing the fact that if the agent knows p, p → q and modus ponens,
then he could “close” the formulae p, p→ q under modus ponens if he wanted
to.

The concurrent game structures in DSEL are restricted as discussed in the
introduction to Section 7.4. The next question is how these restrictions affect
the properties of DSEL compared to ATEL. The restriction that the set of pos-
sible actions should depend only on the local state was discussed in Section
9.4.2. The restriction to a specific δ gives the properties of communication in

11Let
−→
R π , s |= ∧

1≤ j≤n
;

♦i jTR
j ; Ri(s) = [[TR

1 ]](si) × · · · × [[TR
n ]](si). Let s′ be reachable from s;

s′ = λ[k] for some computation starting in s. Let si = s′i . Let T be such that [T] = si = s′i . By (9.13),
−→
R π , s′ |= ∧

1≤ j≤n
;

♦i jTR
j , and Ri(s′) = [[TR

1 ]](s′i)× · · · × [[TR
n ]](s′i) = Ri(s). Thus, di(s) = Ri(s) =

Ri(s′) = di(s′).
12With the slight generalization of e.g. Q to a not necessarily finite set, as described in Section

7.4.1.
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Lemma 7.9, which do not hold in general in ATEL. In theory ATEL allows for
more general models of communication, but DSEL seem to be general enough
for practical purposes. For example, a special agent can act as an “environ-
ment” through which communication occur. Of course, the restriction of the
state space to a very specific one, i.e. the Cartesian products of possible syntac-
tic epistemic states, restricts the applicability of DSEL to this specific domain
as opposed to ATEL, which can be used to model any system to which knowl-
edge can be ascribed. Note that, as a result of the nature of the state space,
π , the truth assignment of the primitive propositions, plays a different role in
DSEL than in ATEL. In the former, π does not depend on the current state of
the system, and have a smaller influence on the semantics of the language.

As discussed in Section 9.4.1 the definition of strategies in ATEL does not
take incomplete information into account. The same problem does not occur in
DSEL, where the exactly the same restrictions as the ones proposed by Jamroga
(2003) for ATEL are imposed on the structures: first, actions are explicit, mak-
ing it easy to identify the same action in different states, second, the available
actions are the same in indiscernible states and third, strategies must map in-
discernible states to the same action. A further restriction on strategies in DSEL
is that they depend only on the current state and not on the history. Compared
to ATEL where knowledge is used as an ascribed notion, this latter restriction
is important for DSEL as a theory of explicit, syntactic knowledge.

When rules and rule operators are taken into account, DSEL can no longer
be seen as a specialization of ATL (or ATEL). In Section 7.6.2 it was argued that
rule operators can be used to express local properties of agents’ capabilities
which temporal operators do not capture in a natural way. One such property,
“an agent must be able to perform the same actions in indiscernible states”, was
discussed in Section 9.4.2. A “natural” expression of this property with tempo-
ral operators in ATEL was shown to express not only local capabilities, while a
partial expression of the property using rule operators in DSEL was shown to
always hold given the semantical restriction. Another property which seem to
be easier to express with rule operators is monotonicity of knowledge. As dis-
cussed in Section 7.6.1, in DSEL monotonicity can be expressed by the formula

;

5ii{
t

t t u
}

or by the schema
4iT → 〈〈∅〉〉24i T

In ATEL, without rule operators, a schema must be used, e.g.13

Kiφ→ 〈〈∅〉〉2Kiφ

9.5 Interpreted Multi-agent Systems

Fagin et al. (1995) presents, partly based on their previous research, a general
framework for ascribing knowledge to multi-agent systems. A multi-agent sys-
tem can be any system composed of interacting agents, and knowledge is used

13The notion of monotonicity is of course somewhat different in DSEL and ATEL due to the
difference in the two “knowledge” concepts. In the latter monotonicity can not be required to hold
for e.g. certain temporal formulae, andφ in the schema must be restricted.
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as an external notion for analyzing the system rather than a concept describing
something the agents can compute, act upon and answer questions about.

Formally, Li is a set of local states for agent i with Le being the local states
for a special agent called the environment, and the set of global states is G =
Le × L1 · · · × Ln. A run over G is a function r : N → G, and a point is a combi-
nation of a run and a number, (r, m). A system R over G is a set of runs over G.
An interpreted system (R, π) over G is a system R over G together with a truth
assignment π(s) : Θ → {true, false} for each global state s ∈ G, where Θ is
the set of primitive propositions.

By using the assumption that an agent can only discern between points in
which his own state differs, an interpreted system I = (R, π) can be seen as
inducing a Kripke structure MI = (S, π ,K1, . . . ,Kn) where S is all points in
I and ((r, m), (r′, m′)) ∈ Ki iff r(m)i = r′(m′)i where the superscript i de-
notes the ith component. Thus, an interpreted system can be seen as a descrip-
tion of a Kripke structure, in which the language of modal epistemic logic can
be interpreted — knowledge, particularly, as implicit knowledge. If this lan-
guage is extended with temporal operators such that if φ,ψ are formulae then
2φ, 3φ,©φ andφUψ, meaning “φ is true always/eventually/next time/until
ψ is true”, respectively, the semantics can be easily extended in the usual way:
the formulae are true in a point (r, m) in an interpreted system I iffφ is true in
(r, m′) for all m′ ≥ m,φ is true in (r, m′) for some m′ ≥ m,φ is true in (r, m′) for
m′ = m + 1, and there is some m′ ≥ m such thatψ is true in (r, m′) andφ is true
in (r, m′′) for all m ≤ m′′ ≤ m′, respectively. In this framework, time is discreet
and linear — there is no concept of branching time and no path quantifiers.

Several concepts for describing runs are presented and formalized. For ex-
ample, a set of actions for each agent is used to describe transition functions
which maps each agent’s choice and the current global state into a new global
state, while a protocol is a function which maps a local state for an agent into
a set of actions. Thus, actions, transition functions and protocols corresponds
loosely to ACT, δ, d and strategies in concurrent game structures with incom-
plete information (see Section 7.4.2).

Restrictions on the framework to describe a message passing system, in which
the agents can communicate through the environment, is presented. It is not
necessary to go into details for this discussion, but local states must include
message passing events and the sets of actions must include message passing
actions. A version of the Byzantine generals problem, simultaneous Byzantine
agreement, is worked out in detail through a careful analysis of the attain-
ment of common knowledge in such systems14. For example, it is formally
proved that m + 1 rounds of communication, where m is the maximal number
of traitors, is necessary and sufficient to achieve agreement about the initial
value.

9.5.1 Comparison

There are at least two aspects of the work on interpreted multi-agent systems
in (Fagin et al., 1995) which are interesting in comparison to the work in this

14Only certain types of traitor behaviour, called benign failures (crash failures, sending-omission
failures, general-omission failures), are considered. In Chapter 8, no such restrictions were made
and the traitors could actively try to deceive the loyal generals. This latter type of behaviour is
called Byzantine failures.
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thesis. First, the framework can be compared to the framework for the dynamic
logic developed in Chapter 7, and, second, the application mentioned above
can be compared to the Byzantine generals example in Chapter 8.

The framework is effectively a tool for describing classes of Kripke struc-
tures which can change with time. The notion of knowledge is the same as
in modal epistemic logic, except from the fact that it can change with time.
The only difference from the language of modal epistemic logic is the addi-
tion of temporal operators. Unlike the temporal operators in ATL, however,
these model a concept of linear rather than branching time. Concepts such as
actions and protocols are not directly a part of the semantics of the language;
rather, they are used to describe classes of systems of interest, i.e. “legal” runs.
As noted above, in frameworks derived from ATL, such as Alternating time
Temporal Epistemic Logic (ATEL, discussed in the next section) and the one
presented in Chapter 7, the concepts of actions and protocols are formalized as
part of the semantical structures. In addition, ATL uses a more general model
of time (branching versus linear), and in the frameworks just mentioned the
more powerful temporal language can sometimes be used instead of meta-
logical description of model classes. One interesting part of the description
of the framework is the development of message passing systems. Such sys-
tems can be modeled in the framework from Chapter 7 in a similar manner,
with computations corresponding to runs and a particular agent “being” the
environment. For example, while in all the examples in this thesis the agents
have communicated directly to each other by “inserting” formulae into epis-
temic states, unreliable communication can be modeled by sending messages
through the environment agent. Since an advanced model of message passing
was not needed for the worked example (Byzantine generals, Ch. 8) due to
the fact that communication there was assumed to be direct and reliable, such
applications are left for future work.

The application in the analysis of simultaneous Byzantine agreement shows
some very important correspondences between common knowledge, agree-
ment and properties of message passing systems. The application is mainly
on a meta-logical level, reasoning about classes of runs, since many of the de-
veloped concepts cannot be expressed in the logical language. The example in
Chapter 8 demonstrates the use of several language constructs not found in the
interpreted systems language, such as

• The use of5i∅ to denote the fact that agent i knows nothing in the initial
situation.

• The use of the temporal connectives 〈〈∅〉〉2 and 〈〈G〉〉F .

• The use of ∧i j
;

4i j Ti j to denote the fact that the generals must use the
protocols Ti j.

• The restriction of the possible messages that can be sent (“oral messages”),

by the expression
∧

i, j
;

5i j{ t
4 j{¬¬4i{a}}

, t
4 j{¬4i{a}}

, t
∅}

There is some overlap between the results shown in the two applications —
Fagin et al. (1995) do not show the negative result (Section 8.3), however. Ex-
tending the logic in Chapter 7 with implicit knowledge and adapt the results
involving common knowledge could be interesting for future work.
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9.6 Dynamic Epistemic Logic

The motivation behind dynamic epistemic logic (Duc, 1997b) is very similar to the
one presented in this thesis. Duc argues that many intuitions about knowledge
is lost when the LOP is attacked by weakening standard epistemic logic, and
proposes a solution to this problem. The main idea is that, in general, we can-
not assume that the knowledge of an agent is closed under any logical law. That
is, the agents described by the traditional logics does not exist. Furthermore the
existence of logics that describe real agents is questioned, because real agents
do not tend to reason in a fixed pattern. A problem with many of the proposed
solutions to the LOP is that they sacrifice rationality for non-omniscience; this
is a dilemma between logical ignorance and logical non-omniscience.

The proposed solution is to dynamize epistemic logic. The idea is that an
agent knows a new fact if it follows from the agent’s other knowledge and the
agent performs an inference action. Such an action is modeled as the selection
and use of an inference rule or an axiom. Dynamic logic (see e.g. Harel (1984))
is used to formalize actions. For example, if R is a inference rule, then inten-
tion of the formula [Ri]Kiφ is that agent i will always know φ after using rule
R. However, to avoid fixing an axiomatization for each agent and to avoid a
very complex system, the individual actions for each agent are replaced by an
auxiliary action Fi, denoting an arbitrary (but including at least one action) and
non-deterministic sequence of actions. The intended meaning of 〈Fi〉φ is that
φ is true after some train of thought of agent i. The dual operator [Fi] is also
used; [Fi]φ ≡ ¬〈Fi〉¬φ, meaning that φ is true after every train of though of
agent i.

Formally, dynamic epistemic logic for n agents is defined as follows. The lan-
guage LDE is defined as a superset of Ln(Φ) (p. 9):

Ln(Φ) ⊆ LDE

Ifφ ∈ LDE, then ¬φ ∈ LDE

Ifφ,ψ ∈ LDE, then (φ→ ψ) ∈ LDE

Ifφ ∈ LDE, then 〈Fi〉φ ∈ LDE

In addition the sublanguage L+
E ⊆ Ln(Φ) is used below. L+

E contains all the
formulae ofLn(Φ) without any occurrences of the knowledge operators Ki and
is closed under the following conditions:

Ifφ,ψ ∈ L+
E , then (φ ∧ψ) ∈ L+

E

Ifφ,ψ ∈ L+
E , then (φ ∨ψ) ∈ L+

E

Ifφ ∈ L+
E , then Kiφ ∈ L+

E

A “dynamic” version of S4n, the logical system DES4n, has the following axiom
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schemata:

φ→ (ψ→ φ) (9.15)
(φ→ (ψ→ γ))→ ((φ→ ψ)→ (φ→ γ)) (9.16)

(¬ψ→ ¬φ)→ (φ→ ψ) (9.17)
[Fi](φ→ ψ)→ ([Fi]φ→ [Fi]ψ) (9.18)

[Fi]φ→ [Fi][Fi]φ (9.19)
Kiφ ∧ Ki(φ→ ψ)→ 〈Fi〉Kiψ (9.20)

Kiφ→ φ (9.21)

Kiφ→ [Fi]Kiφ, ifφ ∈ L+
E (9.22)

〈Fi〉Ki(φ→ (ψ→ φ)) (9.23)
〈Fi〉Ki((φ→ (ψ→ γ))→ ((φ→ ψ)→ (φ→ γ))) (9.24)

〈Fi〉Ki((¬ψ→ ¬φ)→ (φ→ ψ)) (9.25)
〈Fi〉Ki(Kiφ→ φ) (9.26)

Kiφ→ 〈Fi〉KiKiφ, ifφ ∈ L+
E (9.27)

and the following inference rules:

`DES4n φ,`DES4n φ→ ψ

`DES4n ψ
(9.28)

`DES4n φ

`DES4n [Fi]φ
(9.29)

The use of L+
E avoids certain potential problems with monotonicity of knowl-

edge.
Dynamic epistemic logic captures the idea that an agent can get to know

any logical consequence of its knowledge if it thinks hard enough. The agents
in this approach are not logically omniscient. For example, as shown in the
paper, the knowledge necessitation rule (p. 10)

`S φ

`S Kiφ
, 1 ≤ i ≤ n Nec

is not derivable in DES4n. The following rule is, however:

`DES4n φ

`DES4n 〈Fi〉Kiφ

This rule says that an agent can get to know any theorem. Thus agents are
both logically non-omniscient and non-ignorant. Also, agents are rational; the
approach does not attribute non-omniscience to failure to follow the laws of
logic. Other examples of non-ignorance is that the following (where φ and ψ
are Ln(Φ)-formulae without any occurrences of the knowledge operators) are
theorems of DES4n:

Ki(φ ∧ψ)→ 〈Fi〉Kiφ

(Kiφ ∧ Kiψ)→ 〈Fi〉Ki(φ ∧ψ)
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9.6.1 Comparison

Duc (1997b) does not define a semantics for dynamic epistemic logic15.
Let us look at the single agent case first. In this case, it seems that dynamic

epistemic logic can be expressed in DSEL. Taking

〈Fi〉φ ≡ 〈〈{i}〉〉Fφ

and
[Fi]φ ≡ [[{i}]]2φ

seems to capture the intended semantics. Under this definition, axioms (9.18)
and (9.19) are valid, and inference rule (9.29) preserves validity, in DSEL. Ax-
ioms (9.15)–(9.17) are of course also valid, and (9.28) preserves validity. (9.21)
and (9.22) are axiomatizations of truth of knowledge and monotonicity and can
be expressed in DSEL by

4i{α} → α

and
4i{α} → [[{i}]]4i {α}

respectively. The rest of the axioms is an axiomatization of the reasoning mech-
anism, and can be expressed in DSEL either as above or as rules.

Thus, DES4n can be seen as an axiomatization of the two temporal opera-
tors along with a resoning mechanism for the agents.

For the multi-agent case, the correspondance to DSEL, and ATL, is sligthtly
different because the notion of time in dynamic epistemic logic is subjective
with respect to each agent — there is no axiomatization of a common clock in
DES4n. However, since there is no axiomatization the properties of interaction
between agents at all, or mentions of such properties in the paper, it seems that
DES4n is not primarily intended as a multi-agent logic.

9.7 Active Logics

Active Logics (Elgot-Drapkin et al., 1999)16 is a framework, based on first-order
logic17, for “reasoning situated in time”. The idea is that agents’ reasoning
progress in discrete steps, and that an agent should be able to reason about
what agents (including itself) do or do not know after a certain number of
steps.

The idea is partly motivated by the role of time in commonsense reasoning.
Main points are that, first, the reasoning of an agent seldom has an endpoint
but goes on indefinitely and, second, that agents are fallible – they can believe

15Duc (1995) defines a semantics, based on temporal frames, for a similar, but less expressive
logic.

16Formerly (Drapkin & Perlis, 1986; Elgot-Drapkin, 1988; Elgot-Drapkin & Perlis, 1990) known
as step logics.

17Nirkhe, Kraus, & Perlis (1994) present a modal logic analog to a particular SL5 (see below)
step logic. They provide a semantics based on a combination of the Montague-Scott approach and
timelines, and a sound and complete axiomatization with respect to this semantics. The LOP is only
partly solved, because Montague-Scott semantics does not discriminate between formulae with the
same intentions (e.g. all tautologies) (see Section 9.2). The authors comment that this problem can
be solved by introducing a syntactic component similar to an awareness operator.
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in contradictions without believing in “everything” (as they would if they were
logically omniscient — the authors call this “swamping”). Reasoning should
therefore, they argue, not be modeled only as an ultimate set of conclusions.

Semantically, the active logic approach views agents as having a finite belief
set and an inference engine.

Active logics is a unified logical framework, rather than a single logic. I
will not go into all the extensive details here, but discuss some of the aspects.
Within the framework, eight different active logic pairs are defined, corre-
sponding to different agent languages and logical abilities of agents such as
keeping track of time, self knowledge and contradiction handling. For version
n, SLn is the logic an agent reasons in and SLn is a (consistent) first-order meta-
theory about the agent. The meta-theory includes a binary predicate K; K(i,φ)
denotes the fact that φ is known at time step i (technically, formulae which
can be known can be represented as a term). Some of the active logics, e.g.
n = 7, includes a similar predicate in the local agent theory. An active logic is
characterized by the following three parts:

1. A first-order languageW . This is the internal language the agents reason
in.

2. An observation function OBS : N → ℘ f in(W), giving a finite set of obser-
vations for each time step. An observation is a wff the agent gets to know
at the given time step.

3. An inference-function INF : H → ℘ f in(W) mapping a history, where H
consists of all chains of pairs of belief sets and observation sets, to a fi-
nite set of wffs. Intuitively, the inference-function gives the set of beliefs
for the next step (which do not necessarily include those of the previous
step). An inference-function can be represented as a set of inference rules,
with the meaning that the function returns the results of applying all the
rules to all the wffs from the last step in the history.

In (Elgot-Drapkin & Perlis, 1990), the active logic pair 〈SL7, SL7〉 is used to
demonstrate, among other tings, default reasoning and contradiction detection
and handling. To this end, the internal logic is non-monotonic. Each agent can
keep track of time by using a predicate Now(i) and a rule replacing Now(i)
with Now(i + 1) (an example of non-monotonicity). This rule illustrates the
idea that “reasoning is situated in time”, that reasoning itself takes time — in
english: “if now the time is i then now the time is i + 1”. A subclass of the
formulae is time-stamped. Note that an agent can know at time i the formula
K( j,α); i.e. that he knew (if j ≤ i) α at time j. A formula is inherited from
the previous step only if it does not form a contradiction with another believed
formula at that step. Negative introspection is modeled (in an agent’s local
reasoning) by including ¬φ at step i + 1 if φ is not believed at step i and φ is
a closed subformula of a formula believed at step i (this last condition can be
seen as a form of awareness).

The active logics framework also provide models for a range of other as-
pects of reasoning. For example, bounded memory is modeled by using a more
advanced model of memory than belief sets, involving a short term and a long
term memory.
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9.7.1 Comparison

Although many of the motivations behind the active logics approach are simi-
lar to those presented in this thesis, the approaches are quite different. Active
logics provides richer and more flexible framework which is more applicable
to “real” situations; this is partly due to the fact that it is based on first order
logic. SSEL and DSEL, on the other hand, are designed to model an isolated
aspect of knowledge and reasoning — finite syntactic epistemic states.

The similarities of the two appraches includes the fact that both model
agents as having a storage of formulae and a reasoning mechanism. Further-
more, the storage is required to be finite in both approaches. The storage can
in principle contain arbitrary formulae also in active logics, although restric-
tions are placed on inheritance from time point to time point in practice. Both
approaches can avoid “swamping”, and the contradiction handling mecha-
nism in active logics can also be implemented in DSEL. Since active logics are
based on first order logic and formulae can be expressed as terms, it seems that

the operators 5a and
;

5aa can be expressed by using variables — for example
x 6= p→ ¬K(i, x) for5a{p}.

A main difference between the two approaches is the model of time. In the
words of (Elgot-Drapkin et al., 1999), “the focus of active logic is not primarily
to be able to reason about time, but rather to be able to reason in time”. The
main use of time in active logics is to model the fact that reasoning takes time.
In active logics the agents use the “whole” mechanism, all the rules if inference
rules are used to model the mechanism, at each time step. Thus there is no
concept of different possibilities, and time is modeled as being linear instead
of branching. As a consequence of this, there is no concept of CTL or ATL -
type temporal connectives, strategies or cooperation, like in DSEL. In fact, in
one sense an active logic is a single agent logic. Although agents can reason
about other agents, there is no formal multi agent model.

Note that the concept of rules is not formalized in active logics as a part
of the agent language — rules are used as a meta-logical descriptions of the
inference function — but can be easily expressed in the first order language.
For example, in an analysis of the three wise men puzzle using a SL5 step-
logic18, Elgot-Drapkin (1991b) includes the formula

(∀ j)K2( j, (∀i)(∀x)(∀y)[K3(i, x→ y)→ (K3(i, x)→ K3(s(i), y))])

in OBS(i), to model the fact that the agent knows that wise man 2 knows at
every step that wise man 3 uses the rule modus ponens. As already mentioned;
the semantics of “knowing a rule” is different than in DSEL, since the agents
always use all the rules in each step in active logics.

In summary; the motivation behind active logics and DSEL is similar, the
former has much higher expressive power but a fixed deterministic mechanism
while the latter have non-deterministic control mechanisms and is based on a
model of branching time.

18See also (Elgot-Drapkin, 1991a) for a version of the puzzle with two wise men only.



Chapter 10

Conclusions and Future Work

10.1 Summary

The problem investigated in this thesis is the modeling of the explicit knowl-
edge of deliberative reasoners who represent their knowledge syntactically, in
a logical framework. The problem with using traditional epistemic logic based
on modal logic to this end, is that they describe agents who know all the in-
finitely many consequences of their knowledge. The reason for this problem is
that in these logics there is no distinction between knowledge and reasoning
— knowledge is modeled as everything which can be obtained by (sound and
complete) reasoning. The model in this thesis solves this problem by modeling
knowledge and reasoning as two different concepts: Part II presents a theory of
static finite syntactic epistemic states, and Part III presents a theory of the dy-
namics of such states, i.e. how they change over time as a result of reasoning
and/or communication.

10.1.1 Part II

In Part II the logic SSEL (Static Syntactic Epistemic Logic) is developed. The
semantic assumptions about the agents includes that their epistemic states are
sets of “formulae” in an object language, but include no restrictions on closure
or consistency of such sets. The object language is a propositional language
parameterized by the number of agents n and primitive propositions Θ, and
includes two epistemic operators: 4iX expressing the fact that agent i knows
at least the set X and5iX expressing the fact that agent i knows at most the set
X. Thus, it is assumed that the agents can represent sets. A meta language EL
for reasoning about such agents is introduced. The meta language is similar to
the object language, but uses terms for expressing sets of object language for-
mulae, and has primitives for expressing relations between sets. A sound and
complete calculus is developed for this latter part of the language (the “term
language”). One of the main goals in this thesis was to model agents with fi-
nite epistemic states. To this end a more general model where the agents are
not restricted to finite states was useful as an intermediate result. Semantics
for this case was presented, where each agent’s epistemic state is represented
by a set of object language formulae — possibly in addition to a particular for-
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mula ∗ which does not exist in the meta language. It is argued that the agents
must be able to know a formula like ∗ not expressible in the meta language
in order for there to exist an axiomatization (with finite inference rules) of the
semantics. The structures representing each agent as a (possibly infinite) sub-
set of the object language, extended with ∗, are called General Knowledge Set
Structures (GKSSs). A logical system EC for the language EL is developed, and
proved sound and strongly complete with respect to the set of all GKSSs.

Agents restricted to finite epistemic states, without the ∗ element, are mod-
eled by Knowledge Set Structures (KSSs). This has consequences for (strong)
completeness; an infinite set of formulae could e.g. describe an agent with an
infinite state. Furthermore, this type of incompleteness is fundamental to the
semantics since inconsistency of such descriptions of infinite states cannot al-
ways be axiomatized (with finite inference rules). I describe the theories for
which the logic EC (the same logic as in the unrestricted case) is complete: fini-
tary theories. A proof of finitaryness of the empty set, and thus weak complete-
ness of the logic, is presented. The proof uses the fact that EC is complete with
respect to GKSSs. Although the result seems intuitive, there does not seem to
exist a trivial proof of completeness.

Different variations of modal epistemic logic can be obtained by adding
axioms corresponding to epistemic properties. In Chapter 6 such extensions
of EC were investigated. Epistemic axiom schemata, i.e. axioms describing
purely epistemic properties, corresponds to removing illegal epistemic states.
EC extended with a finitary epistemic axiom schema is sound and (weakly)
complete with respect to the set of KSSs built from only legal epistemic states.
Algebraic conditions on the sets of legal epistemic states induced by an epis-
temic axiom schema are developed, which are sufficient for the axiom schema
to be finitary. Thus, the logic can potentially be extended with an epistemic
axiom schema by i) constructing the sets of legal epistemic states, ii) using the
algebraic conditions to show that the axiom schema is finitary and iii) EC ex-
tended with the axiom schema is thus sound and (weakly) complete w.r.t. the
KSSs constructed from the legal epistemic states.

10.1.2 Part III

Change in finite epistemic states can be seen as agents moving from point to
point in the lattice of such states. In the logic DSEL (Dynamic Syntactic Epis-
temic Logic) developed in Part III agents still have the same type of epistemic
states as in Part II, i.e. finite subsets of the object language, but in addition
have mechanisms. A mechanism models both reasoning and communication;
it maps an epistemic state to a set of n-tuples of sets of object formulae. Each
n-tuple represents the information the agent can send to the other agents and
to himself before the next time step.

The meta language EL from Part II is extended to a meta language TEL
for reasoning about syntactic epistemic states over time. A key point of the
model is that it is non-deterministic; time is branching and agents can cooper-
ate to achieve goals. Therefore, the language is chosen as an extension of the
language of ATL, and includes temporal operators such as 〈〈{i, j}〉〉F 4i {p}
which means that agents i and j can cooperate to make i know p in the future.
In addition, rules and rule operators are introduced. Like knowledge operators
there are two rule operators for knowing at least and at most a set of rules,
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respectively. An example of the former is
;

411{
tt{a,a→b}

tt{a,a→b,b} (agent 1 can reason

with modus ponens); an example of the latter is
;

522{ t
ttu} (every rule agent 2

knows extends the current epistemic state; the mechanism is monotone). Prop-
erties of the communication part of the mechanism can be expressed in a sim-

ilar manner, i.e.
;

512{
{a}
{a}} (agent 1 can only tell agent 2 things he (agent 1)

knows).
DSEL is an extension of SSEL in the following way: the language TEL is an

extension of the language EL, and given a mechanism and a local state for each
agent, DSEL describes a KSS for each point in time.

Mechanisms can be seen as inducing ATL-type concurrent game structures,
and satisfaction is thus defined as ATL-satisfaction with TEL seen as an ATL
language. The induced concurrent game structures have certain properties
such as incomplete information and non-perfect recall.

The small modus ponens example on p. 99 illustrated cooperation, reason-
ing and communication in DSEL. Larger examples of more isolated aspects of
DSEL was illustrated in the three wise men example (Sec. 7.7.1) (reasoning),
and aspects of the Byzantine Generals problem (Ch. 8) (knowing “at most” a
set of rules, communication).

10.2 Conclusions

In this thesis a logic of finite syntactic epistemic states is presented.
The static part of the logic, SSEL, extends the theory of traditional syntactic

structures in two ways: by requiring epistemic states to be finite and by an
operator expressing that at most a set of formulae can be known. A consequence
is that complete axiomatization is non-trivial, and the thesis presents a theory
which is used to show completeness both of a basic system and of the basic
system extended with epistemic properties.

The dynamic part of the logic extends the static part and is based on
alternating-time temporal logic and models agents with mechanisms for rea-
soning and communication. The temporal language is extended with rule op-
erators, which can be used to express properties of the mechanisms. Particu-
larly, rule operators can express “local” properties not easily expressed with
temporal operators. In ATEL, another epistemic logic based on ATL, there is a
problem with the semantics of available choices in indiscernible states, and a
proposal of a syntactical characterization does not express the desired seman-
tics. In DSEL this semantical property is inherent, and can be (partly) expressed
syntactically by using rule operators instead of temporal operators.

The logic is a solution to the logical omniscience problem without introduc-
ing the problem of logical ignorance. It does not follow, in general, from the
fact that an agent knows something that he must know something else, but if
given proper deduction rules it follows that he can get to know it if he chooses
to.

Although DSEL is an extension of SSEL, the latter is a interesting logic in it-
self. The two frameworks are quite different; SSEL is a description of restricted
and very well defined concept and is used to show several theoretical prop-
erties about that concept, while DSEL is a more general model which can be
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applied to several types of problems, but is more complex and does not have
as well understood theoretical properties. The relationship between the logics
has not been properly investigated yet.

10.3 Future Work

The most obvious future work on the logic SSEL from Part II is further develop-
ment of the identification of finitary theories. For the case of epistemic axioms,
the presented algebraic conditions are sufficient but not necessary. Tighter con-
ditions would be interesting. Deciding finitaryness of general, not necessarily
epistemic, axioms should also be investigated. Especially interesting is the Ti
axiom. A general alternative to algebraic conditions of finitaryness could be
a syntactic characterization of the form of axiom schemata, i.e. a definition of
“the language of finitary schemata”.

The logic DSEL from Part III is where most future work is needed. Some
areas are:

• The development of a logical calculus. This would involve extending the
calculus EC for SSEL with an axiomatization of rule- and temporal oper-
ators. However, to my knowledge there does not at the time of writing
exist a complete axiomatization of ATL. Goranko (2001) provides a par-
tial axiomatization, and van der Hoek & Wooldridge (2003) also discuss
properties of the temporal operators in ATL. The properties of rule oper-
ators discussed in Section 7.6.2, Lemmas 7.8 and 7.9, could be a part of an
axiomatization.

• The relation between DSEL and SSEL should be investigated in greater
detail. To this end, an axiomatization (the previous point) could be a great
help. For example, finitary epistemic axioms correspond to removing
certain illegal epistemic states now, while rules and temporals “remove”
certain illegal states in the future.

• Examples of equipping agents with rules implementing particular mech-
anisms, e.g. sound and complete propositional reasoning.

• As a generalization of the previous point: equipping agents with mech-
anisms implementing sound and complete reasoning in the whole object
language; i.e. implementing the EC calculus.

• Integrate DSEL with ATEL or, equivalently, base DSEL on ATEL instead
of ATL, in order to create a logic of both explicit and implicit knowledge
as discussed in Section 9.4.3.

• Model message passing systems in DSEL, as discussed in Section 9.5.1.

• Introduce a “syntactic” common knowledge operator.

• Depending on several of the above points (message passing systems,
common knowledge): the results about the Byzantine Generals problem
and common knowledge discussed in Section 9.5 could be adapted or
compared to an extended version of DSEL.
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• Extending the object language to mirror TEL, in order to model agents
who can reason about the reasoning of other agents. This would e.g. al-
low nested rules and temporals nested inside rules. For example, such a
logic could express the fact that agent i knows the following rule: if agent
j knows p, p → q and agent j knows modus ponens then agent j might
know q in the next time step. This is complicated, because the mean-
ing of temporal formulae change by the act of performing computations.
Active Logics (Section 9.7) provides a framework modeling this type of
reasoning.

Questions of complexity need to be investigated for both SSEL and DSEL.
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Appendix A

A Fixed-point
Characterization of EL

The definitions of AL (Def. 3.5), TL(AL) (Def. 3.2) and EL (Def. 3.6) are collected
in Definition A.1 below.

In the following I write just TL for TL(AL). Also, I shall be pedantic with
respect to the notation for basic terms and use the underlined notation.

The three languages are defined over the alphabet

A = Θ ∪ {4i ,5i ,¬,∧, (, ), .= {, },} (A.1)

I use the following notation for the set of descriptors for finite subsets of a
set X ⊆ A∗:

Fin(X) = {{α1, . . . ,αk} : αi ∈ X, k ≥ 1} (A.2)

Definition A.1

• TL is the least set such that

– Fin(AL) ⊆ TL

– If T, U ∈ TL then (T tU)
(T uU)

}
∈ TL

• AL is the least set such that

– Θ ⊆ AL

– If T ∈ TL then 4iT
5iT

}
∈ AL (1 ≤ i ≤ n)

– Ifα,β ∈ AL then ¬α
(α ∧β)

}
∈ AL

• EL is the least set such that

– AL ⊆ EL

– If T, U ∈ TL then (T .= U) ∈ EL

– Ifφ,ψ ∈ EL then ¬φ
(φ ∧ψ)

}
∈ EL 2
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I show that the three sets are well-defined.

Lemma A.1 The recursive Definition A.1 has a solution. 2

PROOF I show that the associated generating function has a fixed point.
To make the discussion easier, Definition A.1 is rewritten as a set of three

mutually recursive equations:

TL = Fin(AL) ∪ {T tU : T, U ∈ TL} ∪ {T uU : T, U ∈ TL} (A.3)

AL =Θ ∪ {4iT : T ∈ TL} ∪ {5iT : T ∈ TL}∪
{¬φ : φ ∈ AL} ∪ {(φ ∧ψ) : φ,ψ ∈ AL}

(A.4)

EL =AL∪ {T .= U : T, U ∈ TL}∪
{¬φ : φ ∈ EL} ∪ {(φ ∧ψ) : φ,ψ ∈ EL}

(A.5)

The function
g : ℘(A∗)3 → ℘(A∗)3 (A.6)

is defined as a generating function corresponding to the recursive definitions,
as follows (the names of the variables have been changed):

g(TL′, AL′, EL′) = 〈gT(TL′, AL′, EL′), gO(TL′, AL′, EL′), gE(TL′, AL′, EL′)〉
(A.7)

where

gT(TL′, AL′, EL′) = Fin(AL′) ∪ {T tU : T, U ∈ TL′} ∪ {T uU : T, U ∈ TL′}

(A.8)

gO(TL′, AL′, EL′) =Θ ∪ {4iT : T ∈ TL′} ∪ {5iT : T ∈ TL′}∪
{¬φ : φ ∈ AL′} ∪ {(φ ∧ψ) : φ,ψ ∈ AL′}

(A.9)

gE(TL′, AL′, EL′) =AL′ ∪ {T .= U : T, U ∈ TL′}∪
{¬φ : φ ∈ EL′} ∪ {(φ ∧ψ) : φ,ψ ∈ EL′}

(A.10)

Then, an ordering relation v on ℘(A∗)3 is defined:

〈T, O, E〉 v 〈T′, O′, E′〉 ⇔

 T ⊆ T′ and
O ⊆ O′ and
E ⊆ E′

(A.11)

v is a pointed (has bottom) complete partial order, so if we can prove that
g is continuous with respect tovwe have proved that it has a least fixed point.

Define the least upper bound c1 t< c2 of two elements c1, c2 ∈ ℘(A∗)3 in
the usual way. It is easy to see that, for S ⊆ ℘(A∗)3

⊔
<

S = 〈
⋃
{T : 〈T, O, E〉 ∈ S},

⋃
{O : 〈T, O, E〉 ∈ S},

⋃
{E : 〈T, O, E〉 ∈ S}〉

(A.12)
g is continuous iff for every chain C in ℘(A∗)3,

g(
⊔
<

C) =
⊔
<

{g(c) : c ∈ C} (A.13)
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Henceforth, let C = {c1, c2, . . .} where ci v ci+1 be an arbitrary chain in
℘(A∗)31, and let ci = 〈Ti , Oi , Ei〉. Clearly, {Ti : ci ∈ C}, {Oi : ci ∈ C} and
{Ei : ci ∈ C} are all chains in ℘(A∗), and Ti ⊆ Ti+1, Oi ⊆ Oi+1 and Ei ⊆ Ei+1.

Let S = {S1, S2, . . .} be a chain in ℘(A∗). I show two properties of S. The
first is:

Fin(
⋃

i
{Si}) =

⋃
i
{Fin(Si)} (A.14)

I show that this equation holds. First, let x ∈ ⋃
i{Fin(Si)}. Then, x ∈ Fin(S j)

for some j, and x = {α1, . . . ,αk}whereαi ∈ S j. Since S j ⊆
⋃

i{Si},αi ∈
⋃

i{Si}
and thus x ∈ Fin(

⋃
i{Si}). Second, let x = {α1, . . . ,αk} ∈ Fin(

⋃
i{Si}). Then

αi ∈
⋃

i{Si}, so for eachαi there is a S′i such thatα∈S′i.

The chain S′1, . . . , S′k is finite, so it contains it’s least upper bound – let the
lub be S′j. Since S′1 ∪ . . . ∪ S′k = S′j, we have that αi ⊆ S′j for all i and so
x ∈ Fin(S′j). Since S′j ∈ S, x ∈ ⋃

i{Fin(Si)}.

The second property of the chain S we need is:

x1, x2 ∈
⋃

i
{Si} iff there is some S j such that x1, x2 ∈ S j (A.15)

If x1, x2 ∈
⋃

i{Si} then there exist S1, S2 such that x1 ∈ S1 and x2 ∈ S2. If
S1 ⊆ S2 then x1, x2 ∈ S2 and if S2 ⊆ S1 then x1, x2 ∈ S1. Conversely, if
x1, x2 ∈ S j for some S j then x1, x2 ∈

⋃
i{Si} trivially.

In order to show eq. A.13, I first show that

gT(
⊔
<

C) =
⋃
{gT(c) : c ∈ C} (A.16)

1A chain in ℘(A∗)3 is countable.
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gT(
⊔
<

C) =gT(
⋃

i
{Ti},

⋃
i
{Oi},

⋃
i
{Ei}) By (A.12) (A.17)

=Fin(
⋃

i
{Oi}) ∪ {T tU : T, U ∈

⋃
i
{Ti}}

∪ {T uU : T, U ∈
⋃

i
{Ti}} (A.18)

=
⋃

i
{Fin(Oi)} ∪ {T tU : T, U ∈

⋃
i
{Ti}}

∪ {T uU : T, U ∈
⋃

i
{Ti}} By (A.14) (A.19)

=
⋃

i
{Fin(Oi)} ∪ {T tU : T, U ∈ Tjfor some Tj}

∪ {T uU : T, U ∈ Tjfor some Tj} By (A.15) (A.20)

=
⋃

i
{Fin(Oi)} ∪

⋃
i
{T tU : T, U ∈ Ti} (A.21)

∪
⋃

i
{T uU : T, U ∈ Ti} (A.22)

=
⋃
{Fin(Oi) ∪ {T tU : T, U ∈ Ti}
∪ {T uU : T, U ∈ Ti} : 〈Ti , Oi , Ei〉 ∈ C} (A.23)

=
⋃
{gT(c) : c ∈ C} (A.24)

Second, I show that

gO(
⊔
<

C) =
⋃
{gO(c) : c ∈ C} (A.25)

gO(
⊔
<

C) = gO(
⋃

i
{Ti},

⋃
i
{Oi},

⋃
i
{Ei}) By (A.12)

=Θ ∪ {4iT : T ∈
⋃

i
{Ti}} ∪ {5iT : T ∈

⋃
i
{Ti}}∪

{¬φ : φ ∈
⋃

i
{Oi}} ∪ {(φ ∧ψ) : φ,ψ ∈

⋃
i
{Oi}}

(A.26)

=Θ ∪ {4iT : T ∈
⋃

i
{Ti}} ∪ {5iT : T ∈

⋃
i
{Ti}}∪

{¬φ : φ ∈
⋃

i
{Oi}} ∪ {(φ ∧ψ) : φ,ψ ∈ O jfor some O j}

By (A.15)

=Θ ∪
⋃

i
{4iT : T ∈ Ti} ∪

⋃
i
{5iT : T ∈ Ti}∪⋃

i
{¬φ : φ ∈ Oi} ∪

⋃
i
{(φ ∧ψ) : φ,ψ ∈ Oi}

(A.27)

=
⋃
{Θ ∪ {4iT : T ∈ Ti} ∪ {5iT : T ∈ Ti}∪
{¬φ : φ ∈ Oi} ∪ {(φ ∧ψ) : φ,ψ ∈ Oi} : 〈Ti , Oi , Ei〉 ∈ C

(A.28)

=
⋃
{gO(c) : c ∈ C} (A.29)
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Third, I show that

gE(
⊔
<

C) =
⋃
{gE(c) : c ∈ C} (A.30)

gE(
⊔
<

C) = gE(
⋃

i
{Ti},

⋃
i
{Oi},

⋃
i
{Ei}) By (A.12)

=
⋃

i
{Oi} ∪ {T

.= U : T, U ∈
⋃

i
{Ti}}∪

{¬φ : φ ∈
⋃

i
{Ei}} ∪ {(φ ∧ψ) : φ,ψ ∈

⋃
i
{Ei}}

(A.31)

=
⋃

i
{Oi} ∪ {T

.= U : T, U ∈ Tjfor some Tj}∪

{¬φ : φ ∈
⋃

i
{Ei}} ∪ {(φ ∧ψ) : φ,ψ ∈ E jfor some E j}

(A.32)

=
⋃

i
{Oi} ∪

⋃
i
{T .= U : T, U ∈ Ti}∪⋃

i
{¬φ : φ ∈ Ei} ∪

⋃
i
{(φ ∧ψ) : φ,ψ ∈ Ei}

(A.33)

=
⋃
{Oi ∪ {T

.= U : T, U ∈ Ti}∪
{¬φ : φ ∈ Ei} ∪ {(φ ∧ψ) : φ,ψ ∈ Ei} : 〈Ti , Oi , Ei〉 ∈ C}

(A.34)

=
⋃
{gE(c) : c ∈ C} (A.35)

Finally, I show eq. A.13:

g(
⊔
<

C) = 〈gT(
⊔
<

C), gO(
⊔
<

C), gE(
⊔
<

C)〉 (A.36)

= 〈
⋃
{gT(c) : c ∈ C},

⋃
{gO(c) : c ∈ C},

⋃
{gE(c) : c ∈ C}〉 (A.37)

By (A.16),(A.25),(A.30) (A.38)

=
⊔
<

{g(c) : c ∈ C} By (A.12)

Thus g has a (least) fixed point, which is a solution to the recursive defini-
tion.

Corollary A.1 (Fixed Point Characterization of TL, AL and EL) Let g be as de-
fined in the proof of Lemma A.1.

〈TL, AL, EL〉 =
⊔
<

{gn(∅, ∅, ∅) : n ≥ 0} (A.39)
2
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Appendix B

Proof of Lemma 4.1

To save space, I only show proofs for selected parts of the lemma. Formally,
Corollary 4.2 shows that the term calculus is complete and hence that the rest
of the lemma also holds. All parts of the lemma which is used in the proof of
Corollary 4.2 are proven below.

1.

1 ` T u (T tU) .= T T11
2 ` T .= T u (T tU) MP(T2,1)
3 ` T .= T T1
4 ` T t T .= T t (T u (T tU)) MP(T4,2,3)
5 ` T t (T u (T tU)) .= T T10
6 ` T t T .= T t (T u (T tU)) ∧ T t (T u (T tU)) .= T MP(Prop,4,5)
7 ` T t T .= T MP(T3,6)

2.

1 ` T t (T uU) .= T T10
2 ` T .= T t (T uU) MP(T2,1)
3 ` T .= T T1
4 ` T u T .= T u (T t (T uU)) MP(T5,2,3)
5 ` T u (T t (T uU)) .= T T11
6 ` T u T .= T u (T t (T uU)) ∧ T u (T t (T uU)) .= T MP(Prop,4,5)
7 ` T u T .= T MP(T3,6)
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12.

1 ` T .= U t T ∧U t T .= U → T .= U T3
2 ` U t T .= T → T .= U t T T2
3 ` T tU .= U → U t T .= U MP(Prop,T4,T6)
4 ` T tU .= U ∧U t T .= T → U t T .= U ∧ T .= U t T MP(Prop,2,3)
5 ` T tU .= U ∧U t T .= T → T .= U MP(T3,1,4)
6 ` T .= U → T tU .= U tU MP(Prop,T4,T1)
7 ` U tU .= U L.4.1.1
8 ` T .= U → T tU .= U MP(Prop,T3,6,7)
9 ` U .= T → U t T .= T t T MP(Prop,T4,T1)
10 ` T t T .= T L.4.1.1
11 ` U .= T → U t T .= T MP(Prop,T3,9,10)
12 ` T .= U → U .= T T2
13 ` T .= U → U t T .= T MP(T3,11,12)
14 ` T .= U ↔ T tU .= U ∧U t T .= T MP(Prop,5,8,13)

13.

1
`(T tU) u (T tV) .=
((T tU) u T) t ((T tU) uV)

T12

2 ` T u (T tU) .= T T11
3 ` (T tU) uV .= V u (T tU) T7
4 ` V u (T tU) .= (V u T) t (V uU) T12
5 ` (T tU) uV .= (V u T) t (V uU) MP(T3,3,4)

6
`((T tU) u T) t ((T tU) uV) .=

T t ((V u T) t (V uU))
MP(T4,2,5)

7 ` (T tU) u (T tV) .= T t ((V u T) t (V uU)) MP(T3,1,6)

8
`T t ((V u T) t (V uU)) .=
(T t (V u T)) t (V uU)

T8

9 ` (T tU) u (T tV) .= (T t (V u T)) t (V uU) MP(T3,7,8)
10 ` V u T .= T uV T2
11 ` T .= T T1
12 ` T t (V u T) .= T t (T uV) MP(T4,10,11)
13 ` T t (T uV) .= T T10
14 ` T t (V u T) .= T MP(T3,12,13)
15 ` V uU .= U uV T2
16 ` (T t (V u T)) t (V uU) .= T t (U uV) MP(T4,14,15)
17 ` (T tU) u (T tV) .= T t (U uV) MP(T3,9,16)
18 ` T t (U uV) .= (T tU) u (T tV) MP(T2,17)



Appendix C

Proof of Lemma 4.5

I prove both parts of the lemma simultaneously, by induction over the degree
of T1 t T2 (of course, d(T1) ≤ d(T1 t T2) ≥ d(T2)).

Induction basis (Lemma 4.5) For the induction basis, let d(T1 t T2) = 1 – in
which case d(T1) = d(T2) = 1. I first show an intermediate result:

If d({α}) = d({β}) = 1 and [α] 6= [β] then ` ¬({α} .= {β}) (C.1)

Let d({α}) = d({β}) = 1 and [α] 6= [β]. I show (C.1) by structural
induction over α. Note that since {α} and {β} are of degree 1, neither α
or β can contain subformulas4iT or5iT.

Induction basis (C.1) For the single base case, let α = p. Then [α] = p.
Assume that [β] 6= p. Then β 6= p, and

` ¬({α} .= {β}) (C.2)

holds by N2.

Induction step (C.1) For the induction step, first letα = ¬γ – then d({γ}) =
1 and [α] = ¬[γ]. The induction hypothesis is that, for all γ′ with
d({γ′}) = 1, if [γ] 6= [γ′] then ` ¬({γ} .= {γ′}). [β] 6= ¬[γ]. If β
starts with a negation, β = ¬β′ where d({β′}) = 1 and [γ] 6= [β′].
Then ` ¬({γ} .= {β′}) by the induction hypothesis, and (C.2) fol-
lows by N7. If β does not start with a negation, (C.2) follows by N8.
For the second part of the induction step, let α = (γ1 ∧ γ2). Then
[α] = ([γ1] ∧ [γ2]). [β] 6= ([γ1] ∧ [γ2]). If β is not a conjunction,
then (C.2) follows by N10. If β = (β1 ∧ β2) then ([γ1] ∧ [γ2]) 6=
([β1] ∧ [β2]). Then either [γ1] 6= [β1] or [γ2] 6= [β2] and either
` ¬({γ1}

.= {β1}) or ` ¬({γ2}
.= {β2}) holds by the induction

hypothesis, and then (C.2) follows by N9.

I now show that, if {β j} (1 ≤ j ≤ l) are terms,

If d(T) = 1 and [T] = {[β1], . . . , [βl ]} then ` T .= {β1, . . . ,βl} (C.3)

by structural induction over T. I make use of the fact that for any term S
of degree 1, if [S] = {[α1], . . . , [αk]} then [α j] = α j (1 ≤ j ≤ k) (because

165
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d({α j}) = 1;α j cannot contain any knowledge operators) and thus [S] =
{α1, . . . ,αk}1. Let [T] = {[β1], . . . , [βl ]} = {β1, . . . ,βl}.

Induction basis (C.3) For the induction basis, let T = {α1, . . . ,αk}. Then
{[β1], . . . , [βl ]} = [T] = {[α1], . . . , [αk]}, {β1, . . . ,βl} = {α1, . . . ,αk}
and ` {α1, . . . ,αk}

.= {β1, . . . ,βl} by Lemma 4.2.
Induction step (C.3) For the induction step, first consider the case when

T = U t V. [U] ∪ [V] = {[β1], . . . , [βl ]}, so [U] = {[βU
1 ], . . . , [βU

kU
]}

and [V] = {[βV
1 ], . . . , [βV

kV
]}, where each βU

j ,βV
j ∈ {β1, . . . ,βl}.

1 ` U .= {βU
1 , . . . ,βU

kU
} Ind. hyp.

2 ` V .= {βV
1 , . . . ,βV

kV
} Ind. hyp.

3 ` U tV .= {βU
1 , . . . ,βU

kU
} tV Repl,1

4 ` {βU
1 , . . . ,βU

kU
} tV .= {βU

1 , . . . ,βU
kU
} t {βV

1 , . . . ,βV
kV
} Repl,2

5 ` U tV .= {βU
1 , . . . ,βU

kU
} t {βV

1 , . . . ,βV
kV
} MP,T3,3,4

From several applications of T13, and Repl, we have that

6 ` {βU
1 , . . . ,βU

kU
} t {βV

1 , . . . ,βV
kV
} .=

{βU
1 , . . . ,βU

kU
,βV

1 , . . . ,βV
kV
}

7 ` U tV .= {βU
1 , . . . ,βU

kU
,βV

1 , . . . ,βV
kV
} MP,T3,5,6

The sequenceβU
1 , . . . ,βU

kU
,βV

1 , . . . ,βV
kV

is a permutation, possibly with
duplicates, of the sequence β1, . . . ,βl , so

` U tV .= {β1, . . . ,βl}

by Lemma 4.2 and T3. For the second case in the induction step,
let T = U u V where [U] = {[αU

1 ], . . . , [αU
kU

]} = {αU
1 , . . . ,αU

kU
} and

[V] = {[αV
1 ], . . . , [αV

kV
]} = {αV

1 , . . . ,αV
kV
}. In order to prove this case,

I first show that

` {αU
1 , . . . ,αU

kU
} u {αV

1 , . . . ,αV
kV
} .= {β1, . . . ,βl} (C.4)

We have that

` {αU
1 , . . . ,αU

kU
} u {αV

1 , . . . ,αV
kV
} .=

({αU
1 } u {αV

1 }) t ({αU
1 } u {αV

2 }) t · · · t ({αU
1 } u {αV

kV
})t

({αU
2 } u {αV

1 }) t ({αU
2 } u {αV

2 }) t · · · t ({αU
2 } u {αV

kV
})t

...

({αU
kU
} u {αV

1 }) t ({αU
kU
} u {αV

2 }) t · · · t ({αU
kU
} u {αV

kV
}) (C.5)

1Recall that S is a term and an expression like S = {α1 , . . . ,αk} is a shorthand for S =
{α1 , . . . ,αk}, while [S] is a set and an expression like [S] = {α1 , . . . ,αk} denotes the set consist-
ing of the elements α1 , . . . ,αk . It is only a formula which does not contain a knowledge operator,
e.g. all formulae in a term of degree 1, that has an interpretation equal to the formula itself.
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by T13 and repeated applications of T12, Repl and the axioms of
equality. The above expression contains exactly one term on the
form {αU} u {αV} for each pair αU ∈ [U],αV ∈ [V]. If β ∈ [T],
thenαU

i = β ∈ [U] andαV
j = β ∈ [V] and we have ` {αU

i }
.= {αV

j }
by T1 and thus ` {αU

i } u {α
V
j }

.= {β} by T14. If αU
i ∈ [U] but

αU
i 6∈ [T], for every αV

j ∈ [V] αU
i 6= αV

j , and because [αU
i ] = αU

i

and [αV
j ] = αV

j ({αU
i }, {α

V
j } are of degree 1), ` ¬({αU

i }
.= {αV

j }) by

(C.1) and thus ` {αU
i } u {α

V
j }

.= ∅ by T15. Similarly, if αV
j ∈ [V]

but αV
j 6∈ [T], ` {αU

i } u {α
V
j }

.= ∅ for every αU
i ∈ [U]. Then, (C.4)

follows by (C.5), Repl and T13. I now use (C.4) to show the current
induction step:

1 ` U .= {αU
1 , . . . ,αU

kU
} Ind. hyp.

2 ` V .= {αV
1 , . . . ,αV

kV
} Ind. hyp.

3 ` U uV .= {αU
1 , . . . ,αU

kU
} u {αV

1 , . . . ,αV
kV
} MP,T5,1,2

4 ` {αU
1 , . . . ,αU

kU
} u {αV

1 , . . . ,αV
kV
} .= {β1, . . . ,βl} (C.4)

5 ` U uV .= {β1, . . . ,βl} MP,T3,3,4

This completes the proof of (C.3).

I can now show the base case in the inductive proof over the degree
of T1 t T2. Let α j,β j be such that [T1] = {[α1], . . . , [αk]} and [T2] =
{[β1], . . . , [βm]}. First, consider the case that [T1] = [T2]:

1 ` T1
.= {α1, . . . ,αk} (C.3)

2 ` T2
.= {α1, . . . ,αk} (C.3)

3 ` {α1, . . . ,αk}
.= T2 MP,T2,2

4 ` T1
.= T2 MP,T3,1,3

Second, consider the case that [T1] 6= [T2]. I show that

` ¬({α1, . . . ,αk}
.= {β1, . . . ,βm}) (C.6)

I assume that there is an [αi] ∈ [T1] such that [αi] 6∈ [T2] (the proof is
equivalent in the case that [βi] ∈ [T2] and [βi] 6∈ [T1]). Since [αi] 6= [β j]
(1 ≤ j ≤ m), ` ¬({αi}

.= {β j}) by (C.1) and ` ¬(({αi}
.= {β1}) ∨

· · · ∨ ({αi}
.= {βm})) by Prop. By Prop and N1, ` ¬({α1, . . . ,αk} �

{β1, . . . ,βm}) and (C.6) follows by Lemma 4.1.12. By (C.3) ` {α1, . . . ,αk}
.=

T1, and by (C.6), T3 and Prop

` ¬(T1
.= {β1, . . . ,βm}) (C.7)

By (C.3) ` {β1, . . . ,βm}
.= T2, and by (C.7), T3, Prop and T2,

` ¬T1
.= T2

This completes the base case in the inductive proof of the lemma.
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Induction step (Lemma 4.5) For the induction step, let the lemma hold for all
terms T1, T2 such that d(T1 t T2) ≤ k. Let d(T1 t T2) = k + 1. I now show
two intermediate results. I first show that

If d({α}) ≤ k + 1 ≥ d({β}) and [α] = [β] then ` {α} .= {β} (C.8)

for all β by structural induction over α. Let d({α}) ≤ k + 1 ≥ d({β})
and [α] = [β].

Induction basis (C.8) For the first base case, letα = p ∈ Θ. Then β = p,
and

` {α} .= {β} (C.9)

follows by T1. For the second base case, let α = 4iS1. Then β =
4iS2 where [S1] = [S2]. d(S1) ≤ k ≥ d(S2), so d(S1 t S2) ≤ k
and ` S1

.= S2 holds by the induction hypothesis (in the “outmost”
inductive proof). (C.9) follows by N3. Similarly, in the third base
case when α = 5iS1 and β = 5iS2, (C.9) follows by the induction
hypothesis and N5.

Induction step (C.8) For the induction step, first letα = ¬γ – then [α] =
¬[γ]. The induction hypothesis is that, for all γ′, if [γ] = [γ′] then
` {γ} .= {γ′}. β must start with a negation; say β = ¬β′ where
[β′] = [γ]. ` {γ} .= {β′} by the induction hypothesis, and (C.9)
follows by N7. For the second part of the induction step, let α =
(γ1 ∧ γ2). Then [α] = ([γ1] ∧ [γ2]). β must be a conjunction; say
β = (β1 ∧ β2) where [β1] = [γ1] and [β2] = [γ2]. ` {γ1}

.= {β1}
and ` {γ2}

.= {β2} by the induction hypothesis, and (C.9) follows
by N9.

Second, I show a general version of (C.1):

If d({α}) ≤ k + 1 ≥ d({β}) and [α] 6= [β] then ` ¬{α} .= {β} (C.10)

for all β by structural induction over α. Let d({α}) ≤ k + 1 ≥ d({β})
and [α] 6= [β].

Induction basis (C.10) For the first base case, let α = p. Then [α] = p.
Then β 6= p, and

` ¬({α} .= {β}) (C.11)

follows by N2. For the second base case, let α = 4iS1. Then [α] =
4i[S1] and [β] 6= 4i[S1]. If β 6= 4iS2 (for any S2), then (C.11)
follows by N4. If β = 4iS2 (for some S2), then [S2] 6= [S1]. d(S1) ≤
k ≥ d(S2), so d(S1 t S2) ≤ k and ` ¬S1

.= S2 holds by the induction
hypothesis (in the “outmost” inductive proof). (C.11) follows by N3.
Similarly, in the third base case when α = 5iS1 and β 6= 4iS2 (for
any S2) then (C.11) follows by N6, and if α = 5iS1 and β = 5iS2,
(C.11) follows by the induction hypothesis and N5.

Induction step (C.10) For the induction step, first let α = ¬γ – then
[α] = ¬[γ]. The induction hypothesis is that, for all γ′, if [γ] 6= [γ′]
then ` ¬({γ} .= {γ′}). [β] 6= ¬[γ]. If β starts with a negation,
β = ¬β′ where [γ] 6= [β′], then ` ¬({γ} .= {β′}) by the induc-
tion hypothesis, and ` ¬({¬γ} .= {¬β′}) by N7. If β does not
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start with a negation, (C.11) follows by N8. For the second part
of the induction step, let α = (γ1 ∧ γ2). Then [α] = ([γ1] ∧ [γ2]).
[β] 6= ([γ1] ∧ [γ2]). If β is not a conjunction, then (C.11) follows
by N10. If β = (β1 ∧ β2) then ([γ1] ∧ [γ2]) 6= ([β1] ∧ [β2]). Then
either [γ1] 6= [β1] or [γ2] 6= [β2] and either ` ¬({γ1}

.= {β1})
or ` ¬({γ2}

.= {β2}) holds by the induction hypothesis, and then
(C.11) follows by N9.

As in the base case, I use structural induction over T to prove

If d(T) ≤ k + 1 and [T] = {[β1], . . . , [βl ]} then ` T .= {β1, . . . ,βl}
(C.12)

Let d(T) ≤ k + 1 and [T] = {[β1], . . . , [βl ]}. Clearly, d({β j}) ≤ k + 1
(1 ≤ j ≤ l).

Induction basis (C.12) For the base case, let T = {α1, . . . ,αl} (in the base
case T is a basic term, and it must consist of l formulae since there
are l elements in [T]). {[α1], . . . , [αl ]} = {[β1, . . . , [βl ]}, and I assume
that [α j] = [β j] (1 ≤ j ≤ l) for simplicity (otherwise just change the
indices). By T13 ` T .= {α1} t · · · t {αl}, by (C.8) ` {α j}

.= {β j},
and by repeated applications of Repl and T3, ` T .= {β1} t · · · t
{βl} and thus ` T .= {β1, . . . ,βl} by T13 – which is what we needed
to show for the basis in the structural induction over T.

Induction step (C.12) For the induction step, consider the case when T =
U tV. In this case the proof of (C.12) is identical to the correspond-
ing proof in the base case (d(TtU) = 1): Let [U] = {[βU

1 ], . . . , [βU
kU

]}
and [V] = {[βV

1 ], . . . , [βV
kV

]}, where each βU
j ,βV

j ∈ {β1, . . . ,βl}.

1 ` U .= {βU
1 , . . . ,βU

kU
} Ind. hyp.

2 ` V .= {βV
1 , . . . ,βV

kV
} Ind. hyp.

3 ` U tV .= {βU
1 , . . . ,βU

kU
} tV Repl,1

4 ` {βU
1 , . . . ,βU

kU
} tV .= {βU

1 , . . . ,βU
kU
} t {βV

1 , . . . ,βV
kV
} Repl,2

5 ` U tV .= {βU
1 , . . . ,βU

kU
} t {βV

1 , . . . ,βV
kV
} MP,T3,3,4

From several applications of T13, and Repl, we have that

6 ` {βU
1 , . . . ,βU

kU
} t {βV

1 , . . . ,βV
kV
} .=

{βU
1 , . . . ,βU

kU
,βV

1 , . . . ,βV
kV
}

7 ` U tV .= {βU
1 , . . . ,βU

kU
,βV

1 , . . . ,βV
kV
} MP,T3,5,6

The sequenceβU
1 , . . . ,βU

kU
,βV

1 , . . . ,βV
kV

is a permutation, possibly with
duplicates, of the sequence β1, . . . ,βl , so

` U tV .= {β1, . . . ,βl}

by Lemma 4.2 and T3. For the second case in the induction step, let
T = UuV where [U] = {[αU

1 ], . . . , [αU
kU

]} and [V] = {[αV
1 ], . . . , [αV

kV
]}.
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Since d(U) ≤ k + 1 ≥ d(V), d({αU
jU
}) ≤ k + 1 ≥ d({αV

jV
}) (1 ≤

jU ≤ kU , 1 ≤ jV ≤ kV). I proceed exactly as in the base case
(d(T tU) = 1) by first proving (C.4):

` {αU
1 , . . . ,αU

kU
} u {αV

1 , . . . ,αV
kV
} .= {β1, . . . ,βl} (C.13)

in the same way as in the base case. Again, we have that

` {αU
1 , . . . ,αU

kU
} u {αV

1 , . . . ,αV
kV
} .=

({αU
1 } u {αV

1 }) t ({αU
1 } u {αV

2 }) t · · · t ({αU
1 } u {αV

kV
})t

({αU
2 } u {αV

1 }) t ({αU
2 } u {αV

2 }) t · · · t ({αU
2 } u {αV

kV
})t

...

({αU
kU
} u {αV

1 }) t ({αU
kU
} u {αV

2 }) t · · · t ({αU
kU
} u {αV

kV
}) (C.14)

by T13 and repeated applications of T12, Repl and the axioms of
equality. The above expression contains exactly one term on the
form {αU} u {αV} for each pair [αU ] ∈ [U], [αV ] ∈ [V]. If [β] ∈
[T], then [αU

h ] = [β] ∈ [U] and [αV
j ] = [β] ∈ [V], for some h, j.

Since d({αV
h }), d({αV

j }), d({β}) ≤ k + 1, ` {αV
j }

.= {β} and `
{αU

h }
.= {β} by (C.8) and ` {αU

h } u {α
V
j }

.= {αU
h } u {β} by Repl.

By T14 ` {β} u {αU
h }

.= {β}, and thus ` {αU
h } u {α

V
j }

.= {β}, by

equational calculus. If [αU
h ] ∈ [U] but [αU

h ] 6∈ [T], then, for every
[αV

j ] ∈ [V], [αU
h ] 6= [αV

j ], and, since d({αU
h }) ≤ k + 1 ≥ d({αV

j }),

` ¬({αU
h }

.= {αV
j }) by (C.10) and thus ` {αU

h } u {α
V
j }

.= ∅ by T15.

Similarly, if [αV
j ] ∈ [V] but [αV

j ] 6∈ [T], ` {αU
h } u {α

V
j }

.= ∅ for every

[αU
h ] ∈ [U]. Thus, (C.13) follows by (C.14), Repl and T13. I now use

(C.13) to show the current induction step:

1 ` U .= {αU
1 , . . . ,αU

kU
} Ind. hyp.

2 ` V .= {αV
1 , . . . ,αV

kV
} Ind. hyp.

3 ` U uV .= {αU
1 , . . . ,αU

kU
} u {αV

1 , . . . ,αV
kV
} MP,T5,1,2

4 ` {αU
1 , . . . ,αU

kU
} u {αV

1 , . . . ,αV
kV
} .= {β1, . . . ,βl} (C.13)

5 ` U uV .= {β1, . . . ,βl} MP,T3,3,4

This completes the proof of (C.12).

(C.12) can now be used show the the inductive step in the proof of the
lemma, in exactly the same way I used (C.3) and (C.6) in the base case:
Clearly, there exists α j,β j such that [T1] = {[α1], . . . , [αk]} and [T2] =
{[β1], . . . , [βm]}. First, consider the case that [T1] = [T2]:

1 ` T1
.= {α1, . . . ,αk} (C.12)

2 ` T2
.= {α1, . . . ,αk} (C.12)

3 ` {α1, . . . ,αk}
.= T2 MP,T2,2

4 ` T1
.= T2 MP,T3,1,3
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Second, consider the case that [T1] 6= [T2]. As in the base case, I show
that:

` ¬({α1, . . . ,αk}
.= {β1, . . . ,βm}) (C.15)

I assume that there is an [αi] ∈ [T1] such that [αi] 6∈ [T2] (the proof is
equivalent in the case that [βi] ∈ [T2] and [βi] 6∈ [T1]). Since [αi] 6= [β j]
and d({αi}) ≤ k + 1 ≥ d({β j}) (1 ≤ j ≤ m), ` ¬({αi}

.= {β j}) by
(C.10) and ` ¬(({αi}

.= {β1}) ∨ · · · ∨ ({αi}
.= {βm})) by Prop. By Prop

and N1, ` ¬({α1, . . . ,αk} � {β1, . . . ,βm}) and (C.15) follows by Lemma
4.1.12.

By (C.12) ` {α1, . . . ,αk}
.= T1, and by (C.15), T3 and Prop

` ¬(T1
.= {β1, . . . ,βm}) (C.16)

By (C.12) ` {β1, . . . ,βm}
.= T2, and by (C.16), T3, Prop and T2,

` ¬T1
.= T2
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Appendix D

Proof of Theorem 8.2

Theorem 8.2 is proved by proving the slightly different version in the following
lemma.

Lemma D.1 Let

m =
{
b n

3 c n not divisible by 3
n
3 − 1 otherwise

Let
R |=

∧
i∈Ags

;

♦ii{
t
u
} ∧

∧
i 6= j∈Ags

;

♦i jOral(i, j)

(note that R is unique by Lemma 7.3.4). Let

R, (~s, π) |= Γ

There exists monotone ~fAgs ∈ Str(Ags, R) such that for all G ⊆ Ags with |G| ≥
n−m, for all λ ∈ outR(~fG ,~s) there exists a k such that

R, (λ[k], π) |= IC(G) 2

The Theorem follows from Lemma D.1 by taking |G| > 2n/3. It must be
shown that |G| ≥ n−m:

If n|3, then m = n/3− 1, and |G| ≥ 2n/3 + 1. n− m = n− (n/3− 1) =
2n/3 + 1 = |G|.

If n 6 |3, then m = bn/3c, and |G| ≥ d2n/3e. n−m = n− bn/3c = d2n/3e,
so |G| ≥ n−m.

D.1 Proof of Lemma D.1

This proof is an adaption of a proof by Lamport, Shostak, & Pease (1982) and
is, as noted previously, sketchy at some points.

Let

m =
{
b n

3 c n not divisible by 3
n
3 − 1 otherwise

R |= ∧
i∈Ags

;

♦ii{ t
u} ∧

∧
i 6= j∈Ags

;

♦i jOral(i, j)

R, (~s, π) |= Γ

173
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Clearly,

Ri(s) = {(s1, . . . , sn) :

si ∈ ℘fin(OL), s j ∈ {{4 j{¬¬4i {α}}, {4 j{¬4i {α}} : α ∈ OL}} (D.1)

for all i ∈ Ags and s ∈ ℘fin(OL). Note that

n > 3m (D.2)

because if n|3, n > 3m = n− 3; if n 6 |3, n > 3b n
3 c since b n

3 c < n
3 when n 6 |3.

Before ~fAgs is constructed, a few helpful notions are defined.
Given a set of agents A ⊆ Ags, the set of strings of m distinct agent names

over A is:

AS(A, m) =
{
{a1 · · · am : ai 6= a j, ai , a j ∈ A, i, j ∈ [1, m]} if m > 0
{ε} if m = 0

I write AS(A) for the set ∪1≤ j≤|A|AS(A, j). I assume a fixed, but arbitrary, total
ordering on AS(Ags): γ1, . . . ,γp. Henceforth, this ordering is assumed when
comparing elements of AS(Ags). Sometimes I will abuse notation and treat a
member γ ∈ AS(A) as a set.

Let γ = a1 · · · ak ∈ AS(Ags, k) andα ∈ AL. I write

4γα

for
4a1{4a2 · · · {4ak{α}}}

If γ = ε (the empty string) then4γφ = φ.
The following set of atomic propositions is used:

Θ = {ci : i ≥ 1} ∪ {ri : i ≥ 0} ∪ {sentγ : γ ∈ AS(Ags)}
∪ {calcγ : γ ∈ AS(Ags)} ∪ {attack}

The propositions are used by the agents to keep track of the progress of
the algorithm. The strategy described below is effectively a linearized version
of the recursive algorithm described by Lamport, Shostak, & Pease (1982), as
is the following proofs. The reader must be warned that the idea behind the
algorithm and the proofs may be hard obtain from the presentation below;
the idea is however best explained by the mentioned recursive algorithm and
corresponding proofs and I thus refer to Lamport, Shostak, & Pease (1982).

The λs correspond to the messages sent between the generals. The cis and
ris are used to keep track of the recursion depth; specifically they respectively
correspond to the different communication and reasoning steps. The sentγs and
calcγs are used within respectively the communication and reasoning steps to
keep track of which messages have been sent or calculated.

Now, ~fAgs = { fi : i ∈ Ags} is defined.
Let

fi : ℘fin(OL)→ (℘fin(OL))n

be defined as follows for any agent i ∈ Ags:

fi(s) = (s1, . . . , sn)

where (explanation follows after the description)
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step ck: If rl 6∈ s for all l: Let k = m if cm ∈ s or else the lowest number in
[0, m− 1] such that ck+1 6∈ s:

a) If {sentγ : γ ∈ AS(Ags \ {i}, k)} * s: Let γ be the least member of
AS(Ags \ {i}, k) such that sentγ 6∈ s.

i) If4i{¬¬4γ {attack}} ∈ s and 4i {¬4γ {attack}} 6∈ s:
1) si = s ∪ {4i{4γ{attack}}, sentγ}
2) j ∈ Ags \ ({i} ∪γ): s j = {4 j{¬¬4i {4γ{attack}}}}
3) j ∈ γ: s j = ∅

ii) Otherwise:
1) si = s ∪ {¬4i {4γ{attack}}, sentγ}
2) j ∈ Ags \ ({i} ∪γ): s j = {4 j{¬4i {4γ{attack}}}}
3) j ∈ γ: s j = ∅

b) If {sentγ : γ ∈ AS(Ags \ {i}, k)} ⊆ s:

i) si =
{

si = s ∪ {ck+1} if k < m
si = s ∪ {r0} if k ≥ m

ii) s j, j 6= i: s j = ∅.

step r0: If r0 ∈ s and rl 6∈ s for all l 6= 0:

a) si:

i) If {calcγ : γ ∈ AS(Ags \ {i}, m + 1)} * s: Let γ be the least mem-
ber of AS(Ags \ {i}, m + 1) such that calcγ 6∈ s. If 4i{¬¬ 4γ
{attack}} ∈ s let x = 4γ{attack}, otherwise let x = ¬ 4γ
{attack}. Let si = s ∪ {x, calcγ}.

ii) If {calcγ : γ ∈ AS(Ags \ {i}, m + 1)} ⊆ s: si = s ∪ {r1}
b) s j, j 6= i: s j = ∅.

step rk: If rk ∈ s, k > 0, and rl 6∈ s for all l > k:

a) si:

i) If {calcγ : γ ∈ AS(Ags \ {i}, m− k + 1)} * s: Let γ be the least
member of AS(Ags \ {i}, m− k + 1) such that calcγ 6∈ s. Let

X = { j : 4 j{4γ{attack}} ∈ s, j ∈ Ags \ γ}

X = { j : 4 j{4γ{attack}} 6∈ s, j ∈ Ags \ γ}

1) If |X| > |X|: si = s ∪ {4γ{attack}, calcγ}
2) If |X| ≤ |X|: si = s ∪ {¬4γ {attack}, calcγ}

ii) If {calcγ : γ ∈ AS(Ags \ {i}, m− k + 1)} ⊆ s:
1) If k < m + 1: si = s ∪ {rk+1}.
2) If k ≥ m + 1: si = s.

b) s j, j 6= i: s j = ∅.
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In this description of the function fi, the notation step..: and the different num-
berings a),i),1), etc., are just tags to be able to refer to the different parts of the
definition later. It is clear from this description that each fi is well-defined; for
each s it defines si and s j for each j, and all the different cases are mutually
exclusive. It is also clear that fi(s) ⊆ Ri(s) for all i ∈ Ags and s ∈ ℘fin(OL) (see
eq. (D.1)), and thus ~fAgs ∈ Str(Ags, R), and that ~fAgs are monotone.

Let G ⊆ Ags such that
|G| ≥ n−m (D.3)

and let λ ∈ outR(~fG ,~s). If

∃k such that R, (λ[k], π) |= IC(G) (D.4)

then the Lemma is true. Thus the rest of the proof is a proof of eq. (D.4).
Note that, since ~fG is monotone, λ[k]i ⊆ λ[k + 1]i for any i ∈ G and any

k ≥ 0.
It is easy to see that any agent i who uses the strategy fi, from the start

position ~s, will use all of the following parts of the function, in the following
order:

stepc0, . . . , stepcm, stepr0, . . . , steprm+1

The role of the ck and rk propositions is exclusively to keep track of this progress.
Within each step agent i will do a number1 different substeps. For the ck steps
these substeps, a number of uses of step cka) and one use of step ckb), involve
sending and receiving messages and their progress is controlled by the sentγ
propositions; for the rk steps the substeps, a number of uses of step rka)i) and
one use of step rka)ii), involve calculating majorities and their progress is con-
trolled by the calcγ propositions. All substeps in a step will eventually be used,
and the agent goes on to the next step as outlined above, except for step rm+1
where the function will “terminate”.

Note also that each agent in G will execute these step simultaneously; the
strategy function, which every agent in G uses, defines a fixed number of times
the function is used between each step. This number does not depend on e.g.
the messages the agent receives. Thus, each agent will go from one step to the
next at exactly the same time. Particularly, there exists kp, p ∈ [0, m + 1], such
that

rp ∈ λ[kp]i and rp 6∈ λ[kp − 1]i

for each i ∈ G. These notions will be used in the proofs below.
The following Lemma D.3 is used to prove eq. (D.4), and uses an interme-

diate result in Lemma D.2. Informally, Lemma D.2 solves the case when the
commanding general is loyal.

Lemma D.2 For every m′ ∈ [0, m], k s.t. n > 2k + m, Ags′ ⊆ Ags s.t. |Ags′| =
n− m + m′, G′ ⊆ Ags′ ∩ G s.t. |G′| ≥ |Ags′| − k, γ ∈ AS(Ags \ Ags′, m− m′),
l ∈ G′:

R, (λ[km′+1, π)] |= IC(G′,4l{4γ{attack}) 2

1Actually |AS(Ags \ {i}, k)|+ 1 for the ck steps and |AS(Ags \ {i}, m− k + 1)| for the ri steps.
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PROOF The proof is by induction over m′.
For the base case, m′ = 0 and |γ| = m. Assume first that agent l knows

4l{¬¬ 4γ attack} and does not know 4l{¬ 4γ attack} right before step cm.
In step cma)i), since γ ∈ AS(Ags \ {l}, m), l will send 4l{4γattack} to him-
self, and 4 j{¬¬4l {4γattack}} to every j ∈ G′ \ {l} ⊆ Ags \ ({l} ∪ γ) and,
by monotonicity, 4 j{¬¬ 4l {4γattack}} ∈ λ[k0] j. Let j ∈ G′ \ {l}. Since
j ∈ G, j uses strategy f j and will, since lγ ∈ AS(Ags \ { j}, m + 1) send x =
4l{4γattack} to himself in step r0a)i). Thus, 4l{4γattack} ∈ λ[k1] j for any
j ∈ G′ \ {l}. It can be shown that ¬4l {4γattack} 6∈ λ[k1] j: there is no such
formula in λ[0] j (which is described by Γ ; l 6= j) and since it is impossible
for another agent to communicate such a formula to j (restriction on mes-
sages) it must have been inferred by j in step r0a)i) – which is impossible.
Also, by monotonicity (l ∈ G), 4l{4γattack} ∈ λ[k1]l . It can be shown that
¬ 4l {4γattack} 6∈ λ[k1]l : it cannot have been communicated, it was not in-
ferred by l in step cma)i), and the only possibility for ¬4l {4γattack} ∈ λ[0]l
is that l = cg and γ = ε (m = 0) — but that is also impossible because by
the assumption at the beginning of the base case 4cg{¬attack} 6∈ λ[0]cg which
implies that ¬4cg {attack} 6∈ λ[0]cg by construction of Γ . Thus, R, (λ[k1], π) |=
IC(G′,4l{4γattack}). The opposite assumption, that right before step cm ei-
ther agent l does not know4l{¬¬4γ attack} or agent l knows both4l{¬¬4γ
attack} and4l{¬4γ attack}, leads to the fact that l will use case ii) in step cma)
and that ¬4l {4γattack} ∈ λ[k1] j and 4l{4γattack} 6∈ λ[k1] j for each j ∈ G′

by a symmetrical argument2 and thus (R, λ[k1], π) |= IC(G′,4l{4γattack})
also in this case.

For the inductive step, let m′ > 1 and assume that the lemma holds for
m′ − 1. Let k, Ags′, G′,γ and l be as described in the lemma. In step cm−m′a) l
sends either 4 j{¬¬4l {4γattack}} (case cm−m′a)i)) or 4 j{¬ 4l {4γattack}}
(case cm−m′a)ii)) to each j ∈ Ags \ ({l} ∪ γ), where |γ| = m − m′. Assume
the former. Then, in step cm−m′a), l sends 4l{4γattack} to himself. In step
cm−m′+1a), each j ∈ Ags \ (γ ∪ {l}) decides 4 j{4l{4γattack}} and not ¬4 j

{4l{4γattack}}, so 4 j{4l{4γattack}} ∈ λ[km′ ] j by monotonicity and ¬4 j

{4l{4γattack}} 6∈ λ[km′ ] j by a similar argument to the base case: the only
possibility would be that ¬ 4 j {4l{4γattack}} ∈ λ[0] j which is impossible
since by construction of Γ there is no such formula in λ[0] j (even if γ = ε). Let
Ags′′ = Ags′ \ {l}, G′′ = G′ \ {l} and γ′ = lγ. |Ags′′| = |Ags′| − 1 = n−m +
m′ − 1. G′′ ⊆ Ags′′ ∩ G, and |G′′| = |G′| − 1 ≥ |Ags′| − k − 1 = |Ags′′| − k.
γ ∈ AS(Ags \Ags′′, m− (m′ − 1)). Let j ∈ G′′:

R, (λ[km′ ], π) |= IC(G′ \ {l},4 j{4l{4γattack}})

by the induction hypothesis. Since j ∈ G′′, j ∈ Ags\ (γ∪{l}), so4 j{4l{4γattack}} ∈
λ[km′ ] j. By interactive consistency, 4 j{4l{4γattack}} ∈ λ[km′ ]i and ¬ 4 j

{4l{4γattack}} 6∈ λ[km′ ]i for every i ∈ G′ \ {l}. This holds for every j ∈ G′′.

2Again, the only possibility of4l{4γattack} ∈ λ[k1] j would be that l = j = cg,m = 0 and γ = ε

and that4cgattack ∈ λ[0]cg. If the first case in the opposite assumption were true, by construction of
Γ 4cg{attack} 6∈ λ[0]cg since4cg{¬¬attack} 6∈ λ[0]cg. The second case cannot be true, because if cg
knows4cg{¬¬attack} and4cg{¬attack} before step c0 then4cg{¬¬attack},4cg{¬attack} ∈ λ[0]cg

which is impossible by construction of Γ .
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In other words:

For every i ∈ G′ \ {l}: for every j ∈ G′′: 4 j {4l{4γattack}} ∈ λ[km′ ]
i

Let i ∈ G′ \ {l}. In step rm′ agent i has |X| = |(Ags \ (γ ∪ {l})) \ (G′ \ {l})| =
n− (m−m′ + 1)− (|G′| − 1) ≤ n−m + m′ − (n−m + m′ − k) = k (because
|G′| ≥ n − m + m′ − k). |X| + |X| = |Ags \ (γ ∪ {l})| = n − m + m′ − 1 >
2k + m − m + m′ − 1 ≥ 2k (because n > 2k + m and m′ > 0). Thus, since
|X| ≤ k and |X|+ |X| > 2k, |X| > |X| and 4l{4γattack} ∈ λ[km′+1]i because
i sends 4l{4γattack} to himself in step rm′a)i)1). It can be shown that ¬ 4l
{4γattack} 6∈ λ[km′+1]i (the only possibility of the contrary is that |X| ≥ |X|;
¬ 4l {4γattack} 6∈ λ[0]i since l 6= i). This holds for every i ∈ G′ \ {l}. It
can be shown that ¬ 4l {4γattack 6∈ λ[km′+1]l : the only possibility of ¬ 4l
{4γattack 6∈ λ[0]l is that l = cg and γ = ε but since cg sends 4 j{¬¬ 4cg
{attack}} in step cm−m′ 4cg{¬attack} 6∈
lambda[0]cg and thus ¬4cg {attack} 6∈
lambda[0]cg by construction of Γ ; the only other possibility would be that the
formula was inferred by l in step cm−m′ which it was not. Thus, since also
4l{4γattack} ∈ λ[km′+1]l ,

R, (λ[km′+1], π) |= IC(G′,4l{4γattack})

The opposite assumption, that l sends4 j{¬4l {4γattack}} to each j ∈ Ags \
({l}∪γ), leads to the fact that¬4l {4γattack} ∈ λ[km′+1]i and4l{4γattack} 6∈
λ[km′+1]i for every i ∈ G′ by a symmetrical argument, so

R, (λ[km′+1], π) |= IC(G′,4l{4γattack})

holds also in this case. This completes the inductive step.

Lemma D.3 For every m′ ∈ [0, m], for every Ags′ ⊆ Ags such that |Ags′| =
n − m + m′, for every G′ ⊆ Ags′ ∩ G such that |G′| ≥ n − m, for every γ ∈
AS(Ags \Ags′, m−m′), for every l ∈ Ags′

R, (λ[km′+1], π) |= IC(G′,4l{4γattack}) (D.5)
2

PROOF The proof is by induction over m′.
For the base case, let m′ = 0. Since G′ ⊆ Ags′ and |G′| ≥ n− m = |Ags′|,

G′ = Ags′ and thus l ∈ G′. Eq. (D.5) follows from Lemma D.2 by taking k = 0.
For the inductive step, assume that the lemma holds for m′ − 1. First, con-

sider the case when l ∈ G′. Then, (D.5) again follows from Lemma D.2 by
taking and k = m′, since n > 3m ≥ 2m′ + m (eq. (D.2) and m′ ≤ m).

Second, consider the case when l 6∈ G′. Let Ags′ ⊆ Ags, |Ags′| = n−m + m′,
G′ ⊆ Ags′ ∩ G, |G′| ≥ n − m, γ ∈ AS(Ags \ Ags′, m − m′) and l ∈ Ags′. Let
Ags′′ = Ags′ \ {l}. Ags′′ can be used with the induction hypothesis as follows.
|Ags′′| = |Ags′| − 1 = n − m + m′ − 1, G′ ⊆ Ags′′ ∩ G, γ′ = lγ ∈ AS(Ags \
Ags′′, m− (m′ − 1)). By the induction hypothesis, for every j ∈ Ags′′

R, (λ[km′ ], π) |= IC(G′,4 j{4l{4γattack}})
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Note that, if γ is seen as a set, γ = Ags \ Ags′ since γ ⊆ Ags \ Ags′ and
|γ| = m − m′ = |Ags \ Ags′|. Thus, Ags′′ = Ags \ (γ ∪ {l}). By the in-
duction hypothesis, in step rm′ , for each j ∈ Ags′′ = Ags \ (γ ∪ {l}) either
all agents in G′ know 4 j{4l{4γattack}} or all agents in G′ does not know
4 j{4l{4γattack}}. Consider step rm′a)i) for each i ∈ G′: i must calculate the
values X and X for lγ ∈ AS(Ags \ {i}, m − m′ + 1). Every agent i ∈ G will
calculate the values for will get the same values for the sets X and X, and thus
will either all conclude that4l{4γattack} or all conclude that ¬4l {4γattack}
(but not both) in step rm′a)i). It is also easy to see that the agents in G′ could
not have come to know either 4l{4γattack} or ¬4l {4γattack} by reasoning
before step rm′ , and neither by communication before or in step rm′ — the latter
since l 6∈ G′ and no agents can send a formula on one of the two forms to an
agent i 6= l, nor is 4l{4γattack} ∈ λ[0] j for any j ∈ G′ by construction of Γ

(since l 6∈ 2′). Thus, when round rm′ is finished G′ have interactive consistency:

R, (λ[km′+1], π) |= IC(G′,4l{4γattack})

This completes the inductive step, and the proof.

(D.4) follows from Lemma D.3 by taking m′ = m, Ags′ = Ags (|Ags′| =
n = n− m + m′), G′ = G (|G| = n− m by eq. (D.3)), γ = ε and l = cg. This
completes the proof of (D.4), and thus the Lemma.




